PREPARATION AND CHARACTERIZATION OF CARBON MOLECULAR SIEVE PRODUCED FROM PALM SHELL

WONG KWON CHEONG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

APRIL 2006
To my beloved mother and father
ACKNOWLEDGEMENTS

First and foremost, I must thank to Universiti Teknologi Malaysia for supporting my Master studies by providing me the scholarship.

Secondly, I would like to pay my sincere appreciation and gratitude to my supervisor Prof. Dr. Ir. Farid Nasir Bin Hj. Ani and co-supervisor Prof. Dr. Ir. Wan Ramli Bin Wan Daud for their invaluable guidance and helpful ideas throughout this research work. Their appreciation, continuous support and words of encouragement gave me a new life to my effort especially during my hard time. This thesis would not have been completed without their patience and constant support. Not forgetting, technical staffs at the Combustion Laboratory, Faculty of Mechanical Engineering, UTM Skudai, my fellow friends especially Mr Lim, Mr Elhadi, Mr Muhammad and Mr. Zainal who have been extremely helpful during my study.

In the last, but not the least, I would like to thank all my family members especially my mother and sister for her never-ending support.
ABSTRACT

Various types of microporous carbon gas adsorbents have been prepared from Malaysia carbonaceous solid waste, the palm shell as the precursor for further modification into carbon molecular sieve (CMS). It is an advantage to utilize the palm shell as starting material by converting into useful CMS since it can be obtained easily and abundantly in the country. The precursors were prepared in laboratory fluidized and fixed bed reactors by one-step physical treatments, which included carbonization in N₂ flow and directly followed by CO₂ activation. The effects of carbonization parameters, such as carbonization temperature, hold time and N₂ flow rate on the porosity development have been studied. The characterizations of precursors were carried out by constant volumetric physisorption analyzer to determine various characteristic parameters from the analysis of adsorption isotherm. Here, N₂ and CO₂ have been used as the adsorptive gas for analysis at 77 and 273 K, respectively. Although the entire precursor appeared to be highly microporous, only some precursors produced were considered suitable to be used as precursor of CMS for O₂/N₂ separation based on the literature survey finding. Then the precursors were modified into CMS using chemical vapor deposition (CVD) technique. The CVD technique involved deposition of pyrolytic carbon on the precursor by cracking of hydrocarbon gas substance. CVD parameters such as type of hydrocarbon gas substance, deposition temperature, deposition hold time and % v/v of hydrocarbon gas substance were manipulated to have pyrolytic carbon deposited on the pore mouth for improving separation selectivity with some trade-off in O₂ adsorption capacity. The characterizations of CMS were carried out by constant volumetric physisorption analyzer to determine the adsorption kinetic of O₂ and N₂ for determining the selectivity and O₂ adsorption capacity from isotherm at 298 K. The deposition mechanisms were proposed from the result obtained. By directly applied CVD to deposit carbon on precursor for modifying the pore mouth produced CMS which is not up to expected performance compared to commercial carbon molecular sieve (CCMS). It was due to the existence of a small portion of pore with bigger pore size. These pores could not be effectively lowered because further deposition of the pyrolytic carbon will close the smaller pore resulting in abrupt reduction in O₂ adsorption capacity. The conventional CVD involving pore blocking by pyrolytic carbon followed by control gasification in CO₂ atmosphere were used. In this experiment, the best samples from directly applied CVD and conventional CVD have selectivity of 8.00 and 5.00 respectively compared to the selectivity of 2.09 for the precursor.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxx</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Typical Characteristics of Adsorbents. 1

1.1.1 Molecular Sieve Carbon or Carbon Molecular Sieve 3

1.2 Gas Adsorption Processes 4

1.3 Air Separation Technologies 5

1.4 Adsorption Mechanism 7

1.5 Research on Palm Oil Wastes for Carbon Adsorbent Preparation 8

1.6 Research Objectives 10

1.7 Research Scopes 11

1.8 Contribution 11
2 PREPARATION AND PROCESSING OF MICROPOROUS CARBON ADSORBENTS BY PHYSICAL TREATMENT

2.1 Introduction

2.2 Literature Findings on Various Methods in Preparation of Microporous Carbons by Different Starting Material and Processing Method.

2.3 Processing Methods, Experimental Rig Set Up and Procedures for Preparing Microporous Carbon for CVD Process from Palm Shell.

2.4 Physical Treatment to Produce Microporous Carbon Acts as Ideal Precursor for CVD Process into CMS.

2.4.1 Physical Treatment Parameters Used in the Experiment

3 CHARACTERIZATION OF MICROPOROUS CARBON ADSORBENTS FROM PALM SHELL BY PHYSISORPTION TECHNIQUE

3.1 Introduction

3.2 Theory and Concept of Physical Gas Adsorption (or physisorption analysis)

3.2.1 Adsorption Isotherm

3.2.2 BET (Brunauer, Emmett and Teller) Equation

3.2.3 Standard Isotherms, t-plot

3.2.4 Pure Component Adsorption in Microporous Solid

3.2.4.1 Dubinin-Radushkevich (DR) Equation
3.2.4.2 Dubinan-Astakhov (DA) Equation
3.2.5 Horvath-Kawazoe (H-K) Method
3.2.6 Density Functional Theory (DFT) Formulation
 3.2.6.1 Fitting Model Isotherms to Experimental Data by Method of Deconvolution
3.2.7 Summary of Theory and Concept of Physisorption Analysis
3.2.8 Typical Experimental Parameter or Condition Used.
3.3 Instrumental Operation, Theory and Method
3.4 Experimental
3.5 Results and Discussion on the Effects of Physical Treatment Parameters on the Pore Structure Development of Microporous Carbon Adsorbents (CMS Precursor)
 3.5.1 Microporous Carbon Adsorbent from Tuyere Type Reactor
 3.5.2 Microporous Carbon Adsorbent from Mesh Wire Type Reactor
 3.5.2.1 Microporous carbon carbonized at different temperature
 3.5.2.2 Microporous carbon carbonized at different hold time
 3.5.2.3 Microporous carbon carbonized at different carbonization flow rate
3.6 Discussion
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Vapor Substance used in Chemical Vapor Deposition (CVD)</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>Theory of Carbon Molecular Sieve (CMS) from Chemical Vapor Deposition (CVD) for Air Separation</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Literature Findings on Various Methods in the Preparation of CMS</td>
<td>84</td>
</tr>
<tr>
<td>4.5</td>
<td>Method of Preparation of CMS by Direct Deposition (DD) Process.</td>
<td>89</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Pore Blocking Mechanism</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Method of Preparation of CMS by CVD Process of Chemisorbed Carbon Deposition (CCD)</td>
<td>93</td>
</tr>
<tr>
<td>4.7</td>
<td>Literature Findings on Chemistry and Kinetics of CVD</td>
<td>94</td>
</tr>
<tr>
<td>4.8</td>
<td>Procedure for CVD Process and Experimental Rig Set Up</td>
<td>96</td>
</tr>
</tbody>
</table>
5 ADSORPTION RATE AND GAS DIFFUSION EFFECTS ON THE KINETICS SEPARATION OF NITROGEN AND OXYGEN GAS

5.1 Introduction

5.2 Kinetics of Adsorption and Diffusional Characteristics of CMS
 5.2.1 Phenomenological Model for Adsorption Kinetics
 5.2.2 Fickian Model for Adsorption Kinetics

5.3 Experimental Technique

5.4 Characteristic of Initial Precursor Used and Commercial Carbon Molecular Sieve

5.5 Chemical Vapor Deposition by Using Methane Substance.
 5.5.1 Chemical Vapor Deposition of the Precursor Using Methane at Different Temperature
 5.5.2 Chemical Vapor Deposition of the Precursor at Different Methane-Nitrogen Gas Fractional Volume
 5.5.3 Chemical Vapor Deposition of the Precursor Using Methane at Different Hold Time
 5.5.3.1 Chemical Vapor Deposition at 750 °C at Different Hold Time
 5.5.3.2 Chemical Vapor Deposition at 700 °C at Different Hold Time
 5.5.4 Discussion

5.6 Chemical Vapor Deposition by Using Ethane Substance
5.6.1 Chemical Vapor Deposition of Precursor Using Ethane at Different Temperature
5.6.2 Chemical Vapor Deposition of Precursor at Different Ethane-Nitrogen Gas Fractional Volume
5.6.3 Chemical Vapor Deposition of Precursor at Different Hold Time.
 5.6.3.1 Chemical Vapor Deposition at Different Hold Time at 750 °C
 5.6.3.2 Chemical Vapor Deposition at Different Hold Time at 775 °C
5.6.4 Discussion
5.7 Ethylene Cracking to Seal All Pore Entrances and Followed by Control Gasification
 5.7.1 Control Gasification Using CO$_2$ at Different Temperature
 5.7.2 Control Gasification Using CO$_2$ at Different Hold Time at 600 °C and 700 °C
 5.7.3 Control Gasification Using CO$_2$ at Different Hold Time at 800 °C
 5.7.4 Control Gasification Using CO$_2$ at Different CO$_2$ Activation Fractional Volume
 5.7.5 Discussion

6 CONCLUSION AND RECOMMENDATION

6.1 Limitation of Experiment
6.2 Conclusion
6.3 Recommendations for Future Work.
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical process using adsorption technology</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Technology comparison table</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>N₂ adsorption and CO₂ adsorption at 77K and 273K for microporous carbon and char carbonized at different temperature in Tuyere type reactor.</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>N₂ adsorption at 77K for microporous carbon carbonized at different temperature, hold time and heating rate in mesh wire reactor.</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>CO₂ adsorption at 273K for microporous carbon carbonized at different temperature, hold time, and heating rate in mesh wire reactor.</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>Diffusion of atmospheric gases in various molecular sieve carbons</td>
<td>104</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of the experimental results for diffusivity, adsorption capacity and selectivity of various microporous carbon precursors, commercial carbon molecular sieve and samples with precursors after deposited by methane cracking on O₂ and N₂ adsorption at 25 °C.</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of the experimental results for diffusivity, adsorption capacity and selectivity of various samples from precursor after deposited by ethane cracking on O₂ and N₂ adsorption at 25 °C.</td>
<td>151</td>
</tr>
</tbody>
</table>
5.4 Summary of the experimental results for diffusivity, adsorption capacity and selectivity of various samples by ethane cracking to seal all pores entrances and followed by control gasification.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Microporous carbons experimental rig set-up</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Raw oil palm shells from palm oil mills</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Fluidized bed design (mesh wire)</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Flow chart of microporous carbons prepared by physical treatment</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Brief experimental technique used in the experiment</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Six types of gas adsorption isotherm according to the international IUPAC classification</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>t-plots of mesoporous and nonporous solids</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>t-plot of microporous and micro- and mesoporous solids</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Diagrammatic representation of the variations in DR plots with associated pore size distribution</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>Model isotherm for argon at 87.3 K in a 40Å carbon substrate slit by the DFT method. The inset and corresponding points on the isotherm show the gas density (y-axis) in respect to distance from the pore wall (x-axis)</td>
<td>43</td>
</tr>
<tr>
<td>3.6</td>
<td>Model isotherms in the micropore size range of the pore width argon on carbon at 87.3 K</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>The functional diagram of the Micromeritics ASAP 2010 manifold</td>
<td>49</td>
</tr>
<tr>
<td>3.8</td>
<td>The N$_2$ adsorption isotherm of single-step activated carbon and char produced from Tuyere type reactor at different carbonization temperature</td>
<td>52</td>
</tr>
<tr>
<td>3.9</td>
<td>Micropore and mesopores pore volume from N$_2$</td>
<td>52</td>
</tr>
</tbody>
</table>
adsorption (77K) of samples produced from tuyere type reactor (a) based on total pore volume (b) percentage

3.10 Horvath-Kawazoe plots of the equivalent micropore size distribution of SACC and Char carbonized at different temperature from N\textsubscript{2} adsorption (77K)

3.11 DR plots of the SACC carbonized at different temperature

3.12 The N\textsubscript{2} adsorption isotherm of microporous carbon produced from mesh wire type reactor at different carbonization temperature

3.13 The CO\textsubscript{2} adsorption isotherm of microporous carbon produced from mesh wire type reactor at different carbonization temperature.

3.14 Density Functional Theory plot of pore size distribution of sample SACC400/0.5/0.2

3.15 Microporous volume from N\textsubscript{2} adsorption (77K) and CO\textsubscript{2} adsorption (273K) of samples produced from mesh wire reactor at different temperature

3.16 Micropore and mesopores volume from N\textsubscript{2} adsorption (77K) of samples produced from mesh wire type reactor at different temperature (a) based on total pore volume (b) percentage

3.17 Horvath-Kawazoe plots of the equivalent micropore size distribution of samples produced from the mesh wire type reactor at different carbonization temperature from the N\textsubscript{2} adsorption (77K)

3.18 Density Functional Theory plot of pore size distribution of sample SACC500/0.5/0.2

3.19 Density Functional Theory plot of pore size distribution of sample SACC600/0.5/0.2

3.20 Density Functional Theory plot of pore size distribution of sample SACC700/0.5/0.2

3.21 Density Functional Theory plot of pore size distribution
3.22 DR plots of samples produced from mesh wire type reactor at different carbonization temperature from N₂ adsorption (77 K)

3.23 DR plots of samples produced from mesh wire type reactor at different carbonization temperature from CO₂ adsorption (273 K)

3.24 The N₂ adsorption isotherm of microporous carbon produced from mesh wire type reactor at different carbonization hold time.

3.25 The CO₂ adsorption isotherm of microporous carbon produced from mesh wire type reactor at different carbonization hold time.

3.26 Microporous volume from N₂ adsorption (77K) and CO₂ adsorption (273K) of samples produced from mesh wire reactor at different hold time.

3.27 Density Functional Theory Plot of pore size distribution of sample SACC500/1.0/0.2

3.28 Density Functional Theory Plot of pore size distribution of sample SACC500/1.5/0.2

3.29 Density Functional Theory Plot of pore size distribution of sample SACC500/2.0/0.2

3.30 Horvath- Kawazoe plots of the equivalent micropore size distribution of samples produced from the mesh wire type reactor at different carbonization hold time from N₂ adsorption (77K)

3.31 DR plots of samples produced from mesh wire type reactor at different carbonization hold time from N₂ adsorption (77K)

3.32 DR plots of samples produced from mesh wire type reactor at different carbonization hold time from CO₂ adsorption (273K)

3.33 The N₂ adsorption isotherm of microporous carbon
produced from mesh wire type reactor at different carbonization flowrate.

3.34 The CO$_2$ adsorption isotherm of microporous carbon produced from mesh wire type reactor at different carbonization flow rate.

3.35 Microporous volume from N$_2$ adsorption (77K) and CO$_2$ adsorption (273K) of samples produced from mesh wire reactor at different carbonization flow rate.

3.36 Density Functional Theory plot of pore size distribution of sample SACC500/0.5/0.5

3.37 Density Functional Theory plot of pore size distribution of sample SACC500/0.5/0.3

3.38 Density Functional Theory plot of pore size distribution of sample SACC500/0.5/0.4

3.39 Horvath-Kawazoe plots of equivalent micropore size distribution of samples produced from the mesh wire type reactor at different carbonization flow rate from N$_2$ adsorption (77K)

3.40 DR plots of samples produced from mesh wire type reactor at different carbonization flow rate from N$_2$ adsorption (77K)

3.41 DR plots of samples produced from mesh wire type reactor at different carbonization flow rate from CO$_2$ adsorption (273K)

4.1 (a) Schematic diagram of the suggested pore blocking mechanism. (b) The pore reopening process by gasification

4.2 Mechanism of carbon deposition on activated carbon

4.3 Schematic representation of carbon deposition under different regimes: A-clean pore, B-deposition in chemical kinetic regime-case 1, C-pore mouth deposition in internal diffusion regime-case 2.

4.4 Reaction scheme for pyrocarbon deposition from
methane

4.5 Carbon molecular sieve prepared by chemical vapour deposition processing rig set up

4.6 Flowchart of carbon molecular sieve prepared by chemical vapour deposition method.

5.1 (a) Equilibrium isotherms and (b) experimental uptake curves for sorption of O₂ and N₂ on Bergbau-Forschung CMS at 193 K and 273 K

5.2 Experimental uptake curves for N₂ and O₂ in the Bergbau-Forschung CMS at 193 K and 273 K

5.3 Graph of fractional uptake versus time for SACC500/0.5/0.2 and SACC500/0.5/0.4 at 25 °C

5.4 Graph of fractional uptake versus time for CCMS at 25 °C

5.5 Plot of ln(1-(Mₜ/Mₜ)) versus time for diffusivity evaluation of SACC500/0.5/0.2 and SACC500/0.5/0.4.

5.6 Plot of ln(1-(Mₜ/Mₜ)) versus time for diffusivity evaluation of CCMS

5.7 The adsorption isotherm evaluated at 25 °C for SACC500/0.5/0.2 and SACC500/0.5/0.4

5.8 The adsorption isotherm evaluated at 25 °C for CCMS

5.9 Graph of fractional uptake versus time for CMS1 deposited from 600-700 °C

5.10 Graph of fractional uptake versus time for CMS2 deposited from 600-700 °C

5.11 Plot of ln(1-(Mₜ/Mₜ)) versus time for diffusivity evaluation of CMS1 deposited from 600-700 °C

5.12 Plot of ln(1-(Mₜ/Mₜ)) versus time for diffusivity evaluation of CMS2 deposited from 600-700 °C

5.13 The adsorption isotherm evaluated at 25 °C for CMS1 deposited from 600-700 °C

5.14 The adsorption isotherm evaluated at 25 °C for CMS2
deposited from 600-700 °C

5.15 Graph of fractional uptake versus time for CMS1 deposited from 750-850 °C

5.16 Graph of fractional uptake versus time for CMS2 deposited from 750-850 °C

5.17 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity evaluation of CMS1 deposited from 750-850 °C

5.18 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity evaluation of CMS2 deposited from 750-850 °C

5.19 The adsorption isotherm evaluated at 25 °C for CMS1 deposited from 750-850 °C

5.20 The adsorption isotherm evaluated at 25 °C for CMS2 deposited from 750-850 °C

5.21 The trend of selectivity and O2 adsorption capacity versus deposition temperature for CMS1

5.22 The trend of selectivity and O2 adsorption capacity versus deposition temperature for CMS2

5.23 Graph of fractional uptake versus time for CMS1 deposited at different methane-nitrogen gas fractional volume.

5.24 Graph of fractional uptake versus time for CMS2 deposited at different methane-nitrogen gas fractional volume

5.25 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity evaluation of CMS1 deposited at different methane-nitrogen gas fractional volume

5.26 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity evaluation of CMS2 deposited at different methane-nitrogen gas fractional volume

5.27 The adsorption isotherm evaluated at 25 °C for CMS1 deposited at different methane-nitrogen gas fractional volume

5.28 The adsorption isotherm evaluated at 25 °C for CMS2
The trend of selectivity and O₂ adsorption capacity versus CH₄ fraction for CMS1

The trend of selectivity and O₂ adsorption capacity versus CH₄ fraction for CMS2

The trend of selectivity and O₂ adsorption capacity versus hold time for CMS1 (750 °C)

The trend of selectivity and O₂ adsorption capacity versus hold time for CMS2 (750 °C)

Graph of fractional uptake versus time for CMS1 deposited at 750 °C at different hold time

Graph of fractional uptake versus time for CMS2 deposited at 750 °C at different hold time

Plot of ln(1-(Mᵣ/M∞)) versus time for diffusivity evaluation of CMS1 deposited at 750 °C at different hold time

Plot of ln(1-(Mᵣ/M∞)) versus time for diffusivity evaluation of CMS2 deposited at 750 °C at different hold time

The adsorption isotherm evaluated at 25 °C for CMS1 deposited at 750 °C at different hold time

The adsorption isotherm evaluated at 25 °C for CMS2 deposited at 750 °C at different hold time

The trend of selectivity and O₂ adsorption capacity versus hold time for CMS1 (700 °C)

Graph of fractional uptake versus time for CMS1 deposited at 700 °C at different hold time

Plot of ln(1-(Mᵣ/M∞)) versus time for diffusivity evaluation of CMS1 deposited at 700 °C at different hold time

The adsorption isotherm evaluated at 25 °C for CMS1
5.43 Graph of fractional uptake versus time for CMS3 deposited at 700 °C at different hold time

5.44 Graph of fractional uptake versus time for CMS3 deposited from 600 °C to 700 °C

5.45 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity evaluation of CMS3 deposited from 600 °C to 700 °C

5.46 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity evaluation of CMS3 deposited from 750 °C to 800 °C

5.47 The adsorption isotherm evaluated at 25 °C for CMS3 deposited from 600 °C to 700 °C

5.48 The adsorption isotherm evaluated at 25 °C for CMS3 deposited from 600 °C to 700 °C

5.49 The trend of selectivity and O₂ adsorption capacity versus temperature of chemical vapour deposition by ethane

5.50 Graph of fractional uptake versus time for CMS3 deposited at different ethane-nitrogen gas fractional volume

5.51 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity evaluation of CMS3 deposited at different ethane-nitrogen gas fractional volume

5.52 The adsorption isotherm evaluated at 25 °C for CMS3 deposited at different ethane-nitrogen gas fractional volume

5.53 The trend of selectivity and O₂ adsorption capacity versus ethane-nitrogen gas fractional volume

5.54 The trend of selectivity and O₂ adsorption capacity versus hold time of chemical vapour deposition by ethane (750 °C)

5.55 Graph of fractional uptake versus time for CMS3 deposited at different hold time (750 °C)

5.56 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity
evaluation of CMS3 deposited at different hold time (750 °C)

5.57 The adsorption isotherm evaluated at 25 °C for CMS3 deposited at different hold time (750 °C)

5.58 The trend of selectivity and O₂ adsorption capacity versus hold time of chemical vapour deposition by ethane (775 °C)

5.59 Graph of fractional uptake versus time for CMS3 deposited at different hold time (775 °C)

5.60 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity evaluation of CMS3 deposited at different hold time (775 °C)

5.61 The adsorption isotherm evaluated at 25 °C for CMS3 deposited at different hold time (775 °C)

5.62 Schematic representation of carbon deposition under different hold time regime: (a) initial deposition without the formation of carbon deposited at the pore mouth; (b) carbon deposition at the pore mouth; (c) formation of micropore framework with some wider pore compared with pore internal; (d) minor narrowing of micropore framework formed previously

5.63 Density Functional Theory plot of pore size distribution of sample Commercial Carbon Molecular Sieve (CCMS) by CO₂ adsorption at 273 K.

5.64 Density Functional Theory plot of pore size distribution of sample CMS3/775/6/25 by CO₂ adsorption at 273 K

5.65 Density Functional Theory plot of pore size distribution of sample CMS1/750/10/75 by CO₂ adsorption at 273 K

5.66 The trend of selectivity and O₂ adsorption capacity versus gasification temperature

5.67 Graph of fractional uptake versus time for CMS4 gasified at different temperature

5.68 Plot of ln(1-(M_t/M_∞)) versus time for diffusivity
evaluation of CMS4 gasified at different temperature

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.69</td>
<td>The adsorption isotherm evaluated at 25 °C for CMS4 gasified at different temperature</td>
</tr>
<tr>
<td>5.70</td>
<td>The trend of selectivity and O₂ adsorption capacity versus gasification hold time (600 °C)</td>
</tr>
<tr>
<td>5.71</td>
<td>Graph of fractional uptake versus time for CMS4 gasified at different hold time (600 °C)</td>
</tr>
<tr>
<td>5.72</td>
<td>Plot of (\ln(1-(M_t/M_\infty))) versus time for diffusivity evaluation of CMS4 gasified at different hold time (600 °C)</td>
</tr>
<tr>
<td>5.73</td>
<td>The adsorption isotherm evaluated at 25 °C for CMS4 gasified at different hold time (600 °C)</td>
</tr>
<tr>
<td>5.74</td>
<td>The trend of selectivity and O₂ adsorption capacity versus gasification hold time (700 °C)</td>
</tr>
<tr>
<td>5.75</td>
<td>Graph of fractional uptake versus time for CMS4 gasified at different hold time (700 °C)</td>
</tr>
<tr>
<td>5.76</td>
<td>Plot of (\ln(1-(M_t/M_\infty))) versus time for diffusivity evaluation of CMS4 gasified at different hold time (700 °C)</td>
</tr>
<tr>
<td>5.77</td>
<td>The adsorption isotherm evaluated at 25 °C for CMS4 gasified at different hold time (700 °C)</td>
</tr>
<tr>
<td>5.78</td>
<td>The trend of selectivity and O₂ adsorption capacity versus gasification hold time (800 °C)</td>
</tr>
<tr>
<td>5.79</td>
<td>Graph of fractional uptake versus time for CMS4 gasified at different hold time (800 °C)</td>
</tr>
<tr>
<td>5.80</td>
<td>Plot of (\ln(1-(M_t/M_\infty))) versus time for diffusivity evaluation of CMS4 gasified at different hold time (800 °C)</td>
</tr>
<tr>
<td>5.81</td>
<td>The adsorption isotherm evaluated at 25 °C for CMS4 gasified at different hold time (800 °C)</td>
</tr>
<tr>
<td>5.82</td>
<td>The trend of selectivity and O₂ adsorption capacity versus CO₂ fractional volume (700 °C)</td>
</tr>
<tr>
<td>5.83</td>
<td>Graph of fractional uptake versus time for CMS4</td>
</tr>
</tbody>
</table>
gasified at different CO₂ fractional volume (700 °C)

5.84 Plot of ln(1-(Mₜ/Mₜ)) versus time for diffusivity evaluation of CMS4 gasified at different CO₂ fractional volume (700 °C).

5.85 The adsorption isotherm evaluated at 25 °C for CMS4 gasified at different CO₂ fractional volume (700 °C)

5.86 The trend of selectivity and O₂ adsorption capacity versus CO₂ fractional volume (800 °C)

5.87 Graph of fractional uptake versus time for CMS4 gasified at different CO₂ fractional volume (800 °C)

5.88 Plot of ln(1-(Mₜ/Mₜ)) versus time for diffusivity evaluation of CMS4 gasified at different CO₂ fractional volume (800 °C)

5.88 The adsorption isotherm evaluated at 25 °C for CMS4 gasified at different CO₂ fractional volume (800 °C)
LIST OF SYMBOLS

- **a** - Radius of homogeneous sphere
- **A** - Adsorption potential
- **A_a** - Constant in Lennard-Jones potential for adsorbent
- **A_A** - Constant in Lennard-Jones potential for adsorbate
- **A_t** - Reactor cross sectional area
- **AC** - Activated carbon
- **ASAP** - Accelerated Surface Area and Porosimetry
- **ASU** - Air separation unit
- **b** - Affinity constant
- **BET** - Brunauer, Emmett and Teller
- **BJH** - Barrett, Joyner and Halenda
- **CA** - Chemical activation
- **CAU** - Circulating Adsorption Unit
- **CCD** - Chemisorbed carbon deposition
- **CCl_4** - Chloroform
- **C_d_or** - Orifice coefficient
- **CH_2Cl** - Dichloromethane
- **CMS** - Carbon molecular sieve / molecular sieve carbon
- **CMSN_2** - CMS produced by Bergbau-Forschung for air separation.
- **CO_2** - Carbon dioxide gas
- **CVD** - Chemical vapor deposition
- **d** - Diameter for the adsorbate molecule
- **d_p** - Particle size of raw palm shell
- **d_t** - Fluidized bed internal diameter
- **d_or** - Diameter of orifice of the tuyere
- **D** - Diffusivity constant
- **DA** - Dubinin Astakhov
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>Direct deposition</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>DR</td>
<td>Dubinin Radushkevich</td>
</tr>
<tr>
<td>E_o</td>
<td>Characteristic Energy – adsorption strength between adsorbate & adsorbent</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transformed Infrared Spectroscopy</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GCMS</td>
<td>Gas Chromatography Mass Spectroscopy</td>
</tr>
<tr>
<td>H-K</td>
<td>Horvath-Kawazoe</td>
</tr>
<tr>
<td>HTT</td>
<td>Heat treatment temperature</td>
</tr>
<tr>
<td>ID</td>
<td>Internal Diameter</td>
</tr>
<tr>
<td>ITM</td>
<td>Ion transport membrane</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>K</td>
<td>Avogrado’s number</td>
</tr>
<tr>
<td>l</td>
<td>Distance between nuclei of two layers (slit width)</td>
</tr>
<tr>
<td>L</td>
<td>Nucleus to nucleus slit width</td>
</tr>
<tr>
<td>L_{mf}</td>
<td>Minimum fluidization height.</td>
</tr>
<tr>
<td>m_{shell}</td>
<td>Mass feed of raw palm shell</td>
</tr>
<tr>
<td>M_{W,N_2}</td>
<td>Molecular weight of N_2</td>
</tr>
<tr>
<td>MSCs</td>
<td>Molecular sieve carbon</td>
</tr>
<tr>
<td>M_t</td>
<td>Gas uptake at time, t</td>
</tr>
<tr>
<td>M_∞</td>
<td>Gas uptake at equilibrium</td>
</tr>
<tr>
<td>n</td>
<td>Surface heterogeneity in DA equation</td>
</tr>
<tr>
<td>N_a</td>
<td>Number of atoms per unit area of adsorbent</td>
</tr>
<tr>
<td>N_A</td>
<td>Number of molecules per unit area of adsorbate</td>
</tr>
<tr>
<td>N_2</td>
<td>Nitrogen gas</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>Ammonia gas</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Nitrogen dioxide gas</td>
</tr>
<tr>
<td>N_{or}</td>
<td>The number of orifice of the tuyere</td>
</tr>
<tr>
<td>O$_2$</td>
<td>Oxygen gas</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>P_o</td>
<td>Saturation pressure of the gas</td>
</tr>
<tr>
<td>PSA</td>
<td>Pressure swing adsorption</td>
</tr>
<tr>
<td>PT</td>
<td>Physical treatment</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>(\text{Re}_t)</td>
<td>Vessel Reynolds number</td>
</tr>
<tr>
<td>(R_g)</td>
<td>Gas constant</td>
</tr>
<tr>
<td>(\text{SBET})</td>
<td>BET surface area</td>
</tr>
<tr>
<td>(\text{SEM})</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>(S_E)</td>
<td>External surface area by t-plot</td>
</tr>
<tr>
<td>(S_M)</td>
<td>Micropore surface area by t-plot</td>
</tr>
<tr>
<td>(\text{sTPD})</td>
<td>Production in Ton per day</td>
</tr>
<tr>
<td>(T)</td>
<td>Temperature</td>
</tr>
<tr>
<td>(\text{TEM})</td>
<td>Transmission electron microscope</td>
</tr>
<tr>
<td>(\text{TSA})</td>
<td>Temperature swing adsorption</td>
</tr>
<tr>
<td>(u_o)</td>
<td>Velocity of gas in reactor tube</td>
</tr>
<tr>
<td>(U_o)</td>
<td>Adsorbent-adsorbate interaction</td>
</tr>
<tr>
<td>(U_{or})</td>
<td>Maximum allowable jet velocity from holes</td>
</tr>
<tr>
<td>(U_a)</td>
<td>Implicit function of the adsorbate-adsorbent interaction</td>
</tr>
<tr>
<td>(V)</td>
<td>Quantity of gas adsorbed at pressure (P)</td>
</tr>
<tr>
<td>(V_{DA})</td>
<td>Micropore volume by DA equation</td>
</tr>
<tr>
<td>(V_{DR})</td>
<td>Micropore volume by DR equation</td>
</tr>
<tr>
<td>(V_m)</td>
<td>Quantity of gas adsorbed when entire surface is covered with a monomolecule layer</td>
</tr>
<tr>
<td>(V_T)</td>
<td>Total pore volume</td>
</tr>
<tr>
<td>(W)</td>
<td>Volume of adsorbate in the microporous</td>
</tr>
<tr>
<td>(W_o)</td>
<td>Maximum volume that the adsorbate can occupy</td>
</tr>
<tr>
<td>(z)</td>
<td>Distance of the adsorbate molecule from a surface atom in the slit wall</td>
</tr>
</tbody>
</table>

Greek symbol

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>Coefficient of similarity (ratio of the liquid molar volume to that of the reference benzene vapor)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Degree of transformation</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>Potential energy of interaction</td>
</tr>
<tr>
<td>(\epsilon_{mf})</td>
<td>void between particle during minimum fluidization</td>
</tr>
<tr>
<td>(\epsilon^*)</td>
<td>Minimum potential energy</td>
</tr>
</tbody>
</table>
\(\sigma \) - Distance from a surface atom at zero interaction energy

\(\rho_s \) - Density of raw palm shell

\(\rho_{g,N_2} \) - Density of nitrogen gas at 800°C, 1 atm

\(\mu \) - Nitrogen gas viscosity at 800°C, 1 atm

\(\Delta P_b \) - Pressure drop across the bed

\(\Delta P_d \) - Distributor pressure drop
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tuyere Type Fluidized Bed Reactor Design</td>
<td>191</td>
</tr>
<tr>
<td>B</td>
<td>An Example of Fluidization Calculation (Estimation) for Fluidized Bed Reactor According to Fluidization Engineering by Kunii and Levenspiel (1991) and Cold Test Result Summary</td>
<td>194</td>
</tr>
<tr>
<td>C</td>
<td>Schematic Diagrams of Liquid and Simple Gas Delivery System</td>
<td>199</td>
</tr>
<tr>
<td>D</td>
<td>Comparison of Chemical & Physical Properties and Toxicology and Safety of Benzene and Methane</td>
<td>202</td>
</tr>
<tr>
<td>E</td>
<td>Sample Report of Characterization by Physisorption Analysis Using Micromeritics ASAP 2010 (with Micropore Option) –Nitrogen Adsorption-</td>
<td>205</td>
</tr>
<tr>
<td>F</td>
<td>Sample Report of Characterization by Physisorption Analysis Using Micromeritics ASAP 2010 (with Micropore Option) –Carbon Dioxide Adsorption-</td>
<td>224</td>
</tr>
<tr>
<td>G</td>
<td>Sample Calculation to Convert the Rate of Adsorption Analysis Report to the Graph of Fractional Uptake versus Time.</td>
<td>241</td>
</tr>
<tr>
<td>H</td>
<td>Schematic Diagram of Carbon Deposition and Gasification under Different Condition</td>
<td>247</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Typical Characteristics of Adsorbents

Adsorption process can be defined as when porous and discontinuity surface of a solid is exposed to a gas, the gas molecules will form bonds with it and become attached (Yang, 1987). In another words, adsorption is a separation process in which certain components of a gaseous or liquid phase are selectively transferred to the surface of a solid adsorbent. There are four principles type of adsorption (Slejko, 1985):

(a) Exchange (ion exchange) – The electrostatic attachment of ionic species to site of opposite charge at the surface of the adsorbent, with subsequent displacement of these species by other ionic adsorbate of greater electrostatic affinity.

(b) Physical – The action of Van der Waals forces, which are comprised of both London dispersion forces and classical electrostatic affinity.

(c) Chemical – The reaction between an adsorbate and an adsorbent resulting in a change in the chemicals form of the adsorbate.

(d) Specific – The attachment of adsorbate molecules at functional groups on adsorbent surfaces can also result from specific interactions, which do not result in adsorbate transformation.
The physical adsorption is based on three distinct separation mechanisms (Do, 1998):

(a) Steric - The porous solid has pores with dimension such that it allows small molecules to enter while excluding large molecules from entry. Steric separation occurred unique with zeolite due to the uniform aperture size in the crystalline structure (Safarudin, 2000).

(b) Equilibrium - Solid has different abilities to accommodate different species that is the solid preferentially removes the stronger adsorbing species.

(c) Kinetic – Different species have different rates of diffusion into the pores. Thus by controlling the time of exposure, the comparable faster diffusing species is preferentially removed by the solid. Kinetic separation is possible only with carbon molecular sieve (CMS) because of the distribution of pore sizes and has found only one commercial application: the production of nitrogen from air (Yang, 1987).

The success or failure of the process depends on how the solid performs in both equilibria and kinetics. A solid with good capacity but slow kinetic will take adsorbate molecules too long time to reach the particle interior. This means long gas residence times in a column, hence a long throughput. On the other hand, a solid with fast kinetics but low capacity will require large amount of solid for a throughput. To satisfy these two requirements, the following aspects must be satisfied (Do, 1998).

(a) The solid must have reasonably high surface area or micropore volume.

(b) The solid must have relatively large pore network for the transport of molecules to the interior.

The classification of pore size as recommended by International Unit of Pure and Applied Chemistry (IUPAC) (Sing, 1985) is often used to delineate the range of pore size (d is the pore diameter).
Micropores $d < 2\text{nm}$
Mesopores $2 < d < 50 \text{ nm}$
Macropores $d > 50 \text{ nm}$

This classification is arbitrary and was developed based on the adsorption of nitrogen gas at its normal boiling point (77K).

Micropores can be further subdivided into ultramicroporosity and supermicroporosity (Marsh, 1987).

Ultramicroporosity $d < 0.5 \text{ nm}$
Supermicroporosity $1.4 < d < 3.2 \text{ nm}$

As ultramicroporosity has pore diameter equal or less than the diameter of the adsorbate molecule and activated diffusion effects and/or molecular sieve effects are the indication of the presence of ultramicroporosity. While for supermicroporosity, adsorption occurs by cooperative effects. The definitions and mechanisms of the above three effects will be discussed later in Chapter 3.

1.1.1 Molecular Sieve Carbon or Carbon Molecular Sieve

Since it is less hydrophilic than zeolite, carbon molecular sieve (CMS) can be used more efficaciously in separation processes involving wet gas stream. At present CMS is produced commercially by Bergbau-Forschung GmbH in West Germany and by Takeda Chemical Company and Kuraray Chemical Company in Japan. The raw material for Bergbau-Forschung’s MSC is bituminous coal, 40 microns. Commercial CMS for air separation is produced by cracking hydrocarbon such as methane in order to deposit a thin layer of coke at the pore mouth. CMSN2 produced by Bergbau-Forschung GmbH was used in PSA for the production of dry and CO$_2$ free N$_2$ at 99.9% purity without the need to predry the air feed (Yang, 1987). Today, most commercial carbon sieves are prepared from anthracite or hard coal by
controlled oxidation and subsequent thermal treatment. Subsequent treatments including controlled cracking of hydrocarbon within the micropore system and partial gasification under carefully regulated condition (Manzoor Zahur, 1991). Such a treatment is known as Chemical Vapor Deposition (CVD) and will be discussed in detail in Chapter 4. Table 1.1 shows the typical usage of different adsorbent in industrial processes nowadays.

<table>
<thead>
<tr>
<th>Separation</th>
<th>Adsorbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal paraffin, iso-paraffin</td>
<td>Zeolite 5-A</td>
</tr>
<tr>
<td>Nitrogen / oxygen gas</td>
<td>Zeolite 5-A</td>
</tr>
<tr>
<td>Oxygen / nitrogen gas</td>
<td>Carbon molecular sieve</td>
</tr>
<tr>
<td>Ethylene / vent stream</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>VOCs removal from air</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>Carbon dioxide, ethylene from natural gas</td>
<td>Zeolite</td>
</tr>
<tr>
<td>Sulfur compound from natural gas</td>
<td>Zeolite</td>
</tr>
<tr>
<td>Drying of reactive gases</td>
<td>Zeolite 3-A, Silica gel, Alumina</td>
</tr>
<tr>
<td>Solvent removal from air</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>Ordors from air</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>NOx, SOx, from flue gas</td>
<td>Zeolite, Activated carbon</td>
</tr>
</tbody>
</table>

1.2 Gas Adsorption Processes.

Large-scale adsorption processes can be divided into two broad classes. The first and the most important is the cyclic batch system, in which the adsorption bed is alternately saturated and then regenerated in a cyclic manner. The second is a continuous flow system, which involves a continuous flow of adsorbent countercurrent to a flow of feed (Geankoplis, 1993). For system where the separation factor is high and mass transfer resistance is small, cyclic processes are generally employed because of advantages of simplicity and cost. Continuous countercurrent operation is generally used only where selectivity are low and mass transfer resistance is high as it is only under these conditions that the additional capital cost of a countercurrent system can be justified (Manzoor Zahur, 1991).
There are four basic methods in common use for the cyclic batch adsorption system using fixed beds such as temperature-swing adsorption (TSA), pressure-swing adsorption (PSA), inert-purge gas stripping cycle and displacement-purge cycle. In general, these four basic methods operate with two or sometimes three fixed beds in parallel, one in adsorption cycle and the other two in a desorbing cycle to provide continuity of flow. After a bed has completed the adsorption cycle, the flow is switched to second newly regenerated bed for adsorption. These methods differ from each other mainly in the means used to regenerate the adsorbent after the adsorption cycle (Geankoplis, 1993).

For PSA cyclic batch adsorption the bed is desorbed by reducing pressure at essentially constant temperature and purging the adsorbate. This process for gases uses very short cycle time for regeneration compared to that for the temperature-swing cycle. However, the major limitation is that PSA cycles are restricted to components that are not too strongly adsorbed. For equilibrium system, usually high vacuum is not desirable for desorption process, but if the preferentially adsorbed species is too strongly adsorbed, an uneconomically high vacuum is required for an effective desorption. Thus, for this case, TSA is a generally preferred option due to modest change of temperature produces, in general, a significant change in the gas-solid adsorption equilibrium constant (Ruthven et al., 1994).

1.3 Air Separation Technologies.

Cryogenic separation that is liquefaction followed by distillation-remains the most frequently used process for large-scale application. Adsorption by PSA might be an alternative for N₂/O₂ separation as the cost required for a low temperature and high-pressure liquefaction during cryogenic separation is very expensive. While major cost for PSA is in the compressor costs and volume of the beds. The cost for adsorption is generally lower than distillation from small to medium throughput and when high purity products are not required (Yang, 1987). Basically for adsorption of air by PSA, bed size is the controlling factor in capital cost. Since production is
proportional to bed volume, capital costs increase more rapidly as a function of production rate compared to cryogenic plants (Smith and Klosek, 2001). Moreover the compression power is also proportional to the volume bed size, causing proportional increase in utility cost. Currently there are many other air separation technologies available such as chemical processes, polymeric membranes and ion transport membrane and Table 1.2 presented the brief comparison among those technologies (Smith and Klosek, 2001).

<table>
<thead>
<tr>
<th>Process</th>
<th>Status</th>
<th>Economic range (sTPD)</th>
<th>Byproduct capability</th>
<th>Purity limit (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorption</td>
<td>semi mature</td>
<td><150</td>
<td>poor</td>
<td>95</td>
</tr>
<tr>
<td>Chemical</td>
<td>developing</td>
<td>undetermined</td>
<td>poor</td>
<td>99+</td>
</tr>
<tr>
<td>Cryogenic</td>
<td>mature</td>
<td>>20</td>
<td>excellent</td>
<td>99+</td>
</tr>
<tr>
<td>Membrane</td>
<td>semi mature</td>
<td><20</td>
<td>poor</td>
<td>~40</td>
</tr>
<tr>
<td>ITM</td>
<td>developing</td>
<td>undetermined</td>
<td>poor</td>
<td>99+</td>
</tr>
</tbody>
</table>

Table 1.2: Technology comparison table (Smith and Klosek, 2001).

Note to Table 1.2:
- **Status** – degree to which the technology has been commercialized.
- **Economic range** – typical production range where the technology is currently economically feasible.
- **Byproduct capability** – is a measure of the ability of the process to produce relatively pure nitrogen or argon stream without add-on DEOXO or cryogenic systems.
- **Purity limit** – maximum purity that can be economically produced using specific technology.
- **DEOXO process** – the stoichiometric quantity of hydrogen required to oxide the residual oxygen is introduced, and the gas stream is then passed over a catalyst bed in which essentially all the oxygen is oxidized to water which is then removed by adsorption on a zeolite desiccant.
- **sTPD** – Production in Ton per day.

For air separation by using CMS, the PSA cycle used is vacuum swing cycle. For sorption of oxygen and nitrogen on the CMS, it is apparent that there is the little difference in equilibrium but a large difference in diffusivity, with oxygen being more rapidly adsorbed species. The high pressure raffinate product in the PSA process is therefore nitrogen. In such a system purging with nitrogen to remove the faster diffusing oxygen from the bed is undesirable, since, as well as wasting product, a certain fraction of slowly diffusing nitrogen will adsorbed, thus reducing the capacity for oxygen during the next adsorption step. The kinetic PSA processes avoided this difficulty by using a vacuum to clean the bed rather than a purge (Ruthven et al., 1994). Adsorption and polymeric membrane process will continue to
improve in both cost and energy efficiency through ongoing research and development of adsorbents and membrane materials. None of the technology is expected to challenge cryogenics for large tonnage production of high purity oxygen. ITM technology is currently foreseen as the best candidate to challenge cryogenics for the production of high purity, tonnage quantities of oxygen. The limitation for all the non-cryogenic processes is the requirement of liquid oxygen or nitrogen for system back up (Smith and Klosek, 2001).

Cryogenic process is currently the most efficient and cost-effective technology to produce large quantities of oxygen, nitrogen, and argon products. However, it requires stringent air pretreatment section to remove process contaminants, including water, CO₂ and hydrocarbons. Van Hardeveld et al. (2001) have analyzed the cause of a serious explosion in an air separation unit (ASU) in Bintulu (Malaysia) on 25 December 1997. Ultimately, conclusive evidence was obtained that combustible airborne particulates had passed the main purification section of the air separation unit. These combustible contaminants had accumulated on the aluminium main vaporizers of the distillation column. Once hydrocarbon combustion was triggered, it led to aluminium combustion, which generated heat and vaporized the cryogenic liquids.

1.4 Adsorption Mechanism

Forces of adsorption of relevant interest here is the van der Waals forces, which exists between all atoms and molecules and can be classified into three groups (Do, 1998).

a) Dipole-dipole forces
b) Dipole-induced dipole forces – in this case one molecule having a permanent dipole will induce a dipole in a non-polar atom.
c) Dispersion forces.
The dispersion force is the most important force in physical adsorption. It has an origin in the quantum mechanics. Non-polar atom such as neon or helium, the time average of its dipole moment is zero. But at instant time “t” there is an asymmetry in the distribution of electrons around the nucleus and this generates a finite dipole. This so generated dipole will polarize any nearby atom (that is it distorts the electron distribution) so that the nearby atom will acquire a dipole. These two dipoles will attract and the time average of this attractive force is finite (Do, 1998). As a result, our characterization was solely based on physical adsorption with dipole-dipole and dipole-induced dipole forces is neglected as these forces were proved not playing an important role in air separation by CMS which will be further described in Chapter 3.

1.5 Research on Palm Oil Wastes for Carbon Adsorbent Preparation

Malaysia palm oil industries are producing about 27.6 million tons of solid wastes, including 14.8 million tons of empty palm oil fruit bunches, 2.7 million tons of fruit fibers and 7.7 million tons of palm shells in year 2000 (Wong and Nasir Ani, 2002). Palm kernel shells have long been used as fuel in boiler to produce steam and electricity for mill. Palm kernel shell is the hard portion of the oil palm fruit that is broken to extract oil from the kernel. Generally, the palm oil mills have excess shells that are unutilized and contribute to environmental pollution (Puad, Hamami and Zaihan, 2002).

The principle commercial activated carbon feed stocks and proportions in which they are used were summarized by Bansal et.al. at 1988 as wood, 35%; coal, 28%; lignite, 14%; coconut shell, 10%; peat, 10% and others, 3% (Guo and Lua. 2002). As the price of commercial activated carbon has dropped continually over the last decade or so, agricultural by-products are gaining great importance as precursors to active carbon production. First, they lost their role as a major fuel and source of energy; second, they are ever accumulating renewable sources; and third, they are low-ash materials (Pastor-villegas and Duran-Valle. 2002).
There are two factors contributing to the properties in activated carbon produced that are raw material and processing method. The selection of the precursor essentially determines the range of adsorptive and physical properties that can be attained in the activated carbon products (Guo. and Lua. 2002). Asiah (1992) has conducted the experiment on several local agricultural by-products suitable for producing active carbon. She carbonized sugarcane fibre, rice husk, fiber and shell of palm at 450 °C. The first two precursor produced chars showing standard isotherm of type II with hysteresis loop are closed in the pressure range near saturation. This shape reveals that the adsorbing solid contains mesopores with an upper size restriction whilst palm fiber char sample adsorption isotherm is mixed type I and IV. This isotherm showed that char is mixed of micro and mesopore. Palm shell char however showing type I isotherm indicating microporous property. As char will be further activated to activated carbon it is important to ensure the quality of char prior to the further process. Generally, the activation reaction rate is dependent on the transient pore structure of char during the activation process (Lua and Guo, 2001). Guo and Lua (2000) in his experiment have drawn the conclusion that the shell activated carbon was predominantly microporous whilst activated carbon derived from fibre predominant mesopore and macropore because of severe reduction of carbon-CO₂. Furthermore, hardness is an important property of the activated carbon and experimental result obtained by Lua and Guo (2001) has proven that the lowest Rockwell Hardness of activated carbon carbonized at 873K for 3h and activated at 1173 K for 30 min for palm shell is 19.0, which was sufficiently high to minimum hardness required. Hardness or durability of individual adsorbent particles is an important property to be considered, for granular type adsorbent application as a result of attrition during regeneration (Slejko, 1985).

Safaruddin (2000) has also characterized both palm shells after pyrolysis (char) and (activated carbon) activation after pyrolysis. He found that palm char has surface area higher than coal char and average pore diameter was smaller than coal char. Furthermore, compared to coal, palm shell has another merit of high carbon but low ash contents, which are associated with the feasibility of highly porous structures within the carbon matrix. The characterization came out with conclusion that palm shell can be used to prepare microporous adsorbent as a starting material for carbon molecular sieve. He also proposed that the suitable method for
developing carbon molecular sieve from microporous adsorbent is by deposition of carbon or Chemical Vapor Deposition (CVD).

CMS exists for air separation by using PSA system in industry. In this experiment, we are aimed to diverse the sources studied for the production of CMS. As the commercial carbon molecular sieve available in the market now is produced from hard coal (anthracite) with methane deposition as stated in 1.1.1. The above statement has supported our research objective to convert the palm oil waste especially palm shell into carbon molecular sieve. Besides being value added to the waste palm shell, the environmental problem of ever accumulating waste will be solved. Palm shell was chosen in view of its suitability as precursor and the processing parameter and method will be manipulated to obtain the CMS suitable for air separation by PSA.

1.6 Research Objectives

1. To develop microporous carbon from palm shell as a precursor for further pore mouth modification by using CVD method.
2. To characterize the microporous carbon with appropriate calculation method by physisorption technique.
3. To modify the microporous carbon by one-step CVD process by directly applying of CVD and conventional CVD involving pore blocking by pyrolytic carbon followed by careful gasification in CO₂ atmosphere.
4. To characterize the CMS after CVD with appropriate calculation method by Rate of Adsorption technique.
1.7 Research Scopes

This research is the preliminary study of the conversion of palm shell into CMS capable for the separation on O₂/N₂. The procedure is first to fabricate microporous carbon with high micropore volume to serve as precursor for further pore mouth modification by using CVD method. Selection of appropriate starting material and various kind of processing method of microporous material is essentially important to produce the microporous carbon with narrow pore size distribution and relatively small pore size suitable for further modification. The microporous carbon is then undergoes the CVD process which mainly deposits carbon on the pore entrance until the desired pore size and distribution is obtained. Only one step CVD with direct deposition (DD) is explored in this research although two steps CVD and other type of one step CVD technique are available due to some constraint. The CVD research here involved two different approaches that are first direct deposition the carbon on the precursor until narrow pore size is reached and second closure of the pore of the precursor at the pore entrance followed by pore reopening by activation with CO₂. The mechanism of CVD and the development of carbon deposit at different parameters is discussed and compared with the existing literature survey available.

1.8 Contribution

The research on CMS and particularly CVD method for pore modification is of interest of local researcher in the recent years although Bergbau Forchung manufactured CMS for PSA process in 1973. From the literature survey, there is no journal published on fabricating CMS for O₂/N₂ separation using CVD method particularly using palm shell as starting material. Even though, there are published journal on fabricating CMS for O₂/N₂ separation using CVD method using different starting material such as coconut shell (Braymer et al., 1994, Cabrera et al., 1993), walnut shell (Hu and Vansant, 1995), carbon fiber from petroleum pitch (Casa Lillo et al., 2002) and coal (Hu and Vansant, 1995, Chagger et al., 1995), there are no
complete formulation on CVD process and the parameters used are differ from one to another due to different precursor and gas or liquid substances used for carbon deposition. The contribution of the research is summarized as followed:

- Establishing the detail on fabricating CMS for O₂/N₂ separation from palm shell waste which involved a series of processes. Appropriate analysis methods developed are used for the adsorbent for the intermediate products and the end product also included.
- The ever accumulating palm shell is possible to be solved by converting it into high value added product as their role as fuel is still not attractive although oil prices have surged high recently due to some problem (STAR, 17 Jul. 2004).
- Served as preliminary research and finding for complete understanding of CVD process. Some useful recommendation was suggested for further research direction.
REFERENCES

