ADAPTIVE CHANNEL ESTIMATION FOR SPARSE ULTRA WIDEBAND SYSTEMS

SOLOMON NUNOO

UNIVERSITI TEKNOLOGI MALAYSIA
ADAPTIVE CHANNEL ESTIMATION FOR SPARSE ULTRA WIDEBAND SYSTEMS

SOLOMON NUNOO

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

AUGUST 2015
In memory of my brother, Enoch (1976-2013)
and dedicated to my parents.
ACKNOWLEDGEMENT

The victory of an Olympic 100-m runner occurs within a sub-ten-second sprint but in reality, preparations for that sprint span several years in the hands of several coaches. In like manner, I thank all who have made an input in my academic life. I am particularly thankful to my supervisor, Assoc. Prof. Dr. Razali bin Ngah, for his encouragement, critic, and guidance throughout my studentship, especially during the thesis-writing period. The outlook of this work would not be in this shape without his insightful inputs and tutelage. To Dr. Uche A. K. Chude-Okonkwo for his friendship, motivation, pieces of advice, guidance, and more importantly, his mammoth inputs to ensure the success of this work. Without his continual support and interest, this thesis would not have been the same as presented here.

To the academic and administrative staff of the Wireless Communication Centre (WCC), Universiti Teknologi Malaysia, my gratitude for their support and friendly demeanour is without measure because they made life more enjoyable during this stressful period. To my colleague research students at the WCC, your friendship provided the congenial atmosphere in making this research less stressful. I am also indebted to the University of Mines and Technology, Ghana for their support.

I have been fortunate to enjoy the unwavering support and encouragement of my family throughout my studentship. To them I owe a debt of gratitude that can scarcely be contained in this acknowledgement. To my mum and sisters, thanks for your love and support. To my wife, Esther, and children, Nii Kwei and Nii Coppo, without your patience, I could not have attained this milestone. Thank you for staying the course. I greatly appreciate your cooperation and understanding during this time.
Increased research in ultra wideband (UWB) systems in the last two decades has established it as a technology for high-speed, short-range applications. UWB also offers low power consumption, immunity to multipath fading, increased security, and low interference in multipath environments. Unfortunately, it is a great challenge to obtain accurate channel state information at the receiver side of UWB systems, especially in time-varying applications. Consequently, this research deals with the design of an adaptive channel estimation algorithm for sparse UWB systems. Using measurement data, this thesis considers the estimation of a long sparse multipath channel in a mobile UWB system. Recent advances in Compressive Sensing (CS) applications in signal processing make CS to be a legitimate candidate for processing sparse signals. Among the broad application areas of CS is channel estimation. Based on the objectives of the research, the contributions of this thesis are in three parts. Firstly, channel measurements usually provide accurate Channel Impulse Response (CIR), which helps to accurately model any channel behaviour. Thus, this thesis provides channel measurements in various mobile line-of-sight scenarios to precisely measure the efficacy of the proposed channel estimation algorithm. Secondly, traditional channel estimation algorithms like the Least Mean Square (LMS) and Normalised LMS (NLMS) algorithms do not consider the structural information of the channel. In addition, CS-based LMS and NLMS algorithms do not consider the use of the channel sparsity to control the algorithm performance. Therefore, this thesis also proposes a number of Sparseness-Controlled (SC) LMS and NLMS algorithms for estimating sparse UWB channels. Lastly, the thesis presents an analysis of the performance of the proposed estimators in terms of the Mean Square Error (MSE), steady-state excess MSE, convergence speed, robustness, and computational complexity. Simulation results show that unlike traditional algorithms, the proposed estimators perform better to improve the estimation of the CIR of sparse UWB channels. Even though, for all the scenarios considered, compared to the SC-l_0-Norm NLMS (SC-L0-NLMS) algorithm, the SC-rewighted zero-attracting NLMS (SC-RZA-NLMS) algorithm provides excellent performance, the SC-ZA-NLMS algorithm is less computationally complex than both and it performs in close proximity to both at higher SNR. For the sparse channel, when SNR is 30 dB, the SC-ZA-NLMS algorithm converges faster with better MSE of -38.2391 dB compared to the SC-RZA-LMS algorithm, which converges at -33.9805 dB. Therefore, the SC-ZA-NLMS algorithm is the most suitable for accurately estimating the sparse UWB channel.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxii</td>
</tr>
</tbody>
</table>

1. **INTRODUCTION** | 1 |
1.1 Introduction | 1 |
1.2 Problem Statement | 2 |
1.3 Objectives | 3 |
1.4 Scope of Work | 3 |
1.5 Contributions | 4 |
1.6 Thesis Outline | 5 |

2. **BACKGROUND AND RELATED WORKS** | 7 |
2.1 Introduction | 7 |
2.2 Overview of UWB Communication Systems | 8 |
2.2.1 Impulse Radio UWB Systems | 9 |
2.2.2 MB-OFDM UWB Systems | 10 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>UWB Channel Measurements</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Basics of UWB Channel Estimation</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Training-Based Channel Estimation</td>
<td>17</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Blind Channel Estimation</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Non-Adaptive UWB Channel Estimation</td>
<td>18</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Non-Adaptive Channel Estimation for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IR-UWB Systems</td>
<td>18</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Non-Adaptive Channel Estimation for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MB-OFDM Systems</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Adaptive Channel Estimation in UWB Systems</td>
<td>20</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Adaptive Channel Estimation for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IR-UWB Systems</td>
<td>21</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Adaptive Channel Estimation for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MB-OFDM-UWB Systems</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Compressive Sensing for UWB Channel Estimation</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Sparse Adaptive Channel Estimation</td>
<td>27</td>
</tr>
<tr>
<td>2.8.1</td>
<td>LMS-Based Algorithms for Sparse Channel Estimation</td>
<td>30</td>
</tr>
<tr>
<td>2.8.2</td>
<td>NLMS-Based Algorithms for Sparse Channel Estimation</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Research Gap</td>
<td>34</td>
</tr>
<tr>
<td>2.10</td>
<td>Summary</td>
<td>36</td>
</tr>
</tbody>
</table>

3 METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Research Design and Procedures</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Research Framework</td>
<td>38</td>
</tr>
<tr>
<td>3.3.1</td>
<td>UWB Channel Measurements</td>
<td>38</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Algorithm Development, Simulations, and</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Verification</td>
<td></td>
</tr>
<tr>
<td>3.3.3</td>
<td>Performance Measurements</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Setup for UWB Channel Measurements</td>
<td>41</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Testbed Description</td>
<td>42</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Transmitter/Receiver Specifications</td>
<td>42</td>
</tr>
</tbody>
</table>
3.4.3 Channel Estimation Modelling 45
3.5 Channel Estimation Modelling 45
3.6 Summary 48

4 ULTRA WIDEBAND CHANNEL MEASUREMENTS 49
4.1 Introduction 49
4.2 Measurement Principles 50
4.3 Measurement Campaigns 50
 4.3.1 Indoor MIA Measurement Campaign 51
 4.3.2 Outdoor Roadway Measurement Campaign 52
 4.3.3 Outdoor Recreational Park Measurement Campaign 52
4.4 Measurement Environments and Procedures 52
 4.4.1 Indoor MIA Measurement Campaign 54
 4.4.2 Outdoor Roadway Measurement Campaign 56
 4.4.3 Outdoor Recreational Park Measurement Campaign 58
4.5 Post-Processing 61
4.6 Measurement Data Analysis 65
4.7 Summary 71

5 PROPOSED CHANNEL ESTIMATION ALGORITHM 73
5.1 Introduction 73
5.2 UWB Signal Model 73
5.3 Proposed Sparseness-Controlled Algorithms 74
 5.3.1 SC-ZA-LMS Algorithm 75
 5.3.2 SC-RZA-LMS Algorithm 75
 5.3.3 SC-L0-LMS Algorithm 76
 5.3.4 SC-ZA-NLMS Algorithm 76
 5.3.5 SC-RZA-NLMS Algorithm 77
 5.3.6 SC-L0-NLMS Algorithm 77
5.4 Summary 77
6 PERFORMANCE ANALYSIS AND DISCUSSION OF SIMULATION RESULTS

6.1 Introduction 79
6.2 Convergence Performance 80
6.3 Steady-State MSE Analysis 83
6.4 Convergence Analysis 87
 6.4.1 SC-ZA-NLMS Algorithm 92
 6.4.2 SC-RZA-NLMS Algorithm 95
 6.4.3 SC-L0-NLMS Algorithm 98
6.5 Robustness Analysis 100
 6.5.1 Robustness of LMS-Based Methods 101
 6.5.2 Robustness of NLMS-Based Methods 104
6.6 Computational Complexity 106
6.7 Simulations and Discussions 107
 6.7.1 Convergence Performance 108
 6.7.2 MSE Performance 117
 6.7.3 Steady-State EMSE Performance 119
6.8 Summary 124

7 CONCLUSIONS AND FUTURE WORKS 125

7.1 Conclusions 125
7.2 Future Works 126

REFERENCES 128

Appendices A - M 145-157
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of indoor office UWB channel measurements</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of indoor residential UWB channel measurements</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of indoor laboratory UWB channel measurements</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of underground mine and underground parking lot UWB channel measurements</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison of UWB channel measurements on human body</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of UWB channel measurements for indoor industrial and other indoor environments</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Comparison of outdoor UWB channel measurements</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Comparison of channel estimation approaches for UWB systems</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>P410 performance characteristics</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of time dispersion parameter values for anechoic chamber and indoor/outdoor environment</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Time dispersion parameter values for the three measurement campaigns</td>
<td>71</td>
</tr>
<tr>
<td>6.1</td>
<td>Computational complexity</td>
<td>107</td>
</tr>
<tr>
<td>6.2</td>
<td>Sparseness measure results for CIR of the three measurement campaigns</td>
<td>108</td>
</tr>
<tr>
<td>6.3</td>
<td>Simulation parameters for convergence analysis at different SNR values</td>
<td>110</td>
</tr>
<tr>
<td>6.4</td>
<td>Summary of convergence performance results</td>
<td>118</td>
</tr>
</tbody>
</table>
6.5 Simulation parameters for MSE performance analysis
CHAPTER 1

INTRODUCTION

1.1 Introduction

The use of ultra wideband (UWB) technology in transceiver design for wireless communications systems in recent years is because of the high data transmission rates [1], [2] it offers. In addition, UWB offers immunity to multipath fading, increased security, low interference, and low power consumption in multipath environments. Most of the UWB system designs have focused on stationary transceivers because the UWB wireless channel changes rapidly with change in transceiver position or scatters position. Thus, limiting transceiver movement helps simplify system design. Nevertheless, mobile applications, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) propagation scenarios, can also take advantage of the very high-data rate capabilities of UWB. The Infostation [3]–[7], which is an example of V2I propagation scenario, is one of such applications where UWB has potential. The design of UWB transceivers for such mobile scenarios with rapid time-varying channel portends more complex design approach.

In order to achieve efficient wireless communication, the mobile UWB transceiver system will employ channel estimation (CE) methods to help implement equalisation and diversity techniques at Rake receivers [8]. The performance of the employed CE algorithm highly depends on not only the wireless channel, but also on the appropriateness of the channel model used [9]. Hence, information about the channel behaviour is very important in the channel estimator design in particular, and transceiver design in the broad sense.
In general, CE methods may be either non-adaptive or adaptive. Fundamentally, non-adaptive methods depend so much on the prior knowledge of the statistics of the channel in which they will be deployed [10]. However, such channel statistics are not readily available in the case of UWB channels, given the very random nature of the channel, which worsens in mobile scenarios [11]–[15]. A natural option is to consider the adaptive methods, which inherently do not require prior knowledge of the channel statistics [16]. Unfortunately, in most cases, adaptive CE algorithms also suffer from poor convergence rates and tracking especially in mobile application.

Therefore, there is the need to develop adaptive CE (ACE) algorithms with high convergence rate, good tracking, and ability to estimate both dense and sparse channels with a high degree of accuracy.

1.2 Problem Statement

The performance of any wireless system is critically dependent on the availability of accurate channel estimate [17]. Typically, the UWB channel is either “sparse” or “dense”, depending on the measured bandwidth and the considered environment [14], which makes estimating the channel coefficients a challenge. The use of adaptive algorithms will serve well in estimating such channels.

Unfortunately, in using existing adaptive algorithms, like the least mean square (LMS) and recursive least square (RLS) algorithms and their respective variants, the issue of convergence, tracking, and implementation complexity arise. Finding mathematical and signal processing approach to solving the convergence, tracking, and complexity issues in ACE for UWB application is a crucial task in the development of mobile UWB transceivers. Fortunately, it is possible to exploit the dense/sparse nature of the UWB channel using compressive sensing (CS) techniques to improve on the convergence speed of the selected adaptive algorithm.

This research focuses on the design of an ACE algorithm for sparse UWB systems. It will consider using sparse penalties that will keep the estimator’s
complexity low and therefore, converge with minimal of iterations. This implies that the number of operations, i.e., multiplications, divisions, and additions/subtractions, required to make a complete iteration should be minimal. Moreover, the algorithm needs to be robust in different channel conditions, i.e., small disturbances with small energy, resulting from either internal or external effect on the adaptive filter, should result in only small estimation errors.

1.3 Objectives

The aim of this research is to develop a CE algorithm for mobile UWB systems using adaptive system identification approach. To achieve this aim, the following objectives are addressed:

- To create a dataset of channel impulse response that represents sets of real UWB channel coefficients in a typical communication system for indoor and outdoor environments.

- To create an adaptive channel estimation algorithm that is robust in mobile UWB communication channels, and exhibits low cost function when compared with results of the channel measurement dataset.

- To evaluate the performance of the proposed adaptive algorithm in terms of its computational complexity.

1.4 Scope of Work

The scope of this research is limited to the mathematical formulation, algorithm development, and implementation of the overall adaptive approach on software platform. The data set used for the simulation of the developed adaptive method is from time-domain UWB channel measurements in different line-of-sight (LOS) mobile scenarios using Time Domain Corporation’s PulsON® 410 Ranging and Communications Module (P410 RCM). This channel-sounding device transmits at a
bandwidth of 2.2 GHz over the frequency range of 3.1-5.3 GHz and a centre frequency of 4.3 GHz. These UWB channel measurements are conducted in three different environments at the Universiti Teknologi Malaysia, Skudai campus. Each measurement mimics a different mobile scenario. The measurements are conducted in both indoor and outdoor environments. The indoor measurement mimics a classroom environment whereas the outdoor measurements are done in both roadway and recreational park environments.

1.5 Contributions

The main contribution of this research is the development of a robust adaptive channel estimation algorithm for sparse UWB channels. The proposed algorithm exploits the channel sparsity to enhance performance of the LMS and NLMS algorithms and uses same to control the selection of the regulation parameter in the sparse penalty. CIR from UWB channel measurements are used to test the viability of the algorithms. The channel measurements are also used to understand the behaviour of the UWB channel. These time-domain UWB channel measurements are done in three unique UWB channel scenarios, namely, outdoor roadway, outdoor recreational park, and indoor multimedia information access environments. From the channel measurements, a dataset of the acquired CIR is created.

The results of the UWB channel measurements show that the measured CIR varies from slightly dense to highly sparse channel response. Because of this, CS-based channel estimators are proposed. More precisely, variants of LMS and NLMS algorithms are used since LMS-based algorithms have shown to be robust in most environments. Unfortunately, selection of an optimal regulation parameter for the sparse penalty is difficult. Thus, the need to provide a means of selection this parameter. The resulting LMS-based algorithms (i.e., SC-ZA-LMS, SC-RZA-LMS, and SC-L0-LMS) and NLMS-based algorithms (i.e., SC-ZA-NLMS, SC-RZA-NLMS, and SC-L0-NLMS) take into account the sparseness measure of the UWB channel via a modified sparse penalty function.
Finally, a detailed performance analysis of the proposed sparseness-controlled algorithms shows that they outperform the LMS and NLMS algorithms in terms of convergence speed and tracking ability. Though computationally complex than the LMS and NLMS algorithms, simulation results show superior performance in both dense and sparse channels. The results also show that taking the computational complexity of the algorithms into consideration, the SC-ZA-NLMS algorithm is the best candidate for estimating both dense and sparse UWB channels.

1.6 Thesis Outline

The remainder of the thesis is organised as follows. The second chapter presents the literature review. Firstly, an overview of UWB communication systems is presented with emphasis on the impulse radio UWB (IR-UWB) and multiband orthogonal frequency division multiplexing (MB-OFDM) UWB systems. The chapter also discusses a comprehensive review of reported UWB channel measurements in the literature. The fundamental aspect of UWB channel estimation techniques is also presented in this chapter. Previous works on ACE and non-ACE algorithms for UWB systems are discussed as well. The chapter ends with a discussion of the compressive sensing approach for UWB channel estimation and a presentation on sparse channel estimation algorithms.

Chapter 3 provides a comprehensive discussion on the methods used in this work. This includes a presentation on the measurement setup, the steps for the algorithm development, simulations and verifications, and finally an analysis of the performance of the proposed algorithm. The chapter also discusses the measurement setup used in the channel measurements; this encompasses a description of the testbed, transmitter/receiver specifications, and a discussion of channel, i.e., measurement environment. Lastly, the channel estimation modelling procedure is given.

In Chapter 4, a detailed outlook of the UWB channel measurements conducted is presented. General measurement principles for UWB channel measurements are also discussed in this chapter. The chapter also covers the description of the
measurement environments, procedures used, and the post-processing. Finally, it ends with a time dispersion analysis of the measurement data.

Chapter 5 details the algorithm development. It introduces the UWB signal model. Finally, some sparsity constraint algorithms suitable for UWB channel estimation are also presented in this chapter.

Chapter 6 presents a performance analysis as well as the simulations and discussions of the algorithms. The presented performance analysis includes the convergence performance, steady-state mean square error (MSE) analysis, convergence analysis, robustness analysis, and computational complexity analysis. Computer simulations are finally used to verify these performance analysis results.

Finally, Chapter 7 presents the general conclusions of this research work and recommendations for future works. It also highlights the proposed algorithm, its significance, and some significant results.
REFERENCES

88. Harada, H., Hernandez, M. and Kohno, R. Channel Estimation for Wavelet
Packet Based UWB Transmissions. Proceedings of the 2006 IEEE Ninth
International Symposium on Spread Spectrum Techniques and Applications.

89. Harada, H., Hernandez, M. and Kohno, R. Multiuser Channel Estimation in
Wavelet Packet-UWB Systems. Proceedings of the IEEE Vehicular
2006. 1–5.

90. Li, C., Zheng, G. and Zhu, Y. A Study of Channel Estimation in Multi-Band

91. Li, C. and Zheng, G. Improved Channel Estimation Using Noise Reduction for
Conference on Wireless, Mobile and Multimedia Networks. November 6-9,

92. Xu, J., Lu, X., Bian, Y. and Zou, D. Ultra-Wideband MB-OFDM Channel
Estimation with Pilots. Proceedings of the 2008 4th International Conference
on Wireless Communications, Networking and Mobile Computing. October 12-

Implementation of Channel Estimation and Equalization of Indoor Positioning
System Based on UWB. Proceedings of the 2009 Second International
Conference on Intelligent Computation Technology and Automation. October

94. Yao, Y., Dong, X., and Tin, N. A New Joint Timing and Channel Estimation
International Conference on Communications. June 14-18, 2009. Dresden,

95. Wang, Z., Xin, Y., Mathew, G. and Wang, X. A Low-Complexity and Efficient

