OPTICAL TOMOGRAPHY SYSTEM USING CHARGE-COUPLED DEVICE

JULIZA BINTI JAMALUDIN

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JULY 2016
Specially dedicated to my husband, Jemmy, for his helps, supports and encouragement during the challenges of graduate study and life. This work also dedicated to my mother, parents in law and in memory of my late father, Jamaludin.
ACKNOWLEDGEMENT

First and foremost, I would like to express my heartily gratitude to my supervisors, Prof. Dr. Ruzairi Bin Abdul Rahim and Assoc. Prof. Ir. Dr. Herlina Binti Abdul Rahim for the guidance and enthusiasm given throughout the progress of this project. I would like to thank to PROTOM members for their cooperations and helps in this project. My appreciation also goes to my husband and family for their support and encouragement. Nevertheless, my great appreciation dedicated to my friends and those whom involved directly or indirectly with this project.
This research presents an application of Charge-Coupled Device (CCD) linear sensor and laser diode in an optical tomography system. Optical tomography is a non-invasive and non-intrusive method of capturing a cross-sectional image of multiphase flow. The measurements are based on the final light intensity received by the sensor and this approach is limited to detecting solid objects only. The aim of this research was to analyse and demonstrate the capability of laser with a CCD in an optical tomography system for detecting different types of opaque objects in crystal clear water. The image reconstruction algorithms used in this research were filtered images of Linear Back Projection algorithms. These algorithms were programmed using LabVIEW programming software. Experiments in detecting solid and transparent objects were conducted, including experiments of rising air bubbles analysis. Based on the results, statistical analysis was performed to verify that the captured data were valid compared to the actual object data. The diameter and image of static solid and transparent objects were captured by this system, with 320 image views giving less area error than 160-views. This suggests that high image view resulted in high resolution image reconstruction. A moving object’s characteristics such as diameter, path and velocity can also be observed. The accuracy of this system in detecting object acceleration was 82%, while the average velocity of rising air bubbles captured was 0.2328 m/s. In conclusion, this research has successfully developed a non-intrusive and non-invasive optical tomography system that can detect static and moving objects in crystal clear water.
ABSTRAK

Kajian ini membentangkan penggunaan Peranti Terganding Cas (CCD) dan laser di dalam sistem tomografi optik. Tomografi optik adalah satu kaedah tomografi yang tanpa rejah dan tidak invasif dalam merakam imej keratan rentas pelbagai aliran fasa bendalir. Kaedah pengukuran ini adalah berdasarkan kepada keamatan cahaya akhir yang diterima oleh peranti pengesan dan pendekatan ini adalah terhad untuk mengesan objek padu sahaja. Tujuan kajian ini dijalankan untuk menganalisis dan demonstrasi terhadap keupayaan laser dengan CCD dalam sistem tomografi optik untuk mengesan perbezaan objek mengikut kelegaan yang wujud di dalam air jernih. Algoritma pembina semula imej yang digunakan dalam kajian ini adalah daripada imej Pancaran Kembali Linear yang ditapis. Algoritma ini diprogramkan menggunakan perisian pengaturcaraan LabVIEW. Ujikaji dalam mengesan objek padu dan telus termasuk ujikaji kenaikan buih udara dijalankan dan dianalisis. Berdasarkan hasil ujikaji, analisis statistik dilakukan untuk mengesahkan data yang dirakam adalah sama dengan data objek yang diketahui. Diameter serta imej objek padu dan telus yang berkedudukan statik yang dirakam oleh sistem ini menunjukkan bahawa 320 paparan imej memberi ralat kawasan yang kurang berbanding 160 paparan imej. Ini menyatakan bahawa bilangan paparan imej yang tinggi menghasilkan imej yang beresolusi tinggi. Ciri-ciri objek yang bergerak seperti diameter, cara laluan dan halaju boleh diketahui. Ketepatan sistem ini dalam mengesan pecutan objek adalah 82%, sementara itu, halaju purata kenaikan gelembung udara yang berjaya dirakam adalah 0.2328 ms⁻¹. Kesimpulannya, kajian ini telah berjaya membangunkan sistem tomografi optik yang tanpa rejah dan tidak invasif dalam mengesan objek statik dan bergerak di dalam air yang jernih.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background
1.2 Problem Statement
1.3 Research Objective
1.4 Research Scope and Limitations
1.5 Research Methodology in Brief
1.6 Structure of Thesis

2 LITERATURE REVIEW

2.1 Tomography
2.2 Types of Tomography
2.3 Optical Tomography
2.3.1 Light and Electromagnetic Waves
2.3.2 Optical Tomography (OPT) System Design
 2.3.2.1 Types of Optoelectronics
 2.3.2.2 Receivers and Transmitters Orientation
 2.3.2.3 Image Reconstruction Algorithm

2.4 Charge-Coupled Device (CCD) Sensors
 2.4.1 Basic Construction of CCD Linear Sensors
 2.4.2 Characteristics of CCD Linear Sensors
 2.4.3 Application of CCD Linear Sensors

2.5 Laser Diodes
 2.5.1 Previous Research on CCDs and Lasers
 2.5.2 Laser Expansion Method

2.6 Bubble Characteristics

3 RESEARCH METHODOLOGY
 3.1 Introduction
 3.2 Optical System Modelling
 3.2.1 Transmitter
 3.2.1.1 Laser Diode Beam Projection Design
 3.2.1.2 Light Characteristics and Algorithms
 3.2.2 Transmitter and Sensors Orientation
 3.3.2.1 OPT System Coverage Area
 3.3.2.2 Sensor View
 3.3.2.3 Dual-Plane Orientation
 3.3 Image Reconstruction Modelling
3.3.1 CCD Sensor Voltage Value with Laser Diode in Off and On Condition

3.3.1.1 Discussion on Laser Intensity Ratio

3.3.1.2 CCD Voltage Output Threshold Value

3.3.2 Image Reconstruction Algorithms

3.3.3 Image Reconstruction Error Analysis

3.4 Solid and Transparent Object Image Modelling

3.4.1 Solid Rod in Crystal Clear Water

3.4.2 Glass Rod in Crystal Clear Water

3.4.3 Transparent Hollow Straw in Crystal Clear Water

3.5 Hardware Development

3.5.1 CCD and Laser Divergence System Design

3.5.2 Electrical Circuit Design

3.6 Software Development

3.6.1 Hardware and Software Data Communication

3.6.2 Real-time Software Programming for Image Reconstruction

3.6.3 Offline Software Programming for Data Measurement

3.6.3.1 Diameter Analysis

3.6.3.2 Velocity and Acceleration Analysis
EXPERIMENTS, RESULTS AND DISCUSSION

4.1 Introduction

4.1.1 Normality Test

4.1.2 Hypothesis Testing for OPT System Validation

4.2 Analysis of the Performance between LED and Laser Diode as a Transmitter for CCD Linear Sensor

4.2.1 Experimental Setup

4.2.2 Experiment Results

4.2.2.1 Vernier Caliper

4.2.2.2 CCD Linear Sensor with LED and Laser

4.2.3 Analyses of the Performance of LED and Laser as a Transmitter

4.2.3.1 Anderson-Darling Test

4.2.3.2 Hypothesis Test Using T-Test

4.2.4 Image Reconstruction Analysis

4.2.5 Observation

4.3 Analysis of the Capability of OPT System and LabVIEW Programming in Image Capture and Diameter Measurement of Static Rods

4.3.1 Experiment on Measuring Diameter of Solid and Transparent Rod Using Vernier Caliper

4.3.2 Experiment on Measuring Diameter of Solid and Transparent Rods Using OPT System

4.3.3 Analysis and Validation of OPT System in Measuring Object Diameters in Crystal Clear Water
4.3.3.1 Anderson-Darling Normality Test for Diameter of Static Objects

4.3.3.2 T-Test Analysis for Diameter of Static Objects in Crystal Clear Water

4.3.3.3 Homogeneity of Variance Test (HOV) Between Upper and Lower Plane for Static Objects

4.3.3.4 ANOVA Test Analysis of Static Objects Upper and Lower Plane Data Measurement

4.3.4 Image Reconstruction Analysis for Static Single Object

4.3.5 Observation

4.4 Analysis of the Diameters of Multiple Objects in the Same Time Scan

4.4.1 Data Collection for Diameter of Multiple Objects in the Same Time Scan

4.4.2 Data Analysis for Diameter of Multiple Objects in the Same Time Scan

4.4.2.1 Data Normality Test

4.4.2.2 Test for Homogeneity of Variance (HOV) of Multiple Objects in the Same Time Scan

4.4.2.3 Hypothesis Test using ANOVA for Upper and Lower OPT Measurement System in Capturing Multiple Objects in the Same Time Scan
4.4.3 Image Reconstruction Analysis for Multiple Static Objects in the Same Time Scan 103

4.4.4 Observation 104

4.5 Analysis of OPT System in Detecting Air Bubbles 104

4.5.1 Experiment of 20 ml Air Bubbles Using Syringe 105

4.5.1.1 Statistical Analysis for Air Bubbles Produced by Syringe 106

4.5.2 Experiment of Air Bubbles Produced by Air Pump 107

4.5.2.1 Air Bubbles Data Analyses of Low and High Air Pump Pressure Mode 108

4.5.3 Analysis on Air Bubble Shape Generated by Syringe and Air Pump 109

4.5.4 Air Bubbles Image Analysis 110

4.5.5 Observation 120

4.6 Velocity Measurement 120

4.6.1 Measuring Velocity and Acceleration Free Falling Solid Object 121

4.6.1.1 Data Collection for Free-Falling Solid Ball 121

4.6.2 Measuring Velocity of Rising Air Bubbles Produced by Syringe 122

4.6.3 Observation 124

5 CONCLUSIONS, SIGNIFICANCE OF RESEARCH CONTRIBUTIONS AND RECOMMENDATIONS FOR FUTURE WORK 125

5.1 Conclusions 125

5.2 Significance of Research Contributions 127

5.2 Recommendations for Future Work 127
REFERENCES

Appendices A-F

130
141-150
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of soft-field tomography sensors</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of hard-field tomography sensor</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Linear attenuation coefficient values of water, glass and air and refraction index</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>CCD voltage output value and laser intensity ratio in operational or off mode</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of laser intensity ratio and CCD voltage output values</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Total frames and rotations per second for selected radiation tomography</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Diameter (mm) results for each coin when LED is used as the transmitter</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Diameter (mm) results for each coin using laser diode and CCD linear sensor</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>Diameter of solid rod in 50 measurements using OPT system</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Diameter of glass rod in 50 measurements using OPT system</td>
<td>74</td>
</tr>
<tr>
<td>4.5</td>
<td>Diameter of transparent hollow straw in50 measurements using OPT system</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>Image reconstruction using LBP method for static objects</td>
<td>88</td>
</tr>
<tr>
<td>4.7</td>
<td>Image reconstruction using filtered method for static objects</td>
<td>89</td>
</tr>
<tr>
<td>4.8</td>
<td>Z-value analysis for LBP image reconstruction</td>
<td>90</td>
</tr>
<tr>
<td>4.9</td>
<td>Z-value analysis for filtered image reconstruction</td>
<td>91</td>
</tr>
<tr>
<td>4.10</td>
<td>Filtered image reconstruction analysis</td>
<td>93</td>
</tr>
</tbody>
</table>
4.11 LBP image reconstruction for solid and glass rod in the same time scan 103
4.12 Filtered image reconstruction analysis for solid and glass rod in the same time scan 103
4.13 The diameter values for air bubbles produced by syringe 105
4.14 Summary of air bubble shapes and paths 109
4.15 Air bubble shapes analysis based on diameter 111
4.16 Three-dimensional image reconstructions of air bubbles produced by syringe in LBP method 112
4.17 Three-dimensional image reconstructions of air bubbles produced by syringe in filtered method 113
4.18 Spiral or helical path for air bubbles produced by syringe 114
4.19 Three-dimensional image reconstructions of air bubbles produced by low pressure air pump mode in LBP method 115
4.20 Three-dimensional image reconstructions of air bubbles produced by low pressure air pump mode in filtered method 116
4.21 Spiral or helical path for air bubbles produced by low pressure mode 117
4.22 Three-dimensional image reconstructions of air bubbles produced by high pressure air pump mode in LBP method 118
4.23 Three-dimensional image reconstructions of air bubbles produced by high pressure air pump mode in filtered method 119
4.24 Velocity and acceleration of free-falling solid object 122
4.25 Air bubble velocities using syringe 123
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Basic block diagram for tomography system</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>Sensor orientation in (a) orthogonal, (b) rectilinear projection and (c) mixed modality projection</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Process of transferring data from one pixel to another in (a) monochromatic and (b) colour CCD sensor</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Spectral sensitivity characteristic chart</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Light expansion modelling diagram</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Light transmitting process</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Diagram of laser diode box system in transparent view</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Laser diode sub-system</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>The position of sensors and dimensions of pipeline and OPT system</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>OPT system coverage area</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Octagon shape projections for (a) 160 views and (b) 320 views sensor</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>CCD linear sensor data sections for (a) 40 views and (b) 80 views per projection</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>Illustration of (a) upper plane and (b) lower plane of OPT system</td>
<td>31</td>
</tr>
<tr>
<td>3.9</td>
<td>Illustration of cross-sectional image of pipeline and OPT system</td>
<td>32</td>
</tr>
<tr>
<td>3.10</td>
<td>Statistical graphs of CCD voltage output for (a) CCD 1, (b) CCD 2, (c) CCD 3, (d) CCD 4, (e) CCD 5, (f) CCD 6, (g) CCD 7, and (h) CCD 8 when laser diodes are in off condition</td>
<td>33</td>
</tr>
</tbody>
</table>
3.11 Statistical graphs of CCD voltage output for (a) CCD 1, (b) CCD 2, (c) CCD 3, (d) CCD 4, (e) CCD 5, (f) CCD 6, (g) CCD 7, and (h) CCD 8 when laser diodes are in on condition 34

3.12 Interpolation graph of CCD voltage output (V) versus laser intensity ratio (I) 36

3.13 CCD 1 voltage output when received laser is in operational mode 37

3.14 LabVIEW front panel for 160 views image modelling of LBP and its sensitivity map when no obstacle is present in the system 39

3.15 Three-dimensional LBP image reconstruction modelling for (a) 160 views and (b) 320 views of solid rod 40

3.16 Three-dimensional filtered image of solid rod in (a) 160 views and (b) 360 views 40

3.17 Three-dimensional LBP image reconstruction modelling for (a) 160 views and (b) 320 views of glass rod 41

3.18 Three-dimensional filtered image of glass rod in (a) 160 views and (b) 360 views 41

3.19 Three-dimensional LBP image reconstruction modelling for (a) 160 views and (b) 320 views of transparent hollow straw 42

3.20 Three-dimensional filtered image of transparent hollow straw in (a) 160 views and (b) 360 views 42

3.21 Mechanical diagram of OPT and pipeline system 43

3.22 External view of OPT hardware 44

3.23 (a) Laser diode divergent systems and (b) top view image of CCD sensors 44

3.24 Electrical circuit diagram for laser diodes system 45

3.25 Flow chart for Sony ILX551A CCD ROG (D2) and clock signal (D1) programming 46

3.26 C coding for Sony ILX551A 47

3.27 Schematic diagram of SK40C and additional wires 48

3.28 Schematic diagram for CCD application circuit 49
3.29 Schematic diagram for CCD 1 and 5 circuits
3.30 Block diagram for real time data capture process
3.31 Flow chart for reading real-time data for image reconstruction
3.32 CCD 1 data flow for 160 and 320 views
3.33 Example of CCD 1 data sub-VI programming
3.34 Offline software development for diameter and velocity measurement analysis of object detection
3.35 Normalized CCD voltage output versus time
3.36 CCD voltage output value and time
3.37 LabVIEW front panel for offline object velocity measurement
4.1 P-value for Anderson Darling normality test
4.2 Experimental setup for measuring diameter of four different coins
4.3 (a) 5 cent, (b) 10 cent, (c) 20 cent and (d) 50 cent coins diameter
4.4 Dotplot graphs of LED and laser diode for (a) 5 cent, (b) 10 cent, (c) 20 cent and (d) 50 cent coins
4.5 Probability plot graphs for (a) LED 5 cent, (b) laser 5 cent, (c) LED 10 cent and (d) laser 10 cent coins (e) laser 20 cents, (f) LED 20 cents, (g) laser 50 cents and (h) LED 50 cents
4.6 T-test analysis graphs for 5 cent data using LED and laser
4.7 T-test analysis graphs for 10 cent data using LED and laser
4.8 T-test analysis graphs for 20 cent data using LED and laser
4.9 T-test analysis graph for 50 cent data using LED and laser
4.10 Image reconstruction for 5 cent coin (a) LED (b) laser diode and 10 cent coin (c) LED (d) laser diode
4.11 Diameter value for solid rod using Vernier caliper
4.12 Diameter values for (a) glass rod and (b) transparent hollow straw using Vernier caliper

4.13 Probability plot of diameter solid rod for (a) upper and (b) lower plane OPT system

4.14 Probability plot of diameter glass rod using (a) upper and (b) lower plane OPT system

4.15 Probability plot of diameter transparent hollow straw using (a) for upper and (b) for lower plane OPT system

4.16 T-test graph result for solid rod upper plane diameter measurement

4.17 T-test graph result for solid rod lower plane diameter measurement

4.18 Box plot graphs for diameter of solid rod based on (a) upper and (b) lower plane OPT system measurements

4.19 T-test graph result for glass rod diameter measurement using upper plane OPT system

4.20 T-test graph result for glass rod diameter measurement using lower plane OPT system

4.21 Box plot graphs for diameter of glass rod based on (a) upper and (b) lower plane OPT system measurement

4.22 T-test graph result for transparent hollow straw diameter measurement using upper plane OPT system

4.23 T-test graph result for transparent hollow straw diameter measurement using lower plane OPT system

4.24 Box plot graphs for diameter of transparent hollow straw based on (a) upper and (b) lower plane OPT system measurement

4.25 HOV test results for sample diameter (a) solid rod, (b) glass rod and (c) transparent hollow straw

4.26 ANOVA test graph results and data summary for solid rod

4.27 Individual 95% confidence interval mean for solid rod diameter analysis
4.28 ANOVA test graph results and data summary for glass rod 85
4.29 Individual 95% confidence interval mean for glass rod diameter analysis 85
4.30 ANOVA test graph results and data summary for transparent hollow straw 86
4.31 Individual 95% confidence interval mean for transparent hollow straw diameter analysis 86
4.32 (a) CCD voltage (amplitude) versus time graph and (b) CCD 1 to CCD 8 voltage (amplitude) versus time graphs 87
4.33 (a) Illustration of CCD 3 and laser diode 3 projections and (b) CCD 3 graph result in detecting two rods in the same time scan 95
4.34 (a) Illustration of CCD 4 and laser diode 4 projections and (b) CCD 4 graph result in detecting two rods in the same time scan 95
4.35 Dotplot graph for upper and lower plane data measurement 96
4.36 Probability plots of right side and left side images data for upper and lower planes using OPT system 97
4.37 Box plot graph for (a) left and (b) right side data measurement obtained from upper and lower plane OPT systems in the same time scan 97
4.38 ANOVA test graph results and left side data summary for glass rod diameter 98
4.39 Individual 95% confidence interval mean for left side data for glass rod diameter 99
4.40 ANOVA test graph results and left side data summary for solid rod diameter 100
4.41 Individual 95% confidence interval mean for left side data for solid rod diameter 100
4.42 ANOVA test graph results and right side data summary for solid rod diameter 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.43</td>
<td>Individual 95% confidence interval mean for right side data for solid rod diameter</td>
</tr>
<tr>
<td>4.44</td>
<td>ANOVA test graph results and right side data summary for glass rod diameter</td>
</tr>
<tr>
<td>4.45</td>
<td>Individual 95% confidence interval mean for right side data for glass rod diameter</td>
</tr>
<tr>
<td>4.46</td>
<td>Illustration of experimental set up in producing air bubbles by syringe</td>
</tr>
<tr>
<td>4.47</td>
<td>Statistical analysis for diameter of air bubble produced by syringe at 20 ml volume</td>
</tr>
<tr>
<td>4.48</td>
<td>CCD voltage output versus time for air bubbles detection using (a) low and (b) high air pump pressure mode</td>
</tr>
<tr>
<td>4.49</td>
<td>(a) Box plot graph, (b) histogram graph for low pressure mode, (c) histogram graph for high pressure mode and (d) statistical summary of low and high pressure mode experiments</td>
</tr>
<tr>
<td>4.50</td>
<td>Laser expansion coverage area within different CCD sensitivity pixel distances</td>
</tr>
<tr>
<td>4.51</td>
<td>LabVIEW front panel for measuring velocity of air bubbles</td>
</tr>
<tr>
<td>4.52</td>
<td>Statistical analysis of air bubbles velocities produced by syringe</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge Coupled Device</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>HAZ</td>
<td>Heat Affected Zone</td>
</tr>
<tr>
<td>HOV</td>
<td>Homogeneity of Variance Test</td>
</tr>
<tr>
<td>LBP</td>
<td>Linear Back Projection</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>OPT</td>
<td>Optical Tomography System</td>
</tr>
<tr>
<td>ROG</td>
<td>Read Out Gate</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single Photon Emission Computed Tomography</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>B</td>
<td>Magnetic field</td>
</tr>
<tr>
<td>D, d</td>
<td>Diameter</td>
</tr>
<tr>
<td>E</td>
<td>Tangential electric field</td>
</tr>
<tr>
<td>h</td>
<td>Height</td>
</tr>
<tr>
<td>l</td>
<td>Length</td>
</tr>
<tr>
<td>M</td>
<td>Sensitivity map</td>
</tr>
<tr>
<td>N</td>
<td>Refraction index</td>
</tr>
<tr>
<td>N</td>
<td>Total number of pixels</td>
</tr>
<tr>
<td>Q</td>
<td>Flow rate</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
</tr>
<tr>
<td>rx</td>
<td>Receiver</td>
</tr>
<tr>
<td>S</td>
<td>Sensor loss</td>
</tr>
<tr>
<td>T</td>
<td>Time</td>
</tr>
<tr>
<td>tx</td>
<td>Transmitter</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>w</td>
<td>Width</td>
</tr>
<tr>
<td>θ</td>
<td>Angle</td>
</tr>
<tr>
<td>α</td>
<td>Absorption coefficient</td>
</tr>
<tr>
<td>\varnothing</td>
<td>Diameter</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Laser intensity ratio when no obstacle in clear water</td>
<td>141</td>
</tr>
<tr>
<td>B</td>
<td>Data for air bubble produced by low air pump mode</td>
<td>143</td>
</tr>
<tr>
<td>C</td>
<td>Data for air bubble produced by high air pump mode</td>
<td>144</td>
</tr>
<tr>
<td>D</td>
<td>Data sheet Sony ILX551A</td>
<td>145</td>
</tr>
<tr>
<td>E</td>
<td>Air pump device and laser diode specifications</td>
<td>148</td>
</tr>
<tr>
<td>F</td>
<td>List of publications</td>
<td>149</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

The tomography method has been used since 1950 in medical fields and spread into industry by 1990 [1]. The tomography system is suitable to apply for non-invasive and non-intrusive monitoring, especially in industries that deal with multiphase flow. Figure 1.1 shows the basic block diagram for a tomography system.

Petroleum refining systems, textile and fabric industries, oil and gas pipeline systems, geothermal wells, steam generation in boilers and burners, and steam condensation all deal with two-phase flow which is in the form of gas bubbles and liquid [2]. Engineers need to monitor the condensation process or the distribution of steam bubbling to avoid any damage occurring in the high cost and high maintenance of their system. The existence of miniature gas bubbles of hydrocarbons, for example, will affect the temperature and viscosity of the flowing
mixture. The increasing number of smaller bubbles will form an elongated Taylor bubble. As a result, the surrounding liquid will be pushed by the gases to the sides of the pipe wells and damage the system [2]. In geothermal well processing systems, increase of the water temperature will cause an increase in the number of air bubbles. Unfortunately, this will affect the fluid pressure. Therefore, continuous monitoring by engineers is very important [2]. The gas percentage in the liquid medium, gas flow rate, appearance and disappearance of gases, shape of gases, and their diameters are imperative information for monitoring and process control. The available gas detectors use intrusive and invasive techniques such as impedance probes, optical fibre probes, ultrasound Doppler and isokinetic probes. For non-intrusive and non-invasive techniques, examples of gas bubble detectors are pressure transducers, the gamma ray density gauge technique, laser technique and tomography technique. Optical tomography (OPT) is the best approach because this method consists of hard field sensors [3] where the sensor does not depend on the changes of conductivity or permittivity of the subjects that are being analysed. The OPT system provides a good spatial resolution, where it can capture a very detailed image without making the pixels visible. OPT also provides a high-speed data capture system and it is suitable for online monitoring system applications.

The aim of this research project is to build an OPT system using the combination of a Charge-Coupled Device (CCD) linear sensor and laser diodes with LabVIEW software to detect multiphase flow. The basic principle of the OPT system with CCD is similar to the Single Photon Emission Computed Tomography (SPECT) concept, where source photons of SPECT gamma are converted into visible light. Then, this visible light will be converted into electrical signals by a photomultiplier [4]. The difference between these two systems is their application and the type of sensors used. SPECT is mostly used for medical purposes and requires a contrast agent [4]. SPECT uses a gamma ray as the transmitter and it exposes the patient to radiation. However, the suggested OPT system promises a non-intrusive, non-invasive and non-hazardous radiation system for online industrial inspection of multiphase flow measurement. This hardware development is capable of detecting opaque and transparent objects without the help of a contrast agent, which can disturb the stability of multiphase flow. Qualitative and quantitative
analyses were done using LabVIEW and Minitab software. Minitab software is used for statistical analysis, while LabVIEW programming has been developed to measure the object diameter and velocity for offline data, and to produce a cross-sectional pipeline image for real-time data. Linear Back Projection (LBP) and filtered image algorithms were introduced and applied on 160 and 320 image views reconstruction analysis. The image captured is displayed in 64 x 64 image resolution but in different numbers of views. A view is a term for the single combination of emitter and detector which are aligned in a parallel array known as projection [5]. The main reason for selecting 160 views and 320 views to study is to verify the statement that a higher number of sensors will generate a better quality image reconstruction [6].

1.2 Problem Statement

Optical tomography systems are widely applied in detecting solid objects compared to transparent objects. Research that uses chromatic light, such as a Light Emitting Diode (LED), has difficulty in detecting transparent objects. A transparent object will act as a prism that can diffract white light into its basic light spectra. This will result in inaccurate data being obtained. A laser diode is the best transmitter because it is a monochromatic light source.

Research was conducted using a laser diode with a Charge-Coupled Device (CCD) linear sensor in the tomography field to detect solid objects. The system is capable of measuring the solid object’s diameter and velocity. Problems that occurred in this research are that the low data sampling (250 kHz sample per second for the whole system) will cause data losses. This will give inaccurate data measurement because the diameter values are based on the total effective number of CCD pixels. A correction factor should be applied to compensate the inaccurate data measurement. The previous research also claimed that a single plane of the CCD OPT system was able to capture the object’s velocity based on the length of the CCD pixel. Unfortunately, this technique gives inaccurate results, where different object sizes will have different time intervals and distances.
Previous OPT system researchers are keen to use a fast operational speed monochromatic transmitter such as a laser diode that will apply a switching mode technique. This method captures a single fraction of a view in a measurement frame. Delay in alternation from one projection to the next projection will increase the time per scan for a full measurement frame. The probability of data losses, especially in moving object research, is very high. Simultaneous projection is proposed to overcome the mentioned problems.

1.3 Research Objectives

This research project consists of three main objectives, as listed below:

i. To investigate and analyse the appropriate OPT system modelling, with a correction factor to overcome data loss, and image reconstruction algorithms that will match with the CCD linear sensors and laser diodes in producing high quality image reconstruction.

ii. To design and develop a dual-plane OPT system to enable more solid research for object velocity data. LabVIEW programming for real-time image reconstruction of a cross-sectional pipeline system and offline measurement are developed.

iii. To conduct a number of experiments with static objects (solid, glass rod and transparent hollow straw) and moving objects (air bubbles) to prove the ability of the OPT with CCD sensors system to capture and analyse the data of objects in transparent liquid.

1.4 Research Scopes and Limitations

The scope of this research project can be divided into four main parts. The first is to analyse and develop the optical system and image tomography modelling that is appropriate for the CCD linear sensors and their light sources.
Then, hardware and software developments based on the above modelling are involved. Early stage experiments concerned with analysing the suitability of LEDs and laser diodes with CCD linear sensors were conducted. After selection of a laser as the most suitable sensor for the CCD, prototypes of the OPT system were developed as a guideline for a fixed hardware fabrication. During this stage, basic LabVIEW programming was developed for offline and online measurement based on improved previous research on mathematical modelling.

Once the fixed hardware and advanced LabVIEW programming were developed, a series of experiments were conducted to evaluate the capability of this system in capturing and measuring objects with various levels of opacity. These experiments consist of two important stages, namely the detection of single static objects with three different opacity levels and the detection of two static objects with different opacity levels. The first stage is to confirm the system’s ability to capture and analyse these objects. The second stage is to prove that multiple objects can be captured and processed in the same pipeline system.

In the final stage of evaluations, the detection of rising air bubbles that were generated by a syringe and by an air pump was carried out. The purpose of these experiments is to prove that moving air bubbles can be detected by this system. Part of the evaluation is to analyse the air bubble’s diameter and velocity with two-plane sensor alignments. With this technique, the air bubble shape and path can be evaluated.

A few research limitations and assumptions should be mentioned here. In this research, light absorption, reflection and reflectance are included in the theoretical calculation, while light’s other characteristics are assumed to be negligible. For the data acquisition system (DAQ), NI USB 6210 is capable of capturing 31k samples per second for each port. There is 40 us of data lost because of this DAQ limitation. So it is assumed that 5 continuous pixels will have the same voltage values as the first pixels sampled. For the experiment involving crystal clear water, the pressure level is assumed at atmospheric pressure level, 101.3 kPa.
1.5 Research Methodology in Brief

This research constructs an OPT system using a Sony ILX551A CCD and laser diodes class IIIA oriented in an octagonal shape to give a wide coverage area of an acrylic pipeline system. There are two software programs involved in this research: real-time image reconstruction and offline data measurement. Both softwares are developed in LabVIEW. For real-time image reconstruction, Linear Back Projection and filtered algorithms are applied. For offline programming, data on the object diameter and velocity are collected for evaluation. Several experiments are conducted to investigate the capability of this OPT system in detecting and capturing images of static or moving solid and transparent objects. The data collected shall be analysed and evaluated using a statistical engineering analysis technique with the help of Minitab software.

1.6 Structure of Thesis

This thesis consists of six chapters as described below.

i. Chapter 1 briefly describes the research background, problems statements, objectives, scopes, and its contributions.

ii. Chapter 2 consists of a literature review on tomography systems, light characteristics, OPT image reconstruction, CCD sensors, multiphase flow criteria, bubble characteristics and detectors.

iii. Chapter 3 discusses the optical system modelling and image reconstruction modelling.

iv. Chapter 4 presents the research methodology for the OPT hardware development and LabVIEW programming.

v. Chapter 5 presents the experiments and results for static objects and moving air bubbles. Detailed analysis and discussion on diameter measurement, object velocity and image reconstruction are examined here.

vi. Chapter 6 is the final chapter with the research conclusions and recommendations for future work.
REFERENCES

35. Lee, N. and Hyeon, T. Designed Synthesis of Uniformly Sized Iron Oxide

2009. 9: 8562-8578

50(1):144-151
81. Felber, P. Charged Coupled Device. A literature study as a project for ECE. 2002. 575: 8-9
2003. 6:3908-3910

