ENHANCING HUMAN BREAST CANCER CELLS DESTRUCTION USING COMBINATION OF ADENOVIRUS EXPRESSING P53 AND HYPERTERMIA TREATMENT

ASITA A/P ELENGOE

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioscience)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JULY 2015
Specially for my beloved parents, Elengoe and Thavamani
 My lovely sister, Suguna and Vaani
 &
 My wonderful brother, Tevanraj.
ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to GOD for His blessings because I could not finish my PhD project on time without Him.

I would like to thank my nice supervisor, Dr. Salehhuddin bin Hamdan for his continuous support of my PhD research, for his motivation, enthusiasm, immense knowledge and patience. His guidance helped me in all the time of research and writing of this thesis. I am grateful to Dr. Mohammed Abu Naser for his technical help, critical comments and suggestions. I sincerely thank Associate Professor Dr. Shahir Shamsir for give permission to use Bioinformatics Laboratory.

My sincere gratitude also goes to my dear friends, Sayang binti Baba Kumutha Cheliah, Michael Moses, Chu, Sapideh, Soudabeh Sebatian, Ashraf, Nurul Farhana, Azzmeer Azzhar Abdul Hamid, Revathi Sagadevan, Karthik Krishnan and Yuvitha Vellasamy who supported me during the completion of my PhD research.

Last but not the least, I would like to thank my parents, Elengoe and Thavamani who supported me spiritually throughout of my life.
ABSTRACT

In Malaysia, breast cancer is the most common cancer where 1 in 19 Malaysian women will be diagnosed with breast cancer by the age of 85. Moreover, lack of specific symptoms in the early stage of disease leading to delay in diagnosis. Unfortunately, current treatments by chemotherapeutic agents, surgery and radiation are not fully effective for the treatment of breast cancer. Thus, there is an urgency in developing new approaches for the treatment of breast cancer patients. In this study, a novel therapeutic regimen, combining the effects of recombinant adenovirus and hyperthermia was investigated. Firstly, Adenovirus serotype 5 was constructed by cloning of p53 gene into a defective recombinant adenovirus vector, Ad5-p53-DsRed Monomer N1. The Ad5-p53-DsRed Monomer N1 (MOI of 100) was then used to infect breast cancer cells (MDA-MB 231 and MCF-7) with or without combination of hyperthermia treatment (42°C for 2 hours). The cell killing and viral concentration were then determined by MTT assay and viral plaque formation assay respectively. After that, the heat shock protein (Hsp70) and p53 protein expression in transfected cells were quantitated using ELISA assay. Activated-Caspase 3/7, 8 and 9 were also evaluated to study the apoptotic pathway of cancer cells. Furthermore, the novel protein interaction between nucleotide binding domain (NBD) Hsp70 and human Ad5 E1A 32 kDa motif (PNLVP); and NBD and p53 motif (SCMGGMNR) were investigated through bioinformatics tools such as Gromacs and Autodock softwares. It was found that MDA-MB 231 and MCF-7 cells infected with virus Ad5-p53-DsRed Monomer N1 alone resulted in 46.77±2.74% and 42.26±1.78% cell killing respectively while hyperthermia in combination with virus were 84.82±1.64% and 80.13±3.30% respectively. The Hsp70 expression of both cancer cells was also increased to 170.57% (MDA-MB 231) and 169.83% (MCF-7). Moreover, p53 expression in MDA-MB 231 and MCF-7 cells by virus combined with heat treatment (85.72 ng/L and 79.05 ng/L respectively) could lead to enhanced oncolytic property compared to virus treatment alone (47.82 ng/L and 40.54 ng/L respectively). In addition, caspase activity was first time reported that apoptosis process started at very early stage of infection in breast cancer cells with hyperthermia compared to virus alone. This was due to the evident that the highest kinetic energy was found in caspase 3 whereas virus alone the highest in caspase 8. In conclusion, Hsp70 induction by hyperthermia treatment enhanced Ad5-p53-DsRed Monomer N1 replication and oncolysis in MDA-MB 231 and MCF-7 cells through apoptotic pathway. Besides that, NBD of Hsp70 had the best interaction with PNLVP motif at 42°C. Thus, combining Ad5-p53 with hyperthermia treatment could be a potential approach for breast cancer treatment.
ABSTRAK

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATION</td>
<td>xxv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xxviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxx</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background of study</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem statement of research</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Hypotheses of study</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives of study</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Scope of research</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Significance of study</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Breast cancer</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Morphology and function of the breast</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Classification of breast tumours</td>
<td>8</td>
</tr>
</tbody>
</table>
2.1.3 Etiology of breast tumours
2.1.4 Genetic alteration in breast tumours
2.1.5 Diagnosis and current treatment
2.1.6 Tumour protein p53
2.2 Adenovirus
 2.2.1 Structure, function and replication mechanism
 2.2.2 Oncolytic adenovirus
 2.2.3 Clinical applications of adenovirus-mediated tumour protein p53 (Ad-p53)
2.3 Hyperthermia
 2.3.1 Principles of hyperthermia
 2.3.2 Modes of application
 2.3.3 Mechanism of hyperthermia in combination with radiotherapy, and chemotherapy
 2.3.4 Integration of hyperthermia with other therapies under development
 2.3.5 Current approach of hyperthermia
 2.3.6 Heat shock 70 kDa protein (Hsp70)
2.4 Bioinformatics applications
 2.4.1 Protein modelling
 2.4.2 Homology modelling
 2.4.3 Protein validation tools
 2.4.4 Current computational approaches in cancer treatment
 2.4.5 Structure of Hsp70
 2.4.6 Structure of E1A 32 kDa of human Ad5
3 MATERIALS AND METHODS
3.1 Materials
 3.1.1 Chemicals and reagents
 3.1.2 Vectors
 3.1.3 Bacterial strain
3.1.4 Cell culture

3.1.5 Standard solutions and buffers
 3.1.5.1 Bacterial growth media
 3.1.5.2 Solutions for agarose gel electrophoresis
 3.1.5.3 Antibiotic stock solutions
 3.1.5.4 Transformation buffers
 3.1.5.5 Solutions for cell viability assay
 3.1.5.6 Cell cultures growth media

3.2 Methods
 3.2.1 Wet lab experimental design
 3.2.2 Dry lab experimental design
 3.2.3 Construction of Ad-p53-DsRed Monomer N1
 3.2.3.1 Small scale preparation of plasmid DNA
 3.2.3.2 Agarose gel electrophoresis
 3.2.3.3 Determination of plasmid DNA concentration
 3.2.3.4 Design primers of p53 gene
 3.2.3.5 Amplification of p53 gene using Polymerase Chain Reaction (PCR)
 3.2.3.6 Restriction endonucleases digestion and alkaline phosphatases treatment for vector plasmid DNA
 3.2.3.7 Extraction of DNA fragments from agarose gel
 3.2.3.8 Ligation of plasmid vector into insert fragment
 3.2.3.9 PCR product purification
 3.2.3.10 Preparation of chemically competent *E. coli* DH5α
 3.2.3.11 Transformation of plasmid DNA
 3.2.3.12 LR recombination reaction
between pAd/CMV/V5-DEST™ vector and entry clone

3.2.3.13 Analysis of transformants using PCR

3.2.3.14 Glycerol stock of plasmid DNA in *E.coli*

3.2.4 Production of Ad-p53-DsRed Monomer N1

3.2.4.1 DNA transfection using Lipofectamine™ reagent

3.2.4.2 Preparation of crude viral lysate

3.2.4.3 Amplification of adenovirus stock

3.2.4.4 Determination of titre of adenovirus stock

3.2.4.5 Calculation of multiplicity of infection (MOI)

3.2.5 MTT assay

3.2.6 Hyperthermia treatment alone

3.2.6.1 Optimisation of temperature and duration of heat exposure on MCF-10A, MCF-7 and MDA-MB 231

3.2.7 Ad-p53-DsRed Monomer N1 treatment alone

3.2.8 Combination of hyperthermia and Ad-p53-DsRed Monomer N1 treatment

3.2.9 Calculation of synergism

3.2.10 Viral replication assay

3.2.11 Measurement of Hsp70 by enzyme-linked immunosorbent assay (ELISA)

3.2.12 Quantitation of p53 protein expression using enzyme-linked immunosorbent assay (ELISA)
3.2.13 Apoptosis assay 60
3.2.14 Statistical analysis 61
3.2.15 Bioinformatics tools 61
 3.2.15.1 Target sequence (RCSB Protein Databank) 61
 3.2.15.2 In-silico mutagenesis of NBD 61
 3.2.15.3 Physiochemical characterisation 62
 3.2.15.4 Secondary structure prediction 62
 3.2.15.5 Protein model simulation and evaluation 62
 3.2.15.6 Active site identification 64
 3.2.15.7 Homology modeling of E1A 32 kDa of human adenovirus serotype 5 (Ad5) 64
 3.2.15.8 Molecular docking 64
 3.2.15.9 Molecular dynamics (MD) simulation of protein-ligand complex 66
 3.2.15.10 Identification of protein interaction between HSPA1A/Hsp70 and p53 67
 3.2.15.11 Homology modeling of DNA binding domain of p53 motif 67
 3.2.15.12 Protein-protein docking 68
 3.2.15.13 Molecular dynamics (MD) simulation of the NBD-p53 motif complex 68

4 CONSTRUCTION OF AD5-P53-DSRED MONOMER N1 69
4.1 Construction of p53-DsRed Monomer N1 69
 4.1.1 Verification of plasmid DNA 70
 4.1.1.1 Isolation of plasmid DNA 70
 4.1.1.2 Determination of plasmid DNA
concentration and purity 71
4.1.2 PCR amplification of p53 71
 4.1.2.1 Primer design of p53 73
 4.1.2.2 PCR production of p53 73
4.1.3 Restriction endonuclease (RE) digestion of pDsRed Monomer N1 vector 75
4.1.4 Ligation of full length p53 and pDsRed Monomer N1 76
4.1.5 Analyse transformants (p53-DsRed Monomer N1) using PCR amplification and RE digestion 77
4.1.6 DNA sequencing analysis of p53-DsRed Monomer N1 80
 4.1.6.1 Sequencing of PCR product of p53 80
4.2 Construction of Ad5-p53-DsRed Monomer N1 84
 4.2.1 RE digestion of pENTR3C™ 84
 4.2.2 RE digestion of p53-DsRed Monomer N1 85
 4.2.3 Ligation of p53-DsRed Monomer N1 and pENTR3C™ 88
 4.2.4 Analyses transformants using PCR amplification 88
 4.2.5 DNA sequencing analysis of transformants of pENTR3C™-p53-DsRed Monomer N1 91
 4.2.6 Ligation of p53-DsRed Monomer N1 with pAd/CMV/V5-DEST™ vector through the entry clone (pENTR3C™) 93
 4.2.7 DNA sequencing analysis of transformants of Ad5-p53-DsRed Monomer N1 94
4.3 DNA transfection using Lipofectamine™ reagent 97

5 HYPERTHEMIA ALONE, AD5-P53-DSRED MONOMER N1 ALONE AND
COMBINATION OF HYPERTHERMIA AND AD5-P53-DSRED MONOMER N1 TREATMENTS ON BREAST CANCER CELLS (MDA-MB 231 AND MCF-7)

5.1 Optimisation of temperature and duration of heat shock on viability of MDA-MB 231 and MCF-7 cell lines

5.2 Ad5-p53-DsRed Monomer N1 infection efficiency

5.3 Cytotoxicity of hyperthermia alone, Ad5-p53-DsRed Monomer N1 alone and the combination of Ad5-p53-DsRed Monomer N1 and hyperthermia

5.4 Morphology of MDA-MB 231 and MCF-7 cell changes under a phase-contrast microscope

5.5 Effect of hyperthermia on viral replication

5.6 Induction of Hsp70 expression after hyperthermia treatment

5.7 Expression of p53 in MDA-MB 231 and MCF-7 cells

5.8 Apoptosis

6 MOLECULAR DYNAMICS (MD) SIMULATION AND DOCKING STUDIES ON NUCLEOTIDE BINDING DOMAIN (NBD) OF HOMO SAPIENS HSP70

6.1 Protein interaction between NBD of Homo sapiens Hsp70 and Ad5

6.1.1 Structure of NBD of human Hsp70

6.1.2 Physiochemical characterisation of NBD

6.1.3 Secondary structure prediction of NBD

6.1.4 Structural analysis of NBD

6.1.4.1 Molecular dynamics (MD) simulation of NBD at different temperatures to determine its
6.1.4.2 Identification of active sites 136
6.1.4.3 Molecular docking 138
6.1.4.4 Model simulation and evaluation of protein-ligand complex 145
6.1.5 In silico mutagenesis of NBD protein 153
 6.1.5.1 Mutations of NBD 153
 6.1.5.2 Physiochemical characterisation of NBD mutants 155
 6.1.5.3 Secondary structure prediction of NBD mutants 160
 6.1.5.4 Molecular dynamics (MD) simulation and evaluation of NBD mutants 169
 6.1.5.5 Active site identification of NBD mutants 193
 6.1.5.6 Molecular docking of NBD mutants 196
 6.1.5.7 Model simulation and evaluation of protein-ligand complex 204
6.2 Protein interaction between NBD of Homo sapiens Hsp70 (HSPA1A) and p53 motif 217
 6.2.1 Protein-protein docking 219
 6.2.2 Model simulation and evaluation of protein-ligand complex 220

7 CONCLUSION 225

8 FUTURE WORK 228

REFERENCES 229
Appendices A-E 251
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The seven domains of tumour protein p53</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The common features of the most commonly used vectors (Benjamin et al., 2001)</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Oncolytic adenoviruses under in-vitro stages</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Clinical trials using Ad-p53 alone for cancer therapy</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Clinical trials using Ad-p53 with chemotherapy or radiotherapy for cancer treatment</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Specific primers designed for PCR amplification</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Mixture for PCR reactions</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>The optimal conditions for PCR reactions used for DNA amplification</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>The optimal conditions for PCR reactions used for DNA amplification of pAd5</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>The primers used for PCR amplification</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Reaction conditions for single and double digestion of plasmid DNA samples</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Mixture of RE single digestion</td>
<td>48</td>
</tr>
<tr>
<td>3.8</td>
<td>Mixture of RE double digestion</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>The reaction mixture for ligation</td>
<td>49</td>
</tr>
<tr>
<td>3.10</td>
<td>LR recombination reaction mixture</td>
<td>52</td>
</tr>
<tr>
<td>3.11</td>
<td>Reaction mixture of PCR of 2X Top Taq Polymerase</td>
<td>53</td>
</tr>
<tr>
<td>3.12</td>
<td>Details of proteins obtained from MD simulations</td>
<td>64</td>
</tr>
<tr>
<td>3.13</td>
<td>Affinity maps of proteins</td>
<td>66</td>
</tr>
<tr>
<td>3.14</td>
<td>Details of protein-ligand complexes obtained from MD</td>
<td></td>
</tr>
</tbody>
</table>
4.1 Plasmid DNA concentration and purity 71
4.2 Forward and reverse primers 73
5.1 Results of MTT assay for MDA-MB 231 and MCF-7 cell lines at optical density of 570 nm 104
5.2 MDA-MB 231 and MCF-7 cells after treated with Ad5-p53-DsRed Monomer N1 alone (MOI of 100) and the combination of hyperthermia (42°C for 2 hours) and virus (Ad5-p53-DsRed Monomer N1, MOI of 100) were photographed by inverted fluorescent microscope (Nikon Ti Eclipse) (magnification 20X) 108
5.3 Pictures of MDA-MB 231 and MCF-7 after hyperthermia alone (42°C for 2 hours), Ad5-p53-DsRed Monomer N1 alone (MOI of 100) and the combination of hyperthermia (42°C for 2 hours) and virus (Ad5-p53-DsRed Monomer N1, MOI of 100) treatment compared with control at 37°C (untreated cells) were photographed by inverted phase microscope (Nikon Ti Eclipse) (magnification 20X) 112
6.1 Amino acid composition of NBD was predicted by Expasy’s Prot-Param program 128
6.2 Hydrophobic, hydrophilic, positive, negative, aromatic and hydroxyl residues NBD was predicted by Color Protein Sequence analysis 128
6.3 Presence of disulphide (ss) bond in NBD predicted by Cys_Rec server 129
6.4 Predicted active sites of the NBD protein at 37, 38, 39, 40, 41, 42, 43 and 44°C 137
6.5 Docking results of NBD protein at temperatures of 37, 38, 39, 40, 41, 42, 43 and 44°C with the PNLVP motif 139
6.6 Hydrogen bonds interaction studies of the NBD protein at temperatures of 37, 38, 39, 40, 41, 42, 43 and 44°C with PNLVP motif 140
6.7 The NBD protein with change in chemical properties 153
6.8 The physiochemical characters of T11V, T12P, D364S, K69L, T202V, E229V, H225P and D230C mutants as predicted by Expasy’s Prot-Param program

6.9 Amino acid composition of T11V, T12P, D364S, K69L, T202V, E229V, H225P and D230C mutants was predicted by Expasy’s Prot-Param program

6.10 Hydrophobic, hydrophilic, positive, negative, aromatic and hydroxyl residues of T11V, T12P, D364S, K69L, T202V, E229V, H225P and D230C mutants was predicted by Color Protein Sequence analysis

6.11 Presence of disulphide (ss) bond predicted by Cys_Rec server

6.13 The composition of α helix in mutants of NBD

6.17 Docking results of T11V, T12P, D364S, K69L, T202V, E229V, H225P and D230C mutants with the PNLVP motif

6.20 Hydrogen bonds interaction study of the NBD protein with p53 motif (SCMGGMNR)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>p53 pathway in normal and cancer cell (Lo et al., 2006)</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of adenovirus (Zubeita et al., 2005)</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of oncolytic virotherapy (Cross and Burmester, 2006)</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Steps in homology modeling (Madhusudhan et al., 2005)</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Electrophoretic analysis of pDsRed Monomer N1, p53 and pENTR3C™ plasmid DNA amplification</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>A schematic representation of restriction map and Multiple Cloning Site (MCS) of pDsRed Monomer N1 vector (Adapted from Clontech TAKARA BIO Company, 2006)</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Electrophoretic analysis of p53 PCR amplification</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Electrophoretic analysis of single and double digestion of pDsRed Monomer N1 vector</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>A schematic representation of the steps involve in the construction of p53-DsRed Monomer N1</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>Screening of the insert (p53) from selective transformant colonies using amplification of PCR</td>
<td>78</td>
</tr>
<tr>
<td>4.7</td>
<td>Electrophoretic analysis of single and double digestion of p53-DsRed Monomer N1 recombinant</td>
<td>80</td>
</tr>
<tr>
<td>4.8</td>
<td>Alignment of forward and reverse sequencing of nucleic acid of the p53 PCR product (p53-DsRed Monomer N1) and Homo sapiens tumour protein p53 gene (Entrez Gene ID: 7157)</td>
<td>83</td>
</tr>
</tbody>
</table>
4.9 Electrophoretic analysis of double digestion of pENTR3CTM

4.10 Electrophoretic analysis of double digestion of p53-DsRed Monomer N1 recombinant

4.11 A schematic representation of the steps involve in the ligation of p53-DsRed Monomer N1 with the entry clone (pENTR3CTM)

4.12 Screening of the insert (p53) from selective transformant colonies using amplification of PCR

4.13 Alignment of forward and reverse sequencing of nucleic acid of the p53 (pENTR3CTM-p53-DsRed Monomer N1) PCR product and human tumour protein p53 gene (Entrez Gene ID: 7157)

4.14 Electrophoresis analysis of p53 and Ad5-p53-DsRed Monomer N1 PCR amplification

4.15 Alignment of forward and reverse sequencing of nucleic acid of the p53 (Ad5-p53-DsRed Monomer N1) PCR product and Homo sapiens tumour protein p53 gene (Entrez Gene ID: 7157)

4.16 (A) Non-transfected and (B) transfected Vero cell with the Ad5-p53-DsRed Monomer N1 plasmid was observed after 24 hours using inverted fluorescent microscope (Nikon Ti Eclipse) (magnification 40X)

5.1 Percentage viability of (A) MCF-10A, (B) MDA-MB 231 and (C) MCF-7 cell line after hyperthermia treatment for 0.5, 1, 2, 3 and 4 hours at temperatures of 38, 39, 40, 41, 42, 43 and 44°C was determined using MTT assay

5.2 (A) MDA-MB 231 and (B) MCF-7 cells infected with Ad5-p53-DsRed Monomer N1 virus were observed after 24 hours using inverted fluorescent microscope (Nikon Ti Eclipse) (magnification 40X)

5.3 Cell viability of MDA-MB 231 and MCF-7 after treated with various MOI (0, 25, 50, 100, 200 and 500) of Ad5-p53-DsRed Monomer N1
5.4 Percentage of cytotoxicity of MDA-MB 231 and MCF-7 cells after treated with hyperthermia alone (42°C for 2 hours), Ad5-p53-DsRed Monomer N1 alone (MOI of 100) and the combination of Ad5-p53-DsRed Monomer N1 (MOI of 100) and heat exposure at 42°C for 2 hours.

5.5 Percentage of synergistic effect of one and two hours hyperthermia (42°C) combined with various MOI of Ad5-p53-DsRed Monomer N1 on the growth of (A) MDA-MB 231 and (B) MCF-7 cell lines.

5.6 Infection of (A) MDA-MB 231 and (B) MCF-7 cells with the same dose of Ad5-p53-DsRed Monomer N1 (MOI of 100) combined with hyperthermia for 1, 2, 3 and 4 hours resulted in formation of viral plaques, as measured after 24 hours of infection.

5.7 Hsp70 expression after treated (A) MDA-MB 231 and (B) MCF-7 cells with Ad5-p53-DsRed Monomer N1 (MOI of 100) combined with hyperthermia at temperature of 42°C for 2 hours.

5.8 p53 protein expression in (A) MDA-MB 231 and (B) MCF-7 cells, infected with Ad5-p53-DsRed Monomer N1 (MOI of 100) and treated with heat at 42°C for 2 hours.

5.9 Activities of caspase 3/7, 8 and 9 were expressed in (A) MDA-MB 231 and (B) MCF-7 cells for Ad5-p53-DsRed Monomer N1 alone (MOI of 100) and the combination of Ad5-p53-DsRed Monomer N1 (MOI of 100) and hyperthermia (42°C for 2 hours) treatment after 6 hours.

6.1 Three dimensional structure of NBD coloured by chain bows, which was viewed using PyMol software.

6.2 Secondary structure of the NBD was predicted using SOPMA server.

6.3 Root mean square deviations (RMSD) of NBD at different temperatures of 37, 38, 39, 40, 41, 42, 43 and 44°C.
6.4 Backbone atomic fluctuations (RMSF) of NBD at a variety of temperatures (37, 38, 39, 40, 41, 42, 43 and 44°C)

6.5 Radius gyration of NBD at temperatures of 37, 38, 39, 40, 41, 42, 43 and 44°C

6.6 Secondary structure analysis for NBD at temperatures of (A) 37°C; (B) 38°C; (C) 39°C; (D) 40°C; (E) 41°C; (F) 42°C; (G) 43°C and (H) 44°C

6.7 Projection of the predicted active sites for NBD protein at (A) 37°C; (B) 38°C; (C) 39°C; (D) 40°C; (E) 41°C; (F) 42°C; (G) 43°C and (H) 44°C obtained using Q-SiteFinder web server (shown as red colour)

6.8 Docking of NBD protein with the PNLVP motif at (A) 37°C; (B) 38°C, (C) 39°C; (D) 40°C; (E) 41°C; (F) 42°C; (G) 43°C and (H) 44°C

6.9 Root mean square deviations (RMSD) of the NBD-PNLVP motif complex structures at a variety of temperatures (37, 38, 39, 40, 41, 42, 43 and 44°C)

6.10 Backbone atomic fluctuations (RMSF) of the NBD-PNLVP motif complex structures at 37, 38, 39, 40, 41, 42, 43 and 44°C

6.11 Salt bridge of the NBD-PNLVP motif complex structures at 37, 38, 39, 40, 41, 42, 43 and 44°C

6.12 Hydrogen bond autocorrelation of the NBD-PNLVP motif complex structures at different temperatures (37, 38, 39, 40, 41, 42, 43 and 44°C)

6.13 Number of hydrogen bonds for NBD-PNLVP motif complex structures at (A) 37°C; (B) 38°C; (C) 39°C; (D) 40°C; (E) 41°C; (F) 42°C; (G) 43°C and (H) 44°C

6.14 Secondary structure analysis for NBD-PNLVP motif complexes at temperatures of (A) 37°C; (B) 38°C; (C) 39°C; (D) 40°C; (E) 41°C; (F) 42°C; (G) 43°C and (H) 44°C

6.15 Secondary structures of the (A) T11V; (B) T12P;

Secondary structure analysis for (A) T11V; (B) T12P; (C) D364S; (D) K69L; (E) T202V; (F) E229V; (G) H225P and (H) D230C.

Ramachandran plots generated via PROCHECK for (A) NBD protein; (B) T11V; (C) T12P; (D) D364S; (E) K69L; (F) T202V; (G) E229V; (H) H225P and (I) D230C mutants.

ERRAT plots for (A) NBD protein; (B) T11V; (C) T12P; (D) D364S; (E) K69L; (F) T202V; (G) E229V; (H) H225P and (I) D230C mutants.

Verify 3D plots for (A) NBD protein; (B) T11V; (C) T12P; (D) D364S; (E) K69L; (F) T202V; (G) E229V; (H) H225P and (I) D230C mutants.

Protein quality scores for (A) NBD protein; (B) T11V; (C) T12P; (D) D364S; (E) K69L; (F) T202V; (G) E229V; (H) H225P and (I) D230C mutants generated through ProSA web server.

Evaluation of (A) NBD protein; (B) T11V; (C) T12P; (D) D364S; (E) K69L; (F) T202V; (G) E229V; (H) H225P and (I) D230C protein models using ANOLEA and GROMOS analysis.

Projection of the predicted active sites for (A) T11V; (B) T12P; (C) D364S; (D) K69L; (E) T202V; (F) E229V; (G) H225P and (H) D230C were predicted using SOPMA server.
(G) H225P and (H) D230C mutants obtained using Q-SiteFinder web server (shown as red colour) 194

6.26 Docking of the (A) T11V; (B) T12P, (C) D364S; (D) K69L; (E) T202V; (F) E229V; (G) H225P and (H) D230C 200

6.27 Root mean square deviations (RMSD) of the (A) T11V; (B) T12P; (C) D364S; (D) K69L; (E) T202V; (F) E229V; (G) H225P and (H) D230C-PNLVP motif complex structures 205

6.28 Backbone atomic fluctuations (RMSF) of the (A) T11V; (B) T12P; (C) D364S; (D) K69L; (E) T202V; (F) E229V; (G) H225P and (H) D230C-PNLVP motif complex models 206

6.29 Salt bridge of the (A) T11V; (B) T12P; (C) D364S; (D) K69L; (E) T202V; (F) E229V; (G) H225P and (H) D230C-PNLVP motif complex structures 206

6.30 Hydrogen bond autocorrelation of the (A) T11V; (B) T12P; (C) D364S; (D) K69L; (E) T202V; (F) E229V; (G) H225P and (H) D230C-PNLVP motif complex models 207

6.31 Number of hydrogen bonds for the (A) T11V; (B) T12P; (C) D364S; (D) K69L; (E) T202V; (F) E229V; (G) H225P and (H) D230C-PNLVP motif complex structures 208

6.32 Secondary structure analysis for the (A) T11V; (B) T12P; (C) D364S; (D) K69L; (E) T202V; (F) E229V; (G) H225P and (H) D230C-PNLVP motif complex models 210

6.33 Solvent accessible surface area (SASA) analysis for the (A) NBD protein; (B) T11V; (C) T12P; (D) D364S; (E) K69L; (F) T202V; (G) E229V; (H) H225P and (I) D230C-PNLVP motif complex structures 212

6.34 Distance matrices analysis for the (A) NBD protein; (B) T11V; (C) T12P; (D) D364S; (E) K69L; (F) T202V; (G) E229V; (H) H225P and (I) D230C-PNLVP motif complex structures 215
6.35 Protein interaction of HSPA1A with p53 was found through STRING version 9.1 program

6.36 Docking of the NBD protein with p53 motif (SCMGGMNR)

6.37 Root mean square deviations (RMSD) of the NBD-p53 motif complex structure at temperature of 42°C

6.38 Backbone atomic fluctuations (RMSF) of the NBD-p53 motif complex model at 42°C

6.39 Salt bridge of the NBD-p53 motif complex model at 42°C

6.40 Number of hydrogen bonds for the NBD-p53 motif complex structure at 42°C

6.41 Hydrogen bond autocorrelation of the NBD-p53 motif complex structure at 42°C

6.42 Secondary structure analysis for the NBD-p53 motif complex structure
LIST OF ABBREVIATION

AAV - Adeno-associated viral
Ad5 - Adenovirus serotype 5
Akt - Serine or threonine kinase
Ala - Alanine
Arg - Arginine
Asn - Asparagine
Asp - Aspartic acid
ATP - Adenosine triphosphate
BLAST - Basic Local Alignment Search Tool
BLASTP - Protein BLAST
CAR - Coxsackie adenovirus receptor
CCSB - Center for Cancer Systems Biology
CO₂ - Carbon dioxide
CTLs - Cytotoxic T-lymphocytes
Cys - Cysteine
DC - Dendritic cells
dH₂O - Distilled water
DNA - Deoxyribonucleic acid
dNTPs - Deoxyribonucleotide triphosphates
E.coli - *Escherichia coli*
Eg. - Example
ELISA - Enzyme-linked immunosorbent assay
GRAVY - Grand average of hydropathicity
G-factor - Goodness factor
Gln - Glutamine
Glu - Glutamic acid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Glycine</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HDACs</td>
<td>Histone deactylases</td>
</tr>
<tr>
<td>HIF</td>
<td>Hypoxia-inducible factor</td>
</tr>
<tr>
<td>HILP</td>
<td>Hyperthermic isolated limb perfusion</td>
</tr>
<tr>
<td>HIPEC</td>
<td>Hyperthermic intraperitoneal chemotherapy</td>
</tr>
<tr>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>HLS</td>
<td>Helical lid subdomain</td>
</tr>
<tr>
<td>Hsp</td>
<td>Heat shock protein</td>
</tr>
<tr>
<td>Hsp70</td>
<td>Heat shock 70 kDa protein</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes simplex virus</td>
</tr>
<tr>
<td>Ile</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>IPHC</td>
<td>Intraperitoneal hyperthermic chemotherapy</td>
</tr>
<tr>
<td>ITR</td>
<td>Inverted terminal repeat</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>MD simulation</td>
<td>Molecular dynamics simulation</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>MDM2</td>
<td>Murine double minute gene 2</td>
</tr>
<tr>
<td>M.wt</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NBD</td>
<td>Nucleotide binding domain</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear localization signal</td>
</tr>
<tr>
<td>PBC</td>
<td>Periodic boundary condition</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability density function</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>pI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>PKB</td>
<td>Protein kinase B</td>
</tr>
<tr>
<td>PME</td>
<td>Particle Mesh Ewald</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pro</td>
<td>Proline</td>
</tr>
<tr>
<td>ProSA</td>
<td>Protein Structure Analysis</td>
</tr>
<tr>
<td>PTEN</td>
<td>Phosphatase and tensin homolog deleted on chromosome ten</td>
</tr>
<tr>
<td>RF</td>
<td>Radiofrequency</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root mean square deviation</td>
</tr>
<tr>
<td>RMSF</td>
<td>Root mean square fluctuation</td>
</tr>
<tr>
<td>SBD</td>
<td>Substrate binding domain</td>
</tr>
<tr>
<td>SBSD</td>
<td>Substrate-binding subdomain</td>
</tr>
<tr>
<td>Ser</td>
<td>Serine</td>
</tr>
<tr>
<td>SPC</td>
<td>Simple point charge</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetate electrophoresis buffer</td>
</tr>
<tr>
<td>Thr</td>
<td>Threonine</td>
</tr>
<tr>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>Valine</td>
<td>Valine</td>
</tr>
<tr>
<td>WBH</td>
<td>Whole-body hyperthermia</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>3-D</td>
<td>Three-dimensional</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>cm2</td>
<td>Square centimetre</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>Kcal/mol</td>
<td>Kilocalorie per mole</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Molarity</td>
</tr>
<tr>
<td>M$^{-1}$cm1</td>
<td>Molar absorptivity</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>mg/ml</td>
<td>Miligram/mlilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Mili molar</td>
</tr>
<tr>
<td>nm</td>
<td>Nano metre</td>
</tr>
<tr>
<td>ns</td>
<td>Nano second</td>
</tr>
<tr>
<td>ps</td>
<td>Pico second</td>
</tr>
<tr>
<td>rpm</td>
<td>Rounds per minute</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>Micro molar</td>
</tr>
<tr>
<td>v</td>
<td>Volt</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>ΔG_{bind}</td>
<td>Binding energy</td>
</tr>
</tbody>
</table>
> - Greater than
< - Less than
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cell viability percentage of MCF-7-10A, MDA-MB 231 and MCF-7 following heat treatment<sup>a</sup></td>
<td>251</td>
</tr>
<tr>
<td>B</td>
<td>Standard curve of human Hsp70</td>
<td>252</td>
</tr>
<tr>
<td>C</td>
<td>Results of Hsp70 ELISA assay for MDA-MB 231 and MCF-7 cell lines at optical density of 570 nm<sup>a</sup></td>
<td>253</td>
</tr>
<tr>
<td>D</td>
<td>Standard curve of human p53</td>
<td>255</td>
</tr>
<tr>
<td>E</td>
<td>List of publications</td>
<td>256</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Currently, breast cancer is the fifth leading cause of cancer-related deaths for both men and women in the worldwide, accounting for 521,000 deaths in 2012 (World Health Organization, 2014). In Malaysia, breast cancer is the most common cancer where 1 in 19 Malaysian women will be diagnosed with breast cancer by the age of 85 (National Cancer Registry of Malaysia, 2014). Most cases occur during age 45-55. It is the most common cancer diagnosed in women (25.2% of all new cases in women) (World Health Organization, 2014). In addition, 10-15% of women treated for early breast cancer suffer a local recurrence (locally recurrent breast cancer, LRBC) within 10 years (Clemons et al., 2001). Local failure causes significant physical and psychosocial morbidity (van der Zee et al., 1999), and the majority of these patients die of their disease within 5 years of recurrence (Clemons et al., 2001). This is due to the poor prognosis such as lack of specific symptoms in the early stage of disease leading to delays in diagnosis, the aggressive nature of disease, as evidenced by the high rate of local spread and/or distant metastasis at the time of diagnosis, diagnosis techniques that lack sufficient sensitivity and specificity to support screening for breast cancer. At present, the cancer treatment by chemotherapeutic agents, surgery and radiation has not been fully effective against the high incidence or low survival rate of breast cancer. Furthermore, these treatments cause negative side effects such as liver failure, cardiomyopathy and an increased risk of developing other types of cancer (Hawkins and Hermiston, 2001).
Thus, the development of a new therapeutic approach to breast cancer remains one of the most challenging area in cancer research.

Gene therapy is a new therapeutic approach for breast cancer. It specifically targets the tumour cells including metastatic cells in the body (Abaan and Criss, 2002). It has been shown to be effective with different types of diseases (Rubanyi, 2001). Therefore, it may be applicable for the treatment of breast cancer patients. Oncolytic adenoviruses are a class of promising anti-cancer agents, which are engineered to infect, replicate within, and lyses cancer cells (Yamamoto and Curiel, 2009). However, these agents alone failed to generate sustained clinical responses or to cause complete tumour regressions. This is because heterogeneity or indeed lack of expression of receptors (coxsackie adenovirus receptor, CAR) and co-receptors (integrin α,β3 and α,β5 classes) in tumours can be implicated in the poor efficiency of infectivity by adenovirus (Bauerschmitz et al., 2002; Kanerva and Hemmiki, 2004). In addition, many tumour cells fail to support adenovirus replication because of its replication deficiency. Thus, combination treatment is needed to improve the clinical outcome in breast cancer treatment.

Hyperthermia has been explored intensively to treat cancer patients. It is used to raise the temperature of a region of the body affected by cancer up to 41.5-43°C with minimal or no damaging healthy tissues (van der Zee, 2002). Several investigators suggested that hyperthermia might enhance viral replication, particularly in tumour cells (Thorne et al., 2005). Heat shock protein (Hsp) is the key player for the hyperthermia hypothesis. Glotzer et al. (2000) described that Hsp may play a vital role in the adenovirus life cycle because genome replication, synthesis of protein and virion assembly which are vital for viral replication, is dependent on the host cell. Hsp especially Hsp70 is the main responsible for import and colocalizes viral proteins in the nucleus with E1A gene products of adenovirus (Kao et al., 2005). Furthermore, Wickner et al. (1992) documented that bacterial DNAJ and DNAK, which are important for bacteriophage DNA replication, may depend on Hsp70 induction. Hsp40 and Hsp70 induction promotes production of viral proteins for avian adenovirus CELO (Glotzer et al., 2000).
Hyperthermia induces transgene expression, represents a promising strategy using the combination of hyperthermia with virotherapy (Huang et al., 2000; Lohr et al., 2000; Walther and Stein, 2009). Nevertheless, there are only few studies on this combination treatment against cancer. Based on Eisenberg et al. (2010) study, it has been demonstrated that the combination of hyperthermia and NV1066 (a recombinant herpes simplex virus-1) infection significantly increased the pancreatic cancer cell kill to approximately 80% without damaging normal cells. Therefore, adenovirus in combination with hyperthermia can be a potential treatment for breast cancer patients.

1.2 Problem statement of research

There have been numerous strategies attempted in the past to treat breast cancers with limited success. One of the latest approaches is adenovirus gene therapy. Although the oncolytic adenoviruses are promising anti-cancer agents, clinical studies demonstrated that viral therapy alone failed to produce sustained clinical responses or to destroy tumour completely. This is due to lack of expression of coxsackie adenovirus receptor and co-receptors in tumour cells which is crucial for adenovirus infection. Therefore, tumour cells hinder replication of adenovirus.

While the treatment effects of hyperthermia as a single agent are limited, its ability to potentiate the effects of standard chemo-radiotherapies has generated lasting interest. Yet, combination of hyperthermia with either chemotherapy, radiotherapy or both, led to improved clinical outcome in treatment of breast cancer; they have been shown potential side effects, such as impotence or incontinence that can greatly impair life quality (van der Zee, 2002). Thus, a novel approach of combining gene therapy and hyperthermia will be explored to be a new way to treat breast cancer cells.
1.3 Hypotheses of study

The hypotheses of this study are:

1. Can coupling of hyperthermia and Ad5-p53-DsRed Monomer N1 enhances killing of breast cancer cells (MCF-7 and MDA-MB 231)?
2. Can heat treatment induced Hsp70 and p53 expression in breast cancer cells?
3. Does the combination of hyperthermia and Ad5-p53-DsRed Monomer N1 involved in apoptosis pathway?
4. Is there any protein interaction between nucleotide binding domain (NBD) of Hsp70 and E1A 32 kDa motif (PNLVP)?
5. Is there any protein interaction between NBD of Hsp70 and p53 motif (SCMGGMNR)?

1.4 Objectives of study

The objectives of this study are:

2. To determine the expression of Hsp70 in breast cancer cells after treated with Ad5-p53-DsRed Monomer N1 in combination with hyperthermia.
4. To determine the possible pathway involved in apoptosis for MDA-MB 231 and MCF-7 cells after treated with the combination of Ad5-p53-DsRed Monomer N1 and hyperthermia.
5. To identify novel protein interaction between NBD of Hsp70 and E1A 32 kDa of human adenovirus serotype 5 motif (PNLVP).
6. To identify novel protein interaction between NBD of Hsp70 and p53 motif (SCMGGMNR).

1.5 Scope of research

This study involves construction of recombinant adenovirus, cytotoxicity, quantitation of viral replication, protein expression, protein modeling, molecular dynamic (MD) simulation of protein and protein-protein docking. Firstly, Ad5-p53 will be constructed by cloning p53 gene into defective recombinant adenovirus vector containing red fluorescent protein (DsRed Monomer N1). Then, Ad5-p53-DsRed Monomer N1 (multiplicity of infection of 100 PFU per cell, MOI of 100) will be infected with MCF-7 and MDA-MB 231 breast cancer cells. Cells will be treated at 42°C for 2 hours prior to viral treatment. The formation of viral plaques and cell survival (MTT assay) will be measured. After that, Hsp70 and p53 protein expression will be quantitated using ELISA assay. Activated-Caspase 3/7, 8 and 9 will also be performed to study the apoptotic pathway of cancer cells. Besides that, the novel protein interaction between NBD of Hsp70 and E1A 32 kDa of human Ad5 motif (PNLVP); and NBD and p53 motif (SCMGGMNR) will be investigated through bioinformatics tools such as Gromacs version 4.6.3 and Autodock version 4.2.

1.6 Significance of study

The beneficial outcome of this study is that the novel therapeutic regimen, combining the effects of recombinant adenovirus (Ad5-p53-DsRed Monomer N1) and hyperthermia (42°C for 2 hours) can be explored as a potential breast cancer treatment. Furthermore, this combination treatment could be a useful application to develop adenovirus-based gene transfer to breast cancer cells. In spite of that, understanding the stability of Hsp70; the preferred sites of interaction between
Hsp70 and E1A 32 kDa of human Ad5; and the binding affinity and stability Hsp70-p53 motif complex structure through bioinformatics tools is the key to design rational drugs and vaccines in breast cancer treatment.
REFERENCES

http://www.cancer.org/docroot/ETO/content/ETO_1_2x_Hyperthermia.asp (accessed on 1 May 2014)

Masselink, H., and Bernards, R. (2000). The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. *Oncogene.* 19, 1538-1546.

