IN VITRO PERMEATION AND SKIN RETENTION OF
ALPHA-MANGOSTIN PRONIOSOME

GAN SIAW CHIN

UNIVERSITI TEKNOLOGI MALAYSIA
IN VITRO PERMEATION AND SKIN RETENTION OF ALPHA-MANGOSTIN PRONIOSOME

GAN SIAW CHIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

MAY 2016
To my beloved mother and father
ACKNOWLEDGEMENT

It is my genuine pleasure to express gratitude to my supervisor, Dr Mariani for her full support and guidance upon completion of this dissertation. Also, I owe a deep sense of gratitude to my co-supervisor, Prof. Kenji Sugibayashi, and Dr Hiroaki Todo (Faculty of Pharmaceutical Sciences, Josai University, Japan) for giving me the opportunity to learn under their care, and unconditionally supported my study, both intellectually and financially.

Besides, I would like to record my thankfulness to the members of Laboratory of Pharmaceutical and Cosmeceutical Science, Josai University, Japan, particularly Mr Wesam, Pajaree Sakdiset, Keisuke Kikuchi, Yutaro Yasuda, Ayaka Oda, Hirofumi Fujiwara, Naomichi Machida, Keita Yamashita, Anzu Motoki, Kanau Harada, Takanori Saito, Daiqi, and Mai Tamura, who had given me technical advices and assistances along the project.

It is also my privilege to thanks to Public Service Department of Malaysia for offering me a scholarship (‘Biasiswa Yang Di-Pertuan Agong’) which is important to support my living. Same goes to Ministry of Higher Education for funding us with Prototype Research Grant Scheme (PRGS) and Universiti Teknologi Malaysia for the approval and financial support during my short attachment at Josai University.

Lastly, I would like to convey my sincere thanks and gratitude to my friends and family members, this dissertation would not have completed without their essential encouragement and support.
ABSTRACT

Alpha-mangostin has been identified as a potent anti-melanogenesis compound in vitro on B16F1 melanoma cells. A concentration of 5 µg/mL demonstrated promising anti-melanogenesis effect without compromising the cell viability. However, due to its high lipophilic nature, the cosmeceutical application of α-mangostin in topical formulation is restricted. The current investigation aimed to evaluate the potential of proniosome as a carrier to enhance skin permeation and skin retention of α-mangostin. Alpha-mangostin proniosomal formulations were prepared using coacervation phase separation method. Upon hydration, α-mangostin-loaded niosomes were characterized for size, polydispersity index, entrapment efficiency, zeta potential and morphology. Using different surfactants, preliminary study to evaluate skin concentration suggested that Spans significantly (p < 0.05) enhanced deposition of α-mangostin in the viable epidermis/dermis layer (VED) as compared to Tween 60. Incorporation of soya lecithin in the proniosomal formulation also significantly enhanced the VED concentration of α-mangostin. The in vitro permeation experiments using dermis-split Yucatan Micropig skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8 to 8.0-fold as compared to the control suspension. All the proniosomal formulations (except for S20L) had significantly (p < 0.05) enhanced the deposition of α-mangostin in the VED layer with a factor range from 2.5 to 2.9-fold as compared to the control suspension. Proniosome S85L showed the highest permeation profile (8.0-fold) and the highest enhancement of VED concentration of α-mangostin (2.9-fold). Collectively, these results suggested that proniosomes can be utilized as a promising carrier for a highly lipophilic compound like α-mangostin.
ABSTRAK

Alfa-mangostin telah dikenalpasti sebagai kompaun anti-melanogenesis yang kuat pada sel melanoma B16F1 in vitro. Kepekatan optimum 5 μg/ml menunjukkan kesan anti-melanogenesis tanpa menjejaskan kebolehidupan sel. Walau bagaimanapun, sifat α-mangostin yang sangat lipofilik telah mengehadkan aplikasinya dalam formulasi sediaan topikal kosmetik. Kajian ini bertujuan untuk menilai potensi proniosom sebagai sistem pembawa α-mangostin untuk meningkatkan kadar penyerapan dan kesampaianya ke kulit. Formulasi proniosom α-mangostin telah disediakan dengan menggunakan kaedah pemisahan fasa koaservatan. Selepas proses penghidratan, niosom α-mangostin dicirikan menerusi saiz, indeks kopoliserakan, kecekapan perangkap, potensi zeta dan morfologi. Kajian awal menunjukkan bahawa proniosom yang disediakan daripada surfaktan Span dapat menyampaikan α-mangostin ke lapisan epidermis/dermis yang hidrofilik (VED) dengan lebih berkesan berbanding dengan surfaktan Tween 60 (p < 0.05). Di samping itu, lecitin soya juga didapati meningkatkan prestasi pembawaan α-mangostin ke lapisan VED (p < 0.05). Eksperimen penyerapan in vitro yang dijalankan dengan menggunakan kulit Yucatan Micropig yang terpisah lapisan dermisnya mendapati bahawa proniosom yang dihasilkan daripada Span, lecitin soya dan kolesterol dapat meningkatkan penyerapan α-mangostin di kulit (p < 0.05) lebih berkesan berbanding dengan kumpulan kawalan. Semua formulasi proniosom (kecuali S20L) menunjukkan keupayaan untuk meningkatkan kesampaian α-mangostin ke lapisan VED sebanyak 2.5 – 2.9 kali ganda dengan perbezaan yang signifikan (p < 0.05) berbanding dengan kumpulan kawalan. Formulasi proniosom S85L menunjukkan penyerapan (8.0 kali ganda) dan pembawaan α-mangostin di lapisan VED (2.9 kali ganda) yang paling tinggi. Secara keseluruhan, keputusan menunjukkan bahawa proniosom boleh digunakan sebagai pembawa bagi kompaun yang sangat lipofilik seperti α-mangostin.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STUDENT’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background 1
1.2 Problem Statement 2
1.3 Hypothesis 3
1.4 Research Objectives 4
1.5 Scopes of Study 4
1.6 Significances of Study 5

2 LITERATURE REVIEW

2.1 Introduction to Skin Permeation 6
2.2 Skin Structure 8
 2.2.1 Epidermis 9
 2.2.2 Dermis 14
2.3 Skin Permeation Mechanisms
 2.3.1 Theoretical Aspects of Diffusion
 2.3.2 Physiochemical Factors Influencing Skin Permeation
 2.3.3 Skin Permeation Enhancement Method

2.4 Delivery Vesicle
 2.4.1 Niosome
 2.4.2 Proniosome

2.5 Methods for Proniosome Preparation
 2.5.1 Slurry Method
 2.5.2 Slow Spray Coating Method
 2.5.3 Coacervation Phase Separation Method

2.6 Formulation Aspects of Proniosome
 2.6.1 Non-ionic Surfactants
 2.6.2 Cholesterol
 2.6.3 Lecithin
 2.6.4 Solvent
 2.6.5 Aqueous Phase
 2.6.6 Charge Inducing Agents
 2.6.7 Drug

2.7 Characterization of Proniosome and Niosome
 2.7.1 Vesicle Size and Size Distribution
 2.7.2 Entrapment Efficiency (EE)
 2.7.3 Zeta Potential

2.8 Alpha-mangostin
 2.8.1 The Anti-melanogenic Properties of Alpha-mangostin
 2.8.2 Solubility and Lipophilicity of Alpha-mangostin

2.9 Delivery Systems of Alpha-mangostin

3 METHODOLOGY
 3.1 Introduction (Research Overview)
 3.2 Material
3.3 Determine Log P of Alpha-Mangostin

3.4 Screening of Formulation Ingredients

3.4.1 Determine The Solubility of Alpha-Mangostin

3.4.2 Proniosome Preparation and Characterization

3.4.3 Preliminary Study (Skin Retention)

3.5 Preparation of Alpha-Mangostin Proniosome

3.5.1 Coacervation Phase Separation Method

3.6 Characterization of Alpha-mangostin Niosomes

3.6.1 Vesicle Size, Size Distribution and Zeta Potential

3.6.2 Entrapment Efficiency

3.6.3 Morphology

3.7 In Vitro Permeation Study

3.7.1 Skin Sample

3.7.2 In Vitro Permeation Study

3.7.3 Justification of In Vitro Permeation Experiment Condition

3.7.4 Sample Preparation, LC/MS/MS Instrumentations and Conditions

3.8 Skin Retention Study

3.8.1 Determine Skin Concentration

3.8.2 Determine Extraction Ratio

3.8.3 Sample Preparation, HPLC Instrumentations and Conditions

3.9 Data Analysis

4 RESULTS AND DISCUSSIONS

4.1 Introduction

4.2 Determine Log P of Alpha-mangostin

4.3 Screening of Formulation Ingredients

4.3.1 Determine Solubility of Alpha-Mangostin

4.3.2 Proniosome Preparation and Characterization

4.3.3 Preliminary Study (Skin Retention)
4.4

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1</td>
<td>Permeation Profile: Comparison between Control and Proniosomes</td>
<td>84</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Permeation Profile: Comparison Among Proniosomes</td>
<td>87</td>
</tr>
<tr>
<td>4.5</td>
<td>Skin Retention Study</td>
<td>89</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Skin Retention: Comparison between Control and Proniosomes</td>
<td>90</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Skin Retention: Comparison Among Proniosomes</td>
<td>92</td>
</tr>
</tbody>
</table>

5

CONCLUSION AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Project Achievements</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Recommendations for Future Research</td>
<td>96</td>
</tr>
</tbody>
</table>

REFERENCES

Appendices A - C 115 - 118
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>History and prospects of skin permeation.</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Physiochemical factors of drug that affecting skin permeation.</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Alteration attempt by carrier to improve skin permeation.</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Marketed niosomal based cosmeceutical products.</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Topical and transdermal applications of niosomes.</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Topical and transdermal application of proniosomes.</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Common components of proniosome/niosome.</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>Non-ionic surfactants and their properties.</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Effect of HLB value of surfactants in the formation of niosomes.</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Interpretation of relation related to CPP.</td>
<td>36</td>
</tr>
<tr>
<td>2.11</td>
<td>Composition of lecithin from different source.</td>
<td>38</td>
</tr>
<tr>
<td>2.12</td>
<td>The effect of the drug’s nature on the formation of niosomes.</td>
<td>41</td>
</tr>
<tr>
<td>2.13</td>
<td>Different evaluation techniques used for proniosomes and niosomes.</td>
<td>42</td>
</tr>
<tr>
<td>2.14</td>
<td>Physical and chemical properties of α-mangostin.</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>List of formulation ingredients and HLB value.</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Compositions of proniosomal formulations (mg).</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Appearance of α-mangostin proniosomes.</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>Physical characterization of the formulated pronisomes.</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>Permeation parameters of α-mangostin from control suspension and proniosomal preparations across the dermis-split YMP skin.</td>
<td>85</td>
</tr>
</tbody>
</table>
4.4 Skin concentration of α-mangostin after 48h in vitro permeation experiment.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of skin (the epidermis and dermis).</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>The “bricks and mortar” model of stratum corneum (SC).</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Possible skin penetration pathways through the stratum corneum.</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Type of nanocarriers available for skin delivery.</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Possible mechanisms of action of surfactant vesicles for dermal and transdermal applications:</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic representation of a niosome.</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Sequence/ mechanism of niosomes formation from proniosomes upon hydration.</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>The electric double layer surrounding a vesicle.</td>
<td>46</td>
</tr>
<tr>
<td>2.9</td>
<td>Chemical structure of α-mangostin</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of research activities.</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical structure of α-mangostin (C_{24}H_{26}O_{6}).</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Graphical illustration of α-mangostin niosome using coacervation phase separation method.</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic illustration of a side-by-side diffusion cell for in vitro permeation experiment.</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Schematic illustration of a vertical Franz type diffusion cell for in vitro permeation experiment.</td>
<td>62</td>
</tr>
<tr>
<td>3.6</td>
<td>Effective area of harvested skin sample was divided into two parts to determine the “total concentration” and the “VED concentration”.</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Solubility of α-mangostin in solutions containing non-ionic surfactants and/or soya lecithin.</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Appearance of α-mangostin proniosomes composed of Spans and cholesterol (9:1).</td>
<td>75</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Appearance of α-mangostin proniosomes composed of Spans, soya lecithin and cholesterol (9:9:1).</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Appearance of α-mangostin proniosomes composed of Tweens and cholesterol (9:1)</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Microscopic image of α-mangostin loaded niosome (S20L) (× 400).</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>SEM image of α-mangostin loaded niosome (S85L).</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>FESEM image of α-mangostin loaded niosome (S85L).</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Preliminary determination of skin concentration after 24h application of α-mangostin proniosome.</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Permeation profiles of α-mangostin from control suspension and proniosomal preparations across the dermis-split YMP skin (48 h).</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Skin concentration of α-mangostin after 48h in vitro permeation experiment.</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Microscopic image of dermis-split YMP skin treated with (a) α-mangostin suspension and (b) α-mangostin proniosome (S85L) (post-harvested and washed using water).</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>CCL</td>
<td>Chemokines</td>
<td></td>
</tr>
<tr>
<td>CPP</td>
<td>Critical packing parameter</td>
<td></td>
</tr>
<tr>
<td>DCP</td>
<td>Dicetyl phosphate</td>
<td></td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Entrapment efficiency</td>
<td></td>
</tr>
<tr>
<td>FDA</td>
<td>U.S. Food and Drug Administration</td>
<td></td>
</tr>
<tr>
<td>GRAS</td>
<td>Generally Recognized as Safe</td>
<td></td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
<td></td>
</tr>
<tr>
<td>IL.</td>
<td>Interleukin</td>
<td></td>
</tr>
<tr>
<td>LC/MS/MS</td>
<td>Liquid chromatography/mass spectrometry/mass spectrometry</td>
<td></td>
</tr>
<tr>
<td>MSH</td>
<td>Melanocyte stimulating factor</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
<td></td>
</tr>
<tr>
<td>PDI</td>
<td>Polydispersity index</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Stearylamine</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>Stratum corneum</td>
<td></td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>United State</td>
<td></td>
</tr>
<tr>
<td>VED</td>
<td>Viable epidermis/dermis</td>
<td></td>
</tr>
<tr>
<td>w/o</td>
<td>Water in oil</td>
<td></td>
</tr>
<tr>
<td>YMP</td>
<td>Yucatan Micropig</td>
<td></td>
</tr>
<tr>
<td>α-mangostin</td>
<td>Alpha-mangostin</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Skin surface area</td>
</tr>
<tr>
<td>C</td>
<td>Concentration</td>
</tr>
<tr>
<td>C_{ss}</td>
<td>Steady state skin concentration</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion coefficient</td>
</tr>
<tr>
<td>h</td>
<td>Diffusional path length</td>
</tr>
<tr>
<td>J</td>
<td>Flux</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature</td>
</tr>
<tr>
<td>η</td>
<td>Viscosity</td>
</tr>
<tr>
<td>d_H</td>
<td>Hydrodynamic diameter</td>
</tr>
<tr>
<td>K_p</td>
<td>Permeability coefficient</td>
</tr>
<tr>
<td>K_s</td>
<td>Partition coefficient</td>
</tr>
<tr>
<td>ΔC_v</td>
<td>Concentration gradient of drug</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Log P of alpha-mangostin</td>
<td>115</td>
</tr>
<tr>
<td>B</td>
<td>Histological images of full thickness and dermis-split YMP skin.</td>
<td>116</td>
</tr>
<tr>
<td>C</td>
<td>Stability of alpha-mangostin proniosome</td>
<td>118</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

To date, due to the increased awareness of consumer and the advancement of research and development (R&D), the cosmeceutical industries have switched their focus from the use of chemical derivatives to the use of natural products as cosmeceutical ingredient. However, there are several common problems associated with the development of cosmeceutical products using natural products, one being the poor permeation of the natural derivatives through the skin. It is a clear fact that no matter how powerful a natural compound is, it is useless unless the compound is effectively delivered to its targeted site for action.

Mangosteen (*Garcinia mangostana* Linn.) which is native to Malaysia has been valued for a variety of bioactive compounds isolated from its edible plant parts, namely xanthones and phenolics (Karim and Azlan, 2012). Xanthones are of great interest to researchers as they exerted a wide range of remarkable bioactivities such as antioxidant, antimicrobial, antiviral, anti-cancer, and anti-inflammatory activities (Abdalrahim et al., 2012; Yoswathana, 2013). More than 50 xanthones have been isolated and α-mangostin is the major xanthone identified from the pericarp of mangosteen (Abdalrahim et al., 2012). A previous work (Mariani et al., 2014) reported that α-mangostin is a potent depigmenting agent due to its strong anti-melanogenic activity, capable of inhibiting activity of tyrosinase enzyme and down-regulating genes expression involved in the melanogenesis pathways. The study
suggested the potential of α-mangostin in the development of whitening range cosmeceutical products.

Despite its strong biological activities, α-mangostin is a highly lipophilic compound, with an estimate log P value of 4.64 (ChemDraw Professional 15.0, Cambridge Soft, Perkin Elmer). Due to its poor water solubility, the permeation of α-mangostin through the skin layers is very challenging. In order to overcome the skin permeation limitation by α-mangostin, proniosome, which is a potent colloidal type delivery system was chosen as a carrier vesicle to transport the α-mangostin to its skin targeted site. The melanocytes are located at the basal epidermis layer for anti-melanogenesis activity.

Coacervation phase separation method, a method for proniosomes preparation was employed in this study. This method works under simple idea that the mixture of surfactant: alcohol: aqueous phase can be used to form the concentrated proniosomal formulation, which upon dilution with excess aqueous phase will convert spontaneously to a stable niosomal dispersion (Vora et al., 1998). This method allows easy future scale up of production as it is simple and practical for routine, does not involved lengthy procedures, does not required expensive instrumentations, and does not involved the unnecessary use of organic solvent and unacceptable additives (Vora et al., 1998; Fang et al., 2001). The main ingredient of proniosome was non-ionic surfactant while others ingredients (i.e. cholesterol and soya lecithin) were added to enhance the vesicle stability and skin permeability.

1.2 Problem Statement

Alpha-mangostin has been identified as a potent depigmenting compound that suitable to be incorporated in whitening range cosmeceutical products. Despite its potent anti-melanogenic activity, application of α-mangostin in topical cosmeceutical is restricted due to its high lipophilicity and poor water solubility.
Lipophilicity is one of the important descriptor governing drug permeation across a biological membrane (Malkia et al., 2004). Lipophilicity is generally expressed quantitatively as the log$_{10}$ of the partitioning of a neutral drug species between n-octanol and water (log $K_{o/w}$ or log P). Skin permeation of compounds was reported to be increased with lipophilicity. However, a further increase in log P to more than 4.1 was reported to decrease the skin permeability. Alpha-mangostin is highly lipophilic (log $P = 4.64$), therefore the permeation of α-mangostin through the rate-limiting skin membrane is very challenging and thus needs to be overcome.

This study was proposed to develop a convenient and low-cost transdermal drug delivery for α-mangostin using proniosome as a novel carrier. Several non-irritant, non-toxic, and relatively cheap non-ionic surfactants were screened for α-mangostin proniosome preparations. Since the development of proniosome still in its infancy, therefore further exploration is required to study the factors that could influence the characteristics and performance of proniosome. The influence of formulation components on the characteristics of α-mangostin proniosome such as vesicle size, polydispersity index (PDI), encapsulation efficiency (EE), zeta potential and morphology were investigated. Furthermore, the in vitro permeation and skin retention of α-mangostin proniosome were also studied using dermis-split Yucatan Micropig (YMP) skin.

To date, no report was found on the development of α-mangostin proniosome using coacervation phase separation method (a recently developed method). Also, no report was found reporting the in vitro permeation and skin retention of α-mangostin through the non-viable skin, hence the novelty of this study.

1.3 Hypothesis

Due to the highly lipophilic nature of α-mangostin, the compound might tend to accumulate in the outermost layer of skin (hydrophobic stratum corneum) and has limited permeation across the lower layers (the hydrophilic viable epidermis/dermis
or VED), thereby results in reduced bioavailability and therapeutic effect of the compounds. In this study, the α-mangostin proniosomes were developed to enhance topical delivery. Proniosomes improved permeation flux of α-mangostin across the skin and increased the skin retention of α-mangostin in the viable epidermis /dermis (VED) layer where the melanocytes (pigment forming cells) are located. Furthermore, the formulation aspects of proniosome play a major role in determining the characteristics and performance of α-mangostin proniosomes.

1.4 **Research Objectives**

1.4.1 To develop and characterize the α-mangostin proniosome.
1.4.2 To determine the *in vitro* permeation and skin retention of α-mangostin proniosome.

1.5 **Scopes of Study**

In order to achieve the objectives, scopes of the study had been identified and narrowed down. This research covered the scopes of study as listed as following:

1.5.1 Screening of formulation ingredients of α-mangostin proniosome based on solubility and preliminary skin retention study. Development of α-mangostin proniosome by using coacervation phase separation method. Formulation ingredients including the non-ionic surfactants (Spans and Tweens), cholesterol and soya lecithin. Characterization of the α-mangostin proniosome in term of size, polydispersity index (PDI), entrapment efficiency (EE), zeta potential and morphology.

1.5.2 *In vitro* permeation study and skin retention study of α-mangostin proniosome through dermis-split Yucatan Micropig (YMP) skin (48h).
Determine the concentration of α-mangostin retained in the stratum corneum and the viable epidermis-dermis layer (VED) (refers to as the ‘total concentration’) and the concentration of α-mangostin retained in the tap-stripped skin (refers to as the ‘VED concentration’).

1.5.3 Determine the effect of formulation ingredients on the characteristics and performance (in vitro permeation and skin retention) of α-mangostin proniosome.

1.6 Significances of Study

This study developed a novel topical delivery system (proniosome) of α-mangostin with enhanced in vitro skin permeation and skin retention in the viable epidermis/dermis (VED) layer (which is the targeting site for anti-melanogenesis activity), critical for cosmeceutical application. The developed α-mangostin proniosomal formulations provide a good ingredient for whitening cosmeceuticals (e.g. whitening serum, cream etc.), thus promoting the use of local herbs as an ingredient for cosmeceutical application. Besides, data concerning the development, characterization, in vitro permeation and skin retention of α-mangostin through the non-viable skin could provide useful literature for researchers working in cosmeceutical and pharmaceutical areas, as α-mangostin was also reported to exhibit a variety of bioactivities. The data regarding the effect of formulation ingredients on the characteristics and performance of vesicles could also provide useful references for formulation development, optimization, and scaling up in future.
REFERENCES

Plants Entrapped in Niosomes for Acne Treatment. Journal of Thai Traditional and Alternative Medicine, 6, 136.

