To my beloved parents,
My kind sisters and brothers
And not forgetting to all my friends
For their
Sacrifice, Love, and Encouragement
ACKNOWLEDGEMENTS

Firstly, all my praise and thanks are owed to Allah, who honoured me the health and persistence who substantially depends on Him.

I am very grateful to my main supervisor, Prof. Ir. Dr. Abdul Halim Mohd Yatim. I wish to express my sincere appreciation to him for all his kind guidance and inspiration to make this research possible. His personality, enthusiasm, patience and intellectual spirit made him a great supervisor and invaluable role model for my professional career.

I am also grateful to my co-supervisor Dr. Tan Chee Wei for his precious advice and comments and knowledge sharing in renewable energy. Special thanks for his generous help throughout the duration of this study.

In addition, I am extremely grateful to my family for unlimited support and encouragement during this research. My sincere appreciation also extends to all members of Energy Conversion Department (ENCON) and all my colleagues for the support and incisive comments in making this study a success. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.
ABSTRACT

In this thesis the design and implementation of a control strategy for interfacing a hybrid wind and ultracapacitor energy system is presented. The proposed system consists of a Permanent Magnet Synchronous Generator (PMSG)-based wind turbine and an ultracapacitor storage element. The PMSG-based wind turbine is connected to a DC (direct current) bus through an uncontrolled rectifier and a DC-DC boost converter; the ultracapacitor is interfaced to the DC-bus using a bidirectional DC-DC converter. In a wind energy system, because of the unpredictable nature of wind speed, a Maximum Power Point Tracking (MPPT) algorithm is essential for determining the optimal operating point of the wind turbine. This work proposes a new and simple MPPT algorithm based on hybridization of the Optimum Relation Based (ORB) and Particle Swarm Optimization (PSO) methods. The proposed MPPT is advantageous in being sensorless, converging quickly and requiring no prior knowledge of system parameters. In addition, a Linear Quadratic Regulator (LQR) strategy has been applied in designing the DC-DC converter controllers because of its systematic procedure and stability advantages and simplicity. Two controllers based on the LQR method have been designed and implemented. One controller forces input current of the boost converter to track the optimal reference current generated by the proposed MPPT algorithm. The other regulates the DC-bus voltage at a desired level. The regulation is accomplished by controlling the bidirectional converter interfacing the ultracapacitor and the DC-bus. The proposed energy system and its controllers have been simulated in MATLAB/Simulink and implemented using a TMS320F2812 eZdsp board. Simulation results indicate that the proposed PSO-ORB MPPT algorithm average efficiency is 99.4%, with harvested electrical energy 1.9% higher than the conventional OTC and ORB MPPT algorithms. The simulation results also demonstrate the effectiveness of the proposed LQR controllers in obtaining good tracking and their ability to quickly restore the system to its nominal operating point when it is exposed to a disturbance. The simulation results are highly comparable with the experimental results that have successfully verified the functionality of the proposed control techniques.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background
1.2 Problem Statement
1.3 Research Objectives
1.4 Research Scope
1.5 Research Methodology
1.6 Thesis Organisation

2 A REVIEW OF MAXIMUM POWER POINT TRACKING ALGORITHMS AND POWER CONVERTER CONTROL TECHNIQUES

2.1 Introduction
2.2 Maximum Power Point Tracking Techniques for Wind Energy System
2.2.1 Optimum Tip Speed Ratio Control
2.2.2 Optimum-Relation-Based Control
 2.2.2.1 Lookup Table-Based Control
 2.2.2.2 Optimum Torque Control
 2.2.2.3 One-Power-Point Control
2.2.3 Perturbation and Observation Control
2.2.4 Particle Swarm Optimization Control
2.2.5 Hybrid Methods
2.2.6 Performance Comparison of Various
 MPPT Algorithm Characteristics
2.3 Power Converter Control Techniques
 2.3.1 Proportional-Integral-Derivative
 Control
 2.3.2 Linear Quadratic Regulator Control
 2.3.3 Other Techniques
2.4 Summary

3 MODELLING OF SYSTEM COMPONENTS
 3.1 Introduction
 3.2 Wind Turbine Characteristics
 3.3 Permanent Magnet Synchronous Generator
 Simplified Model
 3.4 DC-DC Converters
 3.4.1 Boost DC-DC Converter
 3.4.2 Bidirectional DC-DC Converter
 3.4.3 Boost Converter State-space Average
 Model
 3.4.4 Boost Converter Average Model
 3.5 Ultracapacitor Circuit Equivalent Model
 3.6 Summary
4 HYBRID PARTICLE SWARM OPTIMIZATION - OPTIMUM RELATION BASED MPPT ALGORITHM

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Optimum relationship-based MPPT Algorithm</td>
<td>51</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Principle of Operation</td>
<td>51</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Simulation Results and Discussions</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Particle Swarm Optimization MPPT Algorithm</td>
<td>56</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Principle of Operation</td>
<td>56</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Simulation Results and Discussions</td>
<td>58</td>
</tr>
<tr>
<td>4.4</td>
<td>Hybrid PSO-ORB MPPT Algorithm</td>
<td>61</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Principle of Operation</td>
<td>61</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Simulation Results and Discussions</td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>Simulation Comparison of OTC, ORB, and PSO-ORB MPPT Algorithms</td>
<td>69</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary</td>
<td>73</td>
</tr>
</tbody>
</table>

5 LINEAR QUADRATIC REGULATOR CONTROLLERS FOR POWER CONDITIONING UNITS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>Design of LQR controllers Using Constant Input Voltage</td>
<td>76</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Input Current Regulation</td>
<td>76</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Output Voltage Regulation</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>Simulation Comparison between LQR and PI Controller</td>
<td>79</td>
</tr>
<tr>
<td>5.4</td>
<td>Design of LQR Controllers Integrated with the Proposed Hybrid Energy System</td>
<td>84</td>
</tr>
<tr>
<td>5.5</td>
<td>Proposed Hybrid Energy System Simulation Results and Discussions</td>
<td>85</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Wind Speed Variation Test</td>
<td>87</td>
</tr>
<tr>
<td>5.5.2</td>
<td>DC-bus Reference Voltage Variation Test</td>
<td>90</td>
</tr>
</tbody>
</table>
6 HARDWARE DESIGN AND IMPLEMENTATION

6.1 Introduction
6.2 Overall System Configuration
6.3 DC-DC Converter Circuits
6.4 Gate Drive Circuit
6.5 Feedback Circuits
6.6 Real-Time Wind Generator Emulator
6.7 The eZdsp F2812 Board
6.8 MPPT Algorithm and LQR Controllers Implementation
 6.8.1 Boost DC-DC Converter 1
 6.8.2 Boost DC-DC Converter 2
 6.8.3 Bidirectional DC-DC Converter
6.9 Summary

7 RESULTS AND DISCUSSION

7.1 Introduction
7.2 Experimental and Simulation Results Discussion and Comparison
 7.2.1 Case 1: MPPT Algorithm Test
 7.2.2 Case 2: Wind Speed variation Test
 7.2.3 Case 3: DC-bus Reference Voltage Variation Test
 7.2.4 Case 4: Load Variation Test
7.3 Summary

8 CONCLUSION

8.1 Conclusion
8.2 Suggestions for Future Work

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of characteristics from various MPPT algorithms</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>A comparison of conventional storage technologies</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>The simulation parameters of the proposed WECS</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>The calculated K_{opt} based on the optimum voltage and current in OTC MPPT algorithm</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>The values of the PSO parameters used in the simulation</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of performance comparison of OTC, ORB and PSO-ORB MPPT algorithms in term of tracking efficiency</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Electrical Energy harvested by OTC, ORB and PSO-ORB MPPT algorithms</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>The parameters of the boost converter used in the simulation comparison between the LQR and PI controller</td>
<td>80</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of overshoot, undershoot and the corresponding recovery time under a 10 % change of different disturbances</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>The simulation parameters for the proposed hybrid wind/ultracapacitor energy system</td>
<td>86</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic for the proposed hybrid energy conversion system</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>A block diagram of a tip speed ratio control system</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>A block diagram of a lookup table-based control</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>A block diagram of the OTC MPPT algorithm</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>The torque-speed characteristic curve for a series of wind speeds</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>A block diagram of the OPP MPPT algorithm</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>The wind turbine output power and torque characteristics with MPP tracking process</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>The P&O control (a) larger perturbation, (b) smaller perturbation</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>The wrong correction direction of P&O because of the inability to recognize the reason for the power change</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>A typical PID control system</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>The characteristic of the power coefficient as a function of the tip speed ratio</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Characteristics of turbine power as a function of the rotor speed for a series of wind speeds</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>Ideal power curve of a wind turbine</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Simplified model of the PMSG-rectifier</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>A DC-DC boost converter</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>(a) The first interval when the switch is ON, (b)</td>
<td>38</td>
</tr>
</tbody>
</table>
The second interval when the switch is OFF

3.7 A bidirectional DC-DC converter 39

3.8 The operation modes of the bidirectional converter (a) the boost mode (b) the buck mode 40

3.9 Nonlinear averaged circuit model of the boost converter 45

3.10 The ultracapacitor equivalent circuit 47

3.11 Flow chart for determining the size of the ultracapacitor bank, \(V_{\text{max}} \): Maximum voltage, \(V_{\text{min}} \): Minimum allowable voltage, \(V_{\text{op}} \): Working operating voltage, \(P \): Power requirement, \(t \): Time of discharge, \(dv \): Change in voltage, \(i_{av} \): Average current, \(I_{\text{max}} \): Maximum current, \(I_{\text{min}} \): Minimum current, \(C_{\text{cell}} \): Cell capacitance, \(C_{\text{total}} \): Total capacitance of the bank, \(R_{\text{cell}} \): Resistance of cell, \(R_{\text{total}} \): Total resistance of the bank 48

4.1 WECS configuration 51

4.2 The characteristic curves of \(I_{dc} \) as a function of \(V_{dc}^2 \) at different wind speeds 53

4.3 Characteristics of turbine power as a function of the DC-side current \((I_{dc}) \) for a series of wind speeds 54

4.4 The mechanical power \((P_m) \) and the electrical power \((P_e) \) curves at a wind speed of 8 m/s 55

4.5 Concept of modification of a searching point by PSO 56

4.6 The flow chart of the PSO-based MPPT algorithm 58

4.7 The operating points of the PSO-based MPPT algorithm tracking process under the first case (6 m/s to 8 m/s wind speed) 59
4.8 The operating points of the PSO-based MPPT algorithm tracking process under the second case (8 m/s to 7.5 m/s wind speed)

4.9 The flow chart of the proposed PSO-ORB MPPT algorithm

4.10 The PSO-ORB MPPT control block diagram

4.11 The proposed hybrid PSO-ORB MPPT Simulation: Case 1 (a) variation in the wind speed (b) the calculated reference current from the MPPT ($I_{ref-opt}$) (c) the corresponding coefficient of power (C_p) (d) the corresponding K_{opt}

4.12 The proposed hybrid PSO-ORB MPPT Simulation: Case 2 (a) variation in the wind speed (b) the calculated reference current from the MPPT ($I_{ref-opt}$) (c) the corresponding coefficient of power (C_p) (d) the corresponding K_{opt}

4.13 Tracking curves of the (a) Case 1 (b) Case 2

4.14 Performance comparison: Case 1 (a) electrical power (b) mechanical power

4.15 Performance comparison: Case 2 (a) electrical power (b) mechanical power

4.16 Tracking efficiency at the simulated wind speeds

5.1 Small-signal model of the boost converter with LQR control for input current tracking

5.2 Small-signal model of the boost converter with LQR control for output voltage regulation

5.3 MATLAB/Simulink simulation results showing the output voltage closed-loop response due to a step change in reference voltage, considering the classical PI and the LQR-based control with various q values and fixed ρ

5.4 MATLAB/Simulink simulation results showing
the output voltage closed-loop response due to a step change in reference voltage considering the classical PI and the LQR-based control with various ρ values and fixed q.

5.5 The output voltage response with respect to a step reference voltage variations from 48 V to 52.8 V and then to 48 V using the LQR controller with the selected q and ρ values and also the classical PI controller.

5.6 The output voltage response with respect to a step load current variations from 48 A to 52.8 A and then to 48 A using the LQR controller with the selected q and ρ values and also the classical PI controller.

5.7 The output voltage response with respect to a step input voltage variations from 24 V to 26.4 V and then to 24 V using the LQR controller with the selected q and ρ values and also the classical PI controller.

5.8 The schematic diagram of ultracapacitor interfaced to the WECS.

5.9 Response to step variations in wind speed (a) step variation in the wind speed (b) the corresponding voltages response (c) the DC current tracking.

5.10 The response of I_{o}, I_{wind} and I_{u} with respect to the wind speed variations.

5.11 Response to step variations in DC-bus voltage reference (a) step variation in the DC-bus voltage (b) the corresponding voltages response (c) the DC current tracking.

5.12 The response of I_{o}, I_{wind} and I_{u} with respect to the DC-bus voltage variations.
Response to step variations in load resistance (a) step variation in the in load resistance (b) the corresponding voltages response (c) The DC current tracking

The response of I_o, I_{wind} and I_{w} with respect to the load resistance variations

The system implementation block diagram

(a) A photograph of the laboratory experimental set-up (b) Zoomed view of (8) (1) Ultracapacitor (2) DC electronic load (3) Power supply (4) Oscilloscope (5) Desktop computer (6) Current probe (7) Voltage probe (8) DC-DC converters (9) DSP board (10) DSP interface board (11) Gate drive circuit (12) Feedback circuits

The schematic diagram of the system implementation

The photograph of DC-DC converter circuits (1) IGBT (2) Capacitor (3) Inductor (4) Heat sink

A photograph of gate drive circuit

A photograph of voltage and current sensor circuit (1) LV 25-P voltage sensor (2) LA 25-NP current sensor (3) ACS712 current sensor (4) Anti-aliasing filter circuit

Block diagram of the eZdsp F2812

A photograph of the eZdsp F2812 board

The DSP-Based controllers block diagram

The top level of the Simulink model implementation

The wind turbine and PMSG models subsystem

The control system subsystem

The ADC conditioning circuit subsystem

The LQR controllers subsystem

The LQR1, LQR2, and LQR3 controllers
7.1 The proposed MPPT algorithm test (a) simulated wind speed profile (b) simulation results (c) experimental results

7.2 The voltages response under wind speed variation (a) simulation results (b) experimental results

7.3 The currents response under wind speed variation (a) simulation results (b) experimental results

7.4 The voltages response under DC-bus reference voltage variation (a) simulation results (b) experimental results

7.5 The current response under DC-bus reference voltage variation (a) simulation results (b) experimental results

7.6 The voltage response under load variation (a) simulation results (b) experimental results

7.7 The current response under load variation (a) simulation results (b) experimental results
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to digital convertor</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial neural network</td>
</tr>
<tr>
<td>CCS</td>
<td>Code composer studio</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>ESR</td>
<td>Equivalent series resistance</td>
</tr>
<tr>
<td>FLC</td>
<td>Fuzzy logic control</td>
</tr>
<tr>
<td>FNN</td>
<td>Feedforward neural network</td>
</tr>
<tr>
<td>HCS</td>
<td>Hill climbing search</td>
</tr>
<tr>
<td>LQR</td>
<td>Linear quadratic regulator</td>
</tr>
<tr>
<td>MPP</td>
<td>Maximum power point</td>
</tr>
<tr>
<td>MPPT</td>
<td>Maximum power point tracking</td>
</tr>
<tr>
<td>MPSO</td>
<td>Modified particle swarm optimization</td>
</tr>
<tr>
<td>OPP</td>
<td>One-power-point</td>
</tr>
<tr>
<td>ORB</td>
<td>Optimum-relation-based</td>
</tr>
<tr>
<td>OTC</td>
<td>Optimal torque control</td>
</tr>
<tr>
<td>P&O</td>
<td>Perturbation and observation</td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional-Integral</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional-Integral-Derivative</td>
</tr>
<tr>
<td>PMSG</td>
<td>Permanent magnet synchronous generator</td>
</tr>
<tr>
<td>PSF</td>
<td>Power signal feedback</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse width modulation</td>
</tr>
<tr>
<td>RPM</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>RTW</td>
<td>Real time workshop</td>
</tr>
<tr>
<td>SMC</td>
<td>Sliding mode control</td>
</tr>
<tr>
<td>TSR</td>
<td>Tip speed ratio</td>
</tr>
<tr>
<td>WECS</td>
<td>Wind energy conversion system</td>
</tr>
<tr>
<td>WRBFN</td>
<td>Wilcaxon radial basis function</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

- c_1, c_2 - Acceleration coefficients
- ρ - Air density
- Δd - Change in duty cycle
- DA - Change in duty cycle
- $\Delta \omega$ - Change in generator speed
- ΔP - Change in power
- ΔI_{ref} - Change in reference current
- \mathbf{u} - Control inputs vector
- $V_{\text{cut-in}}$ - Cut-in wind speed
- $V_{\text{cut-out}}$ - Cut-out wind speed
- I_{dc} - dc current
- $I_{\text{dc-peak}}$ - dc current correspond to maximum power
- V_{dc} - dc voltage
- $V_{\text{dc-peak}}$ - dc voltage correspond to maximum power
- K_d - Derivative gain of PID controller
- D_d - Duty cycle
- P_e - Electrical power
- G_{best} - Global best position
- I_L - Inductor current
- J - Inertia of wind turbine
- w - Inertia weight
- V_{in} - Input voltage
- K_i - Integral gain of PID controller
- $P_{\text{m-max}}$ - Maximum mechanical power
- $C_{p_{\text{max}}}$ - Maximum power coefficient
- P_{mech} - Mechanical power
- T_{w} - Mechanical torque
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{dc-opt}</td>
<td>Optimal dc current</td>
</tr>
<tr>
<td>K</td>
<td>Optimal feedback gains vector</td>
</tr>
<tr>
<td>ω^*</td>
<td>Optimal generator speed</td>
</tr>
<tr>
<td>K_{T-opt}</td>
<td>Optimal parameter</td>
</tr>
<tr>
<td>λ_{opt}</td>
<td>Optimal speed ratio</td>
</tr>
<tr>
<td>T_{w-opt}</td>
<td>Optimal torque</td>
</tr>
<tr>
<td>K_{opt}</td>
<td>Optimum coefficient</td>
</tr>
<tr>
<td>I_n</td>
<td>Output current</td>
</tr>
<tr>
<td>v</td>
<td>Particles velocity</td>
</tr>
<tr>
<td>P_{best}</td>
<td>Personal best position</td>
</tr>
<tr>
<td>Φ</td>
<td>Perturbation size</td>
</tr>
<tr>
<td>β</td>
<td>Pitch angle</td>
</tr>
<tr>
<td>x</td>
<td>Position of PSO particles</td>
</tr>
<tr>
<td>C_p</td>
<td>Power coefficient</td>
</tr>
<tr>
<td>K_p</td>
<td>Proportional gain of PID controller</td>
</tr>
<tr>
<td>R</td>
<td>Radius of the turbine</td>
</tr>
<tr>
<td>V_{wind}</td>
<td>Rated wind speed</td>
</tr>
<tr>
<td>i_{ref}</td>
<td>Reference current</td>
</tr>
<tr>
<td>V_{ref}</td>
<td>Reference voltage</td>
</tr>
<tr>
<td>ω_{ro}</td>
<td>Rotor speed</td>
</tr>
<tr>
<td>x</td>
<td>States vector</td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency</td>
</tr>
<tr>
<td>T_s</td>
<td>Switching period</td>
</tr>
<tr>
<td>λ</td>
<td>Tip speed ratio</td>
</tr>
<tr>
<td>ρ</td>
<td>Weighting element of inputs</td>
</tr>
<tr>
<td>q</td>
<td>Weighting element of states</td>
</tr>
<tr>
<td>R</td>
<td>Weighting matrix of inputs</td>
</tr>
<tr>
<td>Q</td>
<td>Weighting matrix of states</td>
</tr>
<tr>
<td>V_w</td>
<td>Wind speed</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Wind-energy systems have gained vast popularity as a renewable energy source in the past decade. This is because of the possibility of the depletion of conventional energy sources that have negative effects on the environment and also have high costs. Wind-energy is preferred because it is clean, pollution-free, inexhaustible, and secure. Therefore, a wind-energy generation system could become one of the significant candidates for a future alternative energy source.

However, based on the Betz limit [1], there is no wind turbine that could convert more than 59.3% of the kinetic energy of the wind into mechanical energy for turning a rotor. Unfortunately, modern wind turbines, in practice, generally fall only into the 35% to 45% efficiency range. Equations that express the fraction of power that the wind turbine obtains from wind include a power coefficient (C_p). For a wind turbine with a fixed blade pitch, this power coefficient is usually expressed as a function of the tip speed ratio (λ). λ is the ratio of the blade's tip speed (ω_{tip}) to the actual wind speed (V_n). The $C_p(\lambda)$ curve has only one maximum point occurring at a certain optimum λ. In a varying wind speed environment, a maximum power point tracking (MPPT) algorithm must be included in the system. The MPPT algorithm is used for adjusting the rotational speed of the turbine in order to reach this optimal λ for all wind conditions.
Including the MPPT algorithm in the wind energy conversion system (WECS) allows for operation of the system at its maximum efficiency; however, the output voltage of the WECS becomes instantaneously variable in proportion to the turbine rotational speed. Because the WECS is directly connected the DC-bus, the DC-bus voltage itself will be variable. In order to maintain the DC-bus voltage at a constant value, a hybrid power system combining WECS and an energy storage system could be used. The storage system consists of a storage device and a power conditioning circuit. The storage device is used to filter the power fluctuation during wind energy generation and the power conditioning circuit is controlled to regulate the DC-bus voltage.

The hybrid power system proposed in this thesis is shown in Figure 1.1. It consists of a WECS and an ultracapacitor-based energy storage system. Both the wind generator and the ultracapacitor are interfaced to a common DC-bus by using conditioning circuits to supply a resistive load.

![Figure 1.1 Schematic for the proposed hybrid energy conversion system](image)

For small- to medium-scale wind turbines, the permanent magnet synchronous generator (PMSG)-based direct-drive fixed-pitch wind turbine is a preferred structure [2]. This structure is simple, with high reliability and efficiency, gearless construction, light weight, and with self-excitation features. The PMSG is controlled by a boost rectifier converter to maximize the output power from the wind
turbine. The combination of the PMSG and boost converter offers lower cost and is simple to implement and easy to control. For a PMSG, the generated torque is proportional to the machine's output current. Consequently, if the PMSG output current is controlled to track the generated reference current from the MPPT algorithm, maximization of the energy extracted from the wind turbine will be ensured.

According to the literature [3-5], ultracapacitors are able to provide fast dynamic response to load power changes. They are also capable of very fast charging and discharging. Therefore, they are suitable for filtering rapid fluctuations in wind power. Interfacing the ultracapacitor to the DC-bus requires a power electronic converter that allows reversible current conduction; accordingly, a bidirectional DC-DC converter is used in the circuit described in this thesis. By controlling the bidirectional converter switches, the DC-bus voltage is regulated and the fluctuating wind power is either delivered to or harvested from the ultracapacitor.

1.2 Problem Statement

The low efficiency of wind turbines, as well as the intermittent and unpredictable nature of wind, are major challenging issues of the wind-energy generation systems. For a WECS to operate efficiently, an MPPT algorithm is required. The MPPT algorithm should have the advantages of being sensorless, dependent, simple, and fast in tracking. Although the existing optimum-relation-based (ORB) MPPT algorithm is simple and fast in response to wind speed changes, it relies on the pre-existing knowledge of system parameters [6]. The perturbation and observation (P&O) technique, conversely, is a sensorless algorithm and does not require prior system knowledge. However, it is slow in response and has the probability of losing its tracking ability under rapid wind speed changes [7]. The response speed as well as the tracking efficiency can be improved significantly using the particle swarm optimization (PSO) MPPT algorithm considering its automated step size adaptability. Considering the benefits and drawbacks of each MPPT algorithm, a better or improved version of MPPT for wind energy systems should be
formulated. The new idea is to overcome the drawbacks of each MPPT algorithm, by combining the available MPPT algorithms. By hybridizing MPPT algorithms, the outcome could be attractive and promising.

As previously mentioned, because of continuous changes in wind speed, the operating points of WECS are expected to vary with time. Consequently, the power electronics converters involved in the WECS should have simple, robust, and stable controllers. Conventionally, proportional-integral (PI) controllers are designed to control these converters around a specific operating point. However, because of the continuous movement of the operating points and disturbances, adequate transient performance cannot be guaranteed using PI controllers [8]. Consequently, it is desirable, in this work and in general, to investigate the application of the linear quadratic regulator (LQR) control technique to designing the control system of the power electronic converters integrated into the hybrid wind/ultracapacitor energy conversion system.

1.3 Research Objectives

The objectives of this research are as follows:

(i.) To develop an effective solution to avoid system parameter dependency when obtaining the optimal curve in an ORB MPPT algorithm by incorporating a PSO algorithm

(ii.) To verify the effectiveness of the PSO-ORB MPPT algorithm through simulation by comparing it with a conventional ORB MPPT algorithm

(iii.) To formulate and implement LQR controllers for the power electronic converters interfacing the WECS and ultracapacitor storage device to a DC-bus
(iv.) To test the functionality of the developed hybrid wind/ultracapacitor energy conversion system incorporating the proposed MPPT algorithm and LQR controllers.

1.4 Research Scope

This research study has the following limitations and assumptions:

(i.) The wind turbine is a fixed-pitch variable speed type. Depending on the speed control criterion, WECSs can be classified into two types: fixed speed and variable speed. Because of the regulation of rotor speed within a larger range, for better aerodynamic efficiency, the variable speed wind turbines are more widely used [8]. Controlling the pitch angle of the wind turbine blade is one possibility for extracting the maximum power from the wind. However, in small-scale wind turbines (less than 10 kW), this strategy becomes impractical because of their mechanical structure. For small power applications, the power converter is controlled for wind power optimization [9].

(ii.) The wind turbine is working in the MPPT region. Assuming speed and power capture constraints are respected, the controller aims to limit the wind power captured when the wind speed is greater than the nominal speed and maximize the wind power harvested in the partial load region [8]. However, this work focuses only on the control of wind turbines in the partial load region (region 2), which generally enables MPPT by adjusting the electrical generator's output current. The working regions of wind turbines are further explained in section 3.2.

(iii.) The proposed hybrid system is stand-alone and it supplies a resistive load.
WECSs could be operated in stand-alone or grid-connected mode. For stand-alone operation the small-scale WECSs are used. The stand-alone WECS configuration can operate with either resistive or inductive loads. However, there is no effect of the L component on the generated DC power of the system [10]. Because the MPPT algorithm implanted in this study only depends on the DC power and seeking for the simplicity, this thesis focuses only stand-alone WECS supplying a resistive load. This configuration is similar to the one used in the studies [6] and [11]. The storage system is assumed to be sufficient for storing the excess power from the wind or delivering the shortage power into the load for all wind speeds.

1.5 Research Methodology

In order to achieve the objectives of the research, the following work methodologies have been followed:

(i.) A literature review of hybrid wind/ultracapacitor energy conversion system was carried out.
Advantages, working concepts, and electrical models of the system components were reviewed. The small-scale variable speed PMSG-based horizontal-axis wind turbine working in the MPPT region was selected. Then, the open-loop models of the boost and bidirectional converters were derived. The ultracapacitor model was also obtained.

(ii.) A critical and strategic literature review of MPPT methods was performed.
To propose a new MPPT algorithm, the common algorithms have been studied and summarized. Their strengths and drawbacks, based on several evaluation factors, were highlighted. Besides giving the overview of the existing MPPT algorithms, the objective of the review was to look for a gap in their coverage. Two of the best available algorithms were selected
to be combined and implemented as a new algorithm. The combination exploits the advantages of each method in order to overcome the drawbacks of the other.

(iii.) A new MPPT algorithm has been proposed.
A sensorless, simple, and efficient MPPT algorithm based on hybridization of the PSO and ORB MPPT algorithms was developed. Its performance was tested under different wind speed changes. The proposed MPPT algorithm has been compared with some conventional MPPT methods.

(iv.) The power converter controllers were designed.
In this step, the controllers for the DC-DC converters interfacing the hybrid wind/ultracapacitor energy system to the DC-bus were designed. The LQR method is positively characterized in literature as being robust, simple, and stable. Therefore, the LQR method was selected for designing the converter controllers for this research. The LQR controllers are formulated to minimize the cost function through changes in the duty-cycle in the converter models. A built-in function in MATLAB was used to solve the Riccati equation and calculate the state feedback gains.

(v.) Analysis and verification of the proposed control method effectiveness through computer simulations was performed.
To verify the performance of the designed controllers, a complete simulation model of the hybrid wind/ultracapacitor energy conversion system and its controllers was developed. The computer simulation package used was MATLAB/Simulink. In order to significantly reduce the simulation time, the average models of the rectifier-PMSG and DC-DC converters were used for simulation.

(vi.) The converters with their controllers for interfacing ultracapacitor energy storage to WECS were developed and built.
To validate the feasibility of the proposed control techniques, a hardware prototype was constructed. The tasks included selecting the appropriate
digital processor, designing the power circuit, gate drivers, feedback and signal conditioning circuits, and implementing the control algorithms. The selected digital processor was the TMS320F2812 eZdsp board.

(vii.) Verification, through hardware implementation, of the proposed control method's effectiveness and the converter performance was performed. Laboratory experiments were carried out on the hybrid proposed system under changes in wind speed, DC-bus reference voltage, and load. The experimental results confirmed the effectiveness of the power electronic converter controllers and MPPT algorithm.

1.6 Thesis Organisation

This thesis is organized into seven chapters. An outline of their contents is as follows:

(i.) In chapter 2, an extensive review of MPPT techniques used to track the MPP (maximum power point) of WECS is provided. The merits and drawbacks of each method are highlighted. In addition, this chapter presents several control techniques that are typically used for DC-DC converters.

(ii.) In chapter 3, the mathematical modelling of the different components of the system under study is described. Firstly, the wind turbine characteristics are presented. Then, the simplified model of the rectifier-PMSG is discussed. Thereafter, circuit topologies of the boost and bidirectional converters are depicted, state-space averaging technique theory is presented, and linearized and small signal models are developed. Finally, the electrical circuit for the ultracapacitor is provided.

(iii.) In chapter 4, the proposed PSO-ORB MPPT algorithm for tracking the MPPs of WECS is described. System simulation and performance
evaluation for different wind speed conditions are elaborated upon. The simulation results are compared to conventional ORB MPPT methods. The effects of hybridization are also analysed.

(iv.) In chapter 5, the application of the LQR method in optimizing the closed-loop performance for boost and bidirectional converters is discussed. Performance of the proposed controllers is compared with PI controllers. The LQR controllers design for a hybrid wind/ultracapacitor energy conversion system is explained, and the whole system is simulated in the MATLAB/Simulink simulation package.

(v.) Hardware design and implementation are presented in chapter 6. The laboratory experimental setup for the hybrid wind/ultracapacitor energy system is described. An explanation is given for the power converter circuits, gate drive circuit, feedback circuits, the TMS320F2812 eZdsp board and PMSG-based wind turbine emulator.

(vi.) In chapter 7, the simulation and experimental results of the proposed MPPT algorithm and LQR controllers are compared and discussed.

(vii.) In chapter 8, conclusions from the work undertaken are given and suggestions that may be considered as possible directions for future work are highlighted.
REFERENCES

