A COMPARISON BETWEEN TRADITIONAL PAVEMENT REHABILITATION METHOD AS COMPARED TO RECYCLING METHOD

SITI MAZZUANA BINTI SHAMSUDDIN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science In Construction Management

Faculty of Civil Engineering
Universiti Teknologi Malaysia

APRIL 2005
To my beloved family
ACKNOWLEDGEMENT

This research effort would not have been possible without the help and encouragement of the many individuals who have been there for me along the way to completing this thesis. First, I would like to express my appreciation to my thesis supervisor, Associate Professor Dr. Muhd Zaimi Abdul Majid, for his invaluable guidance, support and understanding throughout this research effort.

I also would like to thank my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Finally, I wish to thank my beloved parents, my fiancé, brothers and sisters for their never-ending love, support and encouragement.
Approximately, more than 20% of the road networks in Malaysia are unpaved roads of natural soil or earth or gravels. The primary objective of both pavement maintenance and pavement design is to ensure that the pavement provides adequate service to the road users. In lines with the government’s aspiration for Malaysia to be a developed nation by year 2020, it is necessary to upgrade the roads to a better quality. The emergence of recycling technique in pavement maintenance is not widely accepted. The current practice of mill and pave technique which is the traditional technique in pavement maintenance is widely used in Malaysia. Hence, many steps are taken to introduce alternative techniques in pavement rehabilitation. This alternative method had been proven by various maintenance contractors that is cheaper and takes shorter duration as compared to the traditional technique. The focus of this study includes: identifying types of pavement maintenance available in Malaysia; to identify differences between traditional methods to recycling method; and to identify the most economic method that can be used. The study employs the historical data and descriptive method and it was conducted in two stages that were literature reviews and interviews. Better understanding of theory and concept of the issues were developed through literature reviews. Unstructured and structured interviews had been carried out to obtain data as well as observation at the project sites. All data was analyzed using Frequency Analysis and Average Index. From this study, it can be concluded that the objectives of the study was successfully achieved. It was found that selection criteria for type of maintenance depends on the distress occurred and experiences in similar project in the particular technique. It is also found that recycling method provide more savings and advantages compared to conventional method.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION OF ORIGINALITY AND EXCLUSIVENESS</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Background of study</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Problems Statement</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Aim and objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Scope of study</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Justification of study</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Research methodology</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>Summary</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>PAVEMENT MAINTENANCE</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The Concepts of Serviceability</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Pavement Distress</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Mode and type of distress</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Pavement Maintenance</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Routine Maintenance</td>
<td>15</td>
</tr>
</tbody>
</table>
2.4.2 Resurfacing
2.4.3 Rehabilitation
2.4.4 Betterment (or improvement)

2.5 Life Cycle Of Deterioration And Maintenance

2.6 Factors For Selection The Maintenance Technique
2.7 Summary

3 RECYCLING METHOD IN PAVEMENT MAINTENANCE 23

3.1 Introduction
3.2 Recycling As A Rehabilitation Alternative
3.3 Recycling Method And Process
 3.3.1 Hot Mix Asphalt Recycling
 3.3.2 Hot-In-Place Recycling
 3.3.2.1 Surface Recycling
 3.3.2.2 Repaving
 3.3.2.3 Remixing
 3.3.3 Cold-In-Place Recycling
 3.3.4 Full Depth Reclamation
3.4 Recycling Advantages
3.5 Considerations In Choosing The Suitable Type Of Recycling
 3.5.1 Engineering Consideration
 3.5.2 Economics Consideration
 3.5.3 Energy Consideration
 3.5.4 Considerations For Final Selection
3.6 Selection Of Recycling Method
3.7 Summary

4 RESEARCH METHODOLOGY 45

4.1 Introduction
4.2 Formulation Of The Research Problem
4.3 Literature review
4.4 Selection Of Data Collection Method
4.5 Data Analysis
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of pavement distress by mode and type</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Pavement maintenance and rehabilitation alternatives</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Guide for selection of recycling method</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Applicability and considerations for different recycling Procedures</td>
<td>40</td>
</tr>
<tr>
<td>5.1</td>
<td>Respondent’s background on pavement maintenance</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>Types of maintenance</td>
<td>57</td>
</tr>
<tr>
<td>5.3</td>
<td>Frequency of distress occurred on pavement</td>
<td>58</td>
</tr>
<tr>
<td>5.4</td>
<td>Site information of Jalan Lepar Hilir Road Maintenance</td>
<td>61</td>
</tr>
<tr>
<td>5.5</td>
<td>Cost breakdown for CIPR using foamed bitumen</td>
<td>67</td>
</tr>
<tr>
<td>5.6</td>
<td>Cost breakdown for CIPR using Bituminous Emulsion</td>
<td>69</td>
</tr>
<tr>
<td>5.7</td>
<td>Cost breakdown for CIPR using lime</td>
<td>70</td>
</tr>
</tbody>
</table>
5.8 Cost breakdown for CIPR using cement

5.9 Cost breakdown for Hot In Place Recycling Kuantan-Temerloh Road

5.10 Cost breakdown for mill and pave technique

5.11 Comparison between 3 case studies

6.1 Comparison between mill and pave to recycling method
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research process</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Cracks</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Raveling</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Polishing</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Corrugation</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Pavement condition, maintenance and cost over Life Cycle of a paved road</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Rehabilitation alternatives</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Plot of pavement condition versus time</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Hot-In-Place Recycling</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>HIPR Process</td>
<td>29</td>
</tr>
</tbody>
</table>
3.5 Cold-In-Place Recycling Machineries

3.6 CIPR Process

3.7 Full Depth Reclamation

4.1 Research Process

5.1 Respondent’s background on pavement maintenance

5.2 Types of maintenance

5.3 Frequency of distress occurred on pavement

5.4 Longitudinal cracking at site

5.5 Longitudinal cracking at site

5.6 Cement was spread using rake

5.7 Foamed bitumen process

5.8 Bitumen emulsion was sucked into the carrier to start recycling Process

5.9 Bitumen emulsion was laid to the existing pavement

5.10 Recycler machine

5.11 Spreading the cement
5.12 CIPR using Cement Stabilization

5.13 Jalan Leper Hilir (Left Hand Side) after rehabilitation

5.14 Jalan Leper Hilir (Right Hand Side) after rehabilitation

5.15 Cracks at site

5.16 Severe cracks that need to be repaired

5.17 HIPR Preparation

5.18 Pavement condition before heating

5.19 Scrapping process at Section 198

5.20 The mixture is mixed by heating it in mixture bin

5.21 New virgin material put into the recycler machine

5.22 The new material was spread and leveled by workers

5.23 New laid pavement ready to accept roller to make it even

5.24 Milling machine

5.25 Respondent’s experience on recycling

5.26 Respondent’s opinion on mill and pave
5.27 Respondent’s reason of choosing mill and pave
Approximately, more than 20% of the road networks in Malaysia are unpaved roads of natural soil/earth or gravels. This figure does not cover small or rural roads, which is estimated to be in the range of 80,000 to 100,000 km. These unpaved roads are generally in poor condition especially during wet season, where the roads are undulating and almost impassable. During dry season the roads can be very dusty posing health hazard to the surrounding community (IKRAM, 2004)

The primary objective of both pavement maintenance and pavement design is to ensure that the pavement gives adequate service to the road users (Peterson, 1987). The performance of the pavement is measured in relation to the quality of service provided and the achievement of acceptable levels of service. Measures of service and performance are difficult to define, however, because roads deteriorate through variety of different mechanisms.
The maintenance of roads in the country is generally the responsibility of the Public Works Department (PWD). It is the government department responsibilities for the construction, improvement and maintenance of the roads. However, in the local authority areas, the maintenance of roads is the responsibility of the local authority itself.

1.2 BACKGROUND OF STUDY

The primary objective of both pavement maintenance and pavement design is to ensure that the pavement gives adequate service to the road users (Peterson, 1987). The performance of the pavement is measured in relation to the quality of service provided and the achievement of acceptable levels of service. Measures of service and performance are difficult to define, however, because roads deteriorate through variety of different mechanisms.

The deterioration of paved roads is defined by the trend of its surface condition over time. The defects in a pavement surface, usually quantified through a pavement condition survey, are classified under three major modes of distress, namely:

1. Cracking (or fracture)
2. Disintegration; and
3. Permanent deformation

Maintenance activities for paved road are classified according to their frequency and their impact on the standards of the road. The categories are routine maintenance, resurfacing, rehabilitation, betterment (or improvement), reconstruction and new
construction. Routine maintenance is a day-to-day maintenance and periodic
maintenance is a programmed maintenance. In Malaysia, we have special problem
which affects the maintenance roads. Basically, the problem is due to lorry using the
roads being overloaded well-beyond the specified limit set for the road. The excessive
pounding of the carriageway by such vehicles certainly shorten the life-cycle of the
roads

During the early phase of the pavement’s life, prior to the occurrence of surface
distress, the only changes in condition are slightly increases in root depth and roughness,
there are no road costs except the small annual routine maintenance cost, and there are
slightly changes in the average vehicle operating cost due to the small increase in
roughness. Following the initiation of surfacing distress, the roughness and the
associated vehicle operating costs increase more rapidly. Patching maintenance reduces
the roughness and cost slightly, but not back to the levels that would have applied in the
absence of surfacing distress because the patching itself is a defect, deviating in profile
from the perfect planar surface

Rehabilitation works such as a thick overlay have the immediate effects of
reducing the roughness to approximately the level of new pavements and the surfacing
distress to nil, and the future effect of reducing the rate of deterioration through
strengthening the pavement

The choice of maintenance technique can be based primarily on the condition
and performance history of the existing pavement. The major factors should include the
present condition of pavement, based on ride quality and type, the type, extent and
severity of distress, the structural condition of the pavement, the environmental
conditions of the region, primarily temperature and rainfall, drainage conditions of
pavement, including surface and sub-surface drainage, construction considerations and the design life required for treatment.

There are large numbers of rehabilitation alternatives available for asphalt pavements. The choice of rehabilitation alternative depends on observed pavement distress, laboratory and field evaluation of existing material, and design information. Except asphalt surface recycling, all other recycling methods such as hot mix or hot-in-place or cold-in-place recycling, have the potential to improve the structural capacity of pavements. In addition to this, recycling has some unique advantages which are not available with other types of rehabilitation techniques.

Recycling of existing asphalt pavements for pavement rehabilitation or reconstruction has the following advantages:

1. Reduced costs of construction,
2. Conservation of asphalt and aggregate,
3. Preservation of existing pavement geo-metrics,
4. Preservation of the environment; and
5. Conservation of energy.

Recycling or reuse of pavement material is very simple but powerful concept. Recycling of existing pavement materials to produce new materials result in considerable savings of material, money and energy. Different recycling methods are now available to address specific pavement distress and structural needs. The Asphalt Recycling and Reclaiming Association defines four different types of recycling methods, namely Hot recycling, hot in place recycling, cold in place recycling and full depth reclamation.
1.3 PROBLEM STATEMENT

In lines with the government’s aspiration for Malaysia to be a developed nation by the year 2020, it is necessary to upgrade the roads to a better quality. There are various techniques or methods used by the relevant agencies to construct rural roads. However, the emergence of recycling technique in pavement maintenance is not widely accepted. Mill and pave, the traditional technique in pavement rehabilitation and maintenance, is the current practice which is widely used in Malaysia nowadays. However, many steps were taken to introduce alternative techniques in pavement rehabilitation. This alternative method had been proven by various maintenance contractors that it’s much cheaper and takes short duration than that of the traditional technique.

1.4 AIMS AND OBJECTIVES OF RESEARCH

The aim of this study is to prove that recycling method is cheaper and more economics in various aspects compared to traditional technique. The objectives of this study are:

1. To identify various type of pavement maintenance in Malaysia
2. To identify differences between traditional pavement rehabilitation technique compared to recycling technique; and
3. To identify the economic technique of pavement rehabilitation
1.5 SCOPE OF STUDY

The study only covers paved road in rural area. In this study, three sites have been chosen which are Kuantan-Temerloh Road, Kuantan-Dungun Road and Jalan Lepar Hilir, Kuantan, Pahang. This study covers only the techniques of pavement maintenance which is suitable to use in Malaysia and the method covers are Mill and Pave, Recycling techniques which are Hot In Place Recycling and Cold In Place Recycling. The guidelines for this study were using Standard Road Specification by JKR for Hot-In-Place recycling and mill and pave method. Meanwhile, for Cold In Place recycling, the author used Standard Method by Malaysian Road Convention in collaboration with JKR.

1.6 JUSTIFICATION OF THE STUDY

The author choose this study because the outcome of this study perhaps can bring knowledge to other people regarding the arrivals of new techniques in pavement maintenance which is better than the traditional method. Besides, by this study also the author can hopefully improved the knowledge on pavement maintenance and provided that the knowledge obtained can be spread out to others in meaningful ways.
1.7 RESEARCH METHODOLOGY

Research methodology is the careful and systematic process in generating information that the researcher can follow to find answers to the problems of interest. To conduct a systematic research, the author’s methodology is based on the research process.

The following figure shows a research process that being used as a guideline to the author.

Formulation of the research problems

Literature review

Collection of data

Determination of data analysis and interpretation method

Conclusions and recommendation

Objective 1 – To identify types of pavement maintenance

Objective 2 – To identify differences between mills and pave method to recycling method in pavement rehabilitation

Objective 3 – To identify the most economic method in pavement rehabilitation

Report writing

Figure 1.1 – Research process
The details of each step in the process will be discussed in the respective Research Methodology chapter.

1.8 SUMMARY

The ultimate aim of this study is specifically to establish the economic technique in pavement maintenance especially in rehabilitation works. By using the methodology of research as shown previously, perhaps the objectives laid for this study will be achieved. To achieve this study, the author will discussed in details the pavement maintenance available in Malaysia and then the process of pavement rehabilitation works using recycling technique in specific. All the data obtained will be discussed in data analysis and further discussion will be done in the very next chapter.