Rezazadeh, Javad and Moradi, Marjan and Ismail, Abdul Samad and Dutkiewicz, Eryk (2015) Impact of static trajectories on localization in wireless sensor networks. Wireless Networks, 21 (3). pp. 809-827. ISSN 1022-0038
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/s11276-014-0821-z
Abstract
A Wireless Sensor Network (WSN) consists of many sensors that communicate wirelessly to monitor a physical region. Location information is critical essential and indispensable for many applications of WSNs. A promising solution for localizing statically deployed sensors is to benefit from mobile location-aware nodes called beacons. However, the essential problem is to find the optimum path that the mobile beacon should travel in order to improve localization accuracy, time and success as well as energy efficiency. In this paper, we evaluate the performance of five mobile beacon trajectories; Random Way Point, Scan, Hilbert, Circles and Localization algorithm with a Mobile Anchor node based on Trilateration (LMAT) based on three different localization techniques such as Weighted Centroid Localization and trilateration with time priority and accuracy priority. This evaluation aims to find effective and essential properties that the trajectory should have. Our simulations show that a random movement cannot guarantee the performance of localization. The results also show the efficiency of LMAT regarding accuracy, success and collinearity while the Hilbert space filling curve has lower energy consumption. Circles path planning can help to localize unknown sensors faster than others at the expense of lower localization precision
Item Type: | Article |
---|---|
Uncontrolled Keywords: | mobile beacon, trajectory |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Computing |
ID Code: | 55662 |
Deposited By: | Fazli Masari |
Deposited On: | 26 Sep 2016 00:40 |
Last Modified: | 15 Feb 2017 01:55 |
Repository Staff Only: item control page