NANOCRYSTALLINE DIAMOND DEPOSITED ON TUNGSTEN CARBIDE-COBALT SUBSTRATES USING HOT FILAMENT CHEMICAL VAPOUR DEPOSITION TECHNIQUE

YONG TZE MI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

OCTOBER 2015
ABSTRACT

Diamond coatings on cutting tools provide the advantages of the properties of diamond in terms of high hardness, excellent wear resistance, and general chemical inertness. The main limitations of diamond coating are coating adhesion problems, high surface roughness and low production rate due to the use of coating equipment with small chamber. There is also a need to have a better understanding on the growth mechanism of diamond coatings on tungsten carbide with cobalt binder (WC-Co). Thus the motivation for this work is to obtain low surface roughness of diamond coatings while achieving good adhesion to substrates through the use of large chamber hot filament chemical vapour deposition (HFCVD) method. In this research, nanocrystalline diamond (NCD) coatings were deposited on WC-Co substrates using the HFCVD method. WC-Co was selected because it is used widely in the current tooling market. The cutting method was varied between precision cutting and electrical discharge machining EDM (Wire-Cut). It was found that precision cutting produce generally planar substrates and was the preferred method of cutting. To achieve good adhesion between the diamond coating and WC-Co substrates, the WC-Co substrates were pretreated before being deposited with diamond and some of these pretreatments parameters were varied. It was found that 20 minutes of Murakami agent treatment, 45-60 seconds of acid etching and <0.25 \(\mu \text{m} \) natural diamond seeding in ultrasonic bath were the best pretreatment method. The substrates were then deposited with diamond in the HFCVD chamber. Four batches of deposition were ran namely batch A, B, C and D. The overall results show that the deposited diamonds were nanocrystalline in size with cauliflower or ballas NCD morphology with various crystallite arrangements. Batch A produced generally four different types of morphologies. Type 1 was planar diamond coating morphology attributed to precision cutting effects. Type 2 was planar diamond coating morphology with micro features attributed to rough bench grinding. Type 4 was the extension of type 3 where EDM cut produced about a third tier morphology separating islands of diamond ballas aggregates. Three-tier ballas morphology improves the adhesion property where boundaries hinder failure path of the diamond coating. Batch B produced an obvious microcrystalline diamond layer under the NCD layer. Batch C produced a single layer of very thin NCD layer of only 1.7 microns. Batch D produced a layer NCD coating of about 4 microns thick by changing oxygen pulsing rate and time. X-ray diffraction (XRD) and grazing XRD showed that the diamond layer was in compression. Raman Spectrometer identified the presence of NCD. Atomic force microscope (AFM) showed the ultra-low roughness of the diamond coatings with \(R_a <200 \text{ nm} \). Nanoindentation revealed that the NCD coating has high hardness of 10-60 GPa and reduced modulus of 40 – 300 GPa. The adhesion strength is good as indicated from the indentation test. Electron microscopy results showed the ballas consist of elongated radial grains in accordance to the thickness of the NCD coating. Further magnifications revealed diamond twins that contributed to the properties and nano size of diamond crystallites. Transmission electron microscopy analyses also indicate that the NCD nucleated and grew on the tungsten carbide (100) planes in the (111) direction, forming (111) planes.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Abstrak</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xxviii</td>
<td></td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xxix</td>
<td></td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xxxi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Research 1
1.2 Problem Statement 2
1.3 Objectives of Research 3
1.4 Scopes of the Research 4
1.5 Significance of the Research 4
1.6 Organisation of Thesis 5

2 LITERATURE REVIEW

2.1 Introduction 6
2.2 Overview on Tungsten Carbide as a Cutting Tool 6
 2.2.1 Structure and Properties of Tungsten Carbide (WC-Co) 7
2.3 Diamond as Coating Material
 2.3.1 Structure and Properties of Diamond
 2.3.2 Diamond Characteristics as a Coating for Cutting Tools
 2.3.3 Advantages of Nanocrystalline Diamond Over Microcrystalline Diamond

2.4 Overview on Deposition Mechanism
 2.4.1 Introduction
 2.4.2 Nucleation of CVD diamonds
 2.4.2.1 Heterogeneous Nucleation
 2.4.2.2 Homogeneous Nucleation
 2.4.2.3 Charged Cluster Model
 2.4.2.4 Hydrocarbon Subplantation
 2.4.2.5 Cauliflower Nucleation
 2.4.2.6 NCD Nucleation Sites Associated with Bias Enhanced Nucleation
 2.4.3 Growth of Chemical Vapour Deposited Diamonds
 2.4.3.1 Growth Mechanisms of Microcrystalline Diamond Film
 2.4.3.2 Growth Mechanisms of Nanocrystalline Diamond Films

2.5 Overview on Diamond Deposition Methods
 2.5.1 Chemical Vapour Deposition (CVD) Methods
 2.5.1.1 Microwave Plasma Chemical Vapour Deposition Method (MPCVD)
 2.5.1.2 Hot Filament Chemical Vapour Deposition Method (HFCVD)
 2.5.1.3 Plasma Arc Jet Deposition Method
 2.5.2 Advantages of Hot Filament Chemical Vapour Deposition Method over Microwave Plasma Chemical Vapour Deposition Method

2.6 Effects of Chemical Vapour Deposition Parameters and Surface Preparation towards
Nanocrystalline Diamonds Formation

2.6.1 Pressure and Gas Flow Rate

2.6.2 Filament and Substrate Temperature

2.6.3 Gas Composition

2.6.4 Bias Enhanced Nucleation (BEN)

2.6.5 Surface Preparation and Adhesion of Diamond to Tungsten Carbide Surface

2.7 Diamond Quality and Morphology of Nanocrystalline Diamonds

2.7.1 Diamond Quality

2.7.1.1 Raman Spectroscopy

2.7.1.2 X-Ray Diffraction Spectroscopy

2.7.2 Morphology of Diamond Surface

2.7.2.1 Atomic Force Microscope (AFM) and Profilometer

2.7.2.2 Optical and Scanning Electron Microscopy (SEM)

2.7.3 Interface Observations by Transmission Electron Microscopy (TEM)

2.7.4 Mechanical Properties of Nanocrystalline Diamonds

2.7.4.1 Hardness and Young’s Modulus

2.7.4.2 Diamond Adhesion

2.8 Summary

3 METHODOLOGY

3.1 Introduction

3.2 Substrate Material

3.2.1 Sample Preparation

3.2.2 Substrate Pretreatments and Seeding

3.3 Nano-crystalline Diamond (NCD) Deposition by Hot Filament Chemical Vapour Deposition Method

3.3.1 Hot Filament Chemical Vapour Deposition (HFCVD) Machine
3.3.2 Deposition Parameters

3.4 Materials Characterisation

3.4.1 Raman Spectrometry

3.4.2 X-Ray Diffractometry

3.4.3 Scanning Electron Microscopy

3.4.3.1 Sample Preparation for Microscopy Analysis

3.4.4 Transmission Electron Microscopy

3.4.4.1 Sample Preparation for TEM Analysis

3.4.5 Atomic Force Microscope (AFM) and Profilometer

3.5 Mechanical Testing

3.5.1 Adhesion Test

3.5.2 Nanoindentation

4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Substrate Materials

4.3 Effects of Cutting on the Diamond Coating

4.3.1 Effects of Cutting on Tungsten Carbide Substrate

4.3.2 Effects of Cutting on the Diamond Coating Morphology

4.3.2.1 Morphology Type 1 – Planar

4.3.2.2 Morphology Type 2

4.3.2.3 Morphology Type 3

4.3.2.4 Morphology Type 4

4.3.2.5 Effects of No Pretreatment to Diamond Coating Morphology and Adhesion

4.3.3 Thickness and Cross-section View

4.3.4 Effects of Pretreatment on Adhesion

4.3.5 Effects of Cutting on the Diamond Topography and Surface Roughness
4.5.4 Mechanical Properties of Diamond Batch C
4.6 Effects of Variation of Chemical Etching Time on Diamond Coating in Batch D
4.6.1 Effects of Variation of Chemical Etching Time on Substrate
4.6.2 Effects of Variation of Chemical Etching Time on the Diamond Morphology and Topography
4.6.3 Characterisation of Diamond Coating in Batch D
4.6.4 Mechanical Properties of Diamond Coating of Batch D
4.7 Effects of Modifications of Deposition Parameters on Diamond Coating
4.7.1 Effects of Deposition Time Variation and Oxygen Pulsing Rate Variation on the Diamond Coating
4.7.1.1 Effects of Deposition Time Variation and Oxygen Pulsing Rate Variation on the Diamond Coating Thickness
4.7.1.2 Effects of Deposition Time Variation on the Diamond Coating Quality, Morphology and Mechanical Properties
4.8 Nucleation and Growth Mechanism of the Nanocrystalline Diamond Coating
4.8.1 Nucleation and Growth Mechanism of Ballas Diamond
4.9 Summary

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
5.1 Conclusions
5.2 Limitations of Current Work and Recommendations for Future Work 216

REFERENCES 218
Appendices A - D 235 - 259
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison in term of properties for different kind of diamond [2, 8, 28, 33-39]</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Actual and potential application of CVD diamond [31]</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of existing pretreatments for WC-Co and diamond deposition parameters variation for HFCVD method</td>
<td>46</td>
</tr>
<tr>
<td>2.4</td>
<td>Examples of other pretreatment methods</td>
<td>47</td>
</tr>
<tr>
<td>2.5</td>
<td>Adhesion behaviour of diamond coating on WC-Co substrates for cutting tools application</td>
<td>60</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of substrate preparation for diamond deposition</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Batch A substrates and their pretreatments</td>
<td>69</td>
</tr>
<tr>
<td>3.3</td>
<td>Batch B substrates and their pretreatments</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>Batch C substrates and their pretreatments</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Batch D substrates and their pretreatments</td>
<td>71</td>
</tr>
<tr>
<td>3.6</td>
<td>Hot filament chemical vapour deposition parameters for batch B</td>
<td>73</td>
</tr>
<tr>
<td>3.7</td>
<td>Hot filament chemical vapour deposition parameters for batch C</td>
<td>73</td>
</tr>
<tr>
<td>3.8</td>
<td>Hot filament chemical vapour deposition parameters for batch D</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>The calculated intercept and slope of Williamson-Hall plot and the strain calculated for each sample</td>
<td>139</td>
</tr>
<tr>
<td>4.2</td>
<td>Various surface roughness values measured from diamond surface of batch B</td>
<td>150</td>
</tr>
</tbody>
</table>
4.3 Line roughness data obtained from cross-section profile in Figure 4.67 (b) 150
4.4 Various surface roughness values measured from diamond surface of batch B 151
4.5 Line roughness data obtained from cross-section profile in Figure 4.68 (b) 151
4.6 Various surface roughness values measured from diamond surface of batch C 162
4.7 Line roughness data obtained from cross-section profile in Figure 4.79 (b) 162
4.8 Various surface roughness values measured from diamond surface of batch C 163
4.9 Line roughness data obtained from cross-section profile in Figure 4.80 (b) 163
4.10 Summary of change in WC intensity 166
4.11 Effects of chemical etching time on surface cobalt concentration 170
4.12 Various surface roughness values measured from diamond surface of batch D 176
4.13 Line roughness data obtained from cross-section profile in Figure 4.92 (b) 176
4.14 Various surface roughness values measured from diamond surface of batch D 177
4.15 Line roughness data obtained from cross-section profile in Figure 4.93 (b) 177
4.16 Surface roughness properties diamond coating of batch D for 2µm x 2µm scan size 180
4.17 Comparison between nano crystallite, crystal or grain and ballas size of batch A and its’ four morphologies, batches B, C and D 188
4.18 Standard d-spacing for tungsten carbide and diamond planes 200
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Carbon atoms (darker spheres) packed inside tungsten (lighter spheres) lattice [29]</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Phase diagram of carbon</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of crystal structure of hexagonal graphite with ABAB stacking sequence</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>A schematic diagram of basic cubic crystal structure of diamond with {111} planes with A-B-C stacking sequence [31]</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic of unit cell of cubic diamond (the larger spheres are to indicate nearer carbon atoms to the reader) [32]</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic of the simple crystals shape of diamonds and the combination of simple cubic (C), dodecahedron (D) and octahedron (O) crystals [31]</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Idiomorphic crystal shapes of diamond for different values of the growth parameter, α [31]</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Growth process of a diamond film on a non-diamond substrates: (a) nucleation of individual crystallites (b-c) termination of nucleation, and growth of individual crystallite (d) faceting and coalescence of individual crystallites and formation of continuous film (e-f) some crystals grow faster and swallow their neighbours during growth of continuous film [31]</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic of cauliflower particle growth suggesting preferential <110> orientation during NCD film</td>
<td>22</td>
</tr>
</tbody>
</table>
deposition. SEM inset showing a plan view of one of the cauliflower spherical particles [75]

2.10 Schematic of the reaction process occurring at the diamond surface leading to stepwise addition of CH₃ species and diamond growth [51]

2.11 Potential energy surface for C₂ addition to diamond (110) surface (barriers are underlined) [24]

2.12 Generalized schematic of the physical and chemical process occurring in CVD diamond reactor [75]

2.13 Schematic of microwave plasma chemical vapour deposition unit [31]

2.14 Schematic of HFCVD [31]

2.15 Plasma arc jet deposition method schematic diagram [31]

2.16 SEM images of the grain size increase from (a) 5 kPa (b) 2.8 kPa (c) 1.0 kPa (d) 0.5 kPa (e) 0.25 kPa (f) 0.125 kPa [16]

2.17 Pressure and flow rate are varied as follow; (a) 10 mbar, 50 ml min⁻¹ (b) 50 mbar, 50 ml min⁻¹ (c) 100 mbar 50 ml min⁻¹ (d) 50 mbar, 75 ml min⁻¹ (e) 200 mbar, 50 ml min⁻¹ (f) 50 mbar, 100 ml min⁻¹ (g) 50 mbar, 25 ml min⁻¹ [88]

2.18 Simplified Bachmann diagram [30]

2.19 Plan view of: MCD diamond film with (a) {110} triangular phases (b) {100} square phases (c) NCD diamond film and (d) cauliflower aggregates [16, 18]

2.20 HRTEM micrograph of the diamond film. The encapsulate shows the location of one NCD grain surrounded by amorphous structure [90]

3.1 Flow chart for the research methodology

3.2 CC800®/Dia low pressure HFCVD machine (a) actual equipment and (b) schematic drawing of the inside of the deposition chamber

3.3 TEM sample preparation using focus ion beam (FIB) (a) Pt protective layer was deposited (b) two side trenches were ion milled (c) incomplete U was milled, 45° tilt (d)
holder brought near and welded to sample and complete
‘U’ milling (e) sample lift off (f) sample brought to Cu
ring (g) sample welded to Cu ring (h) part of sample
milled off to release holder (i) cross-sections were
measured (j) bulk diamond was milled off for stability (k)
sample thinning until it is electron transparent and (l) final
thickness of 87.42 nm

4.1 SEM micrograph and EDS analysis of as-received WC-
Co substrate (a) micrograph of as-received WC-Co (b)
EDS spot analysis on light region (c) EDS spot analysis
on dark region and (d) Overall EDS analysis

4.2 FESEM micrograph of WC-Co substrate surface after
being cut by precision cutting machine and before
pretreatment

4.3 SEM micrograph of WC-Co substrate surface after EDM
cutting (a) SEM image using detector 1 showing the
redeposited porous layer after EDM (Wire-Cut) (b) The
detector 2 shows the boundary-like network on the
substrate surface (c) further magnification of (b) reveal
the boundary-like network is actual a line of pores and (d)
even further magnification of (b) and (c) shows depletion
of cobalt on substrate surface

4.4 Spot EDS results showing presence of reduced amount of
Co even before chemical pretreatments

4.5 Average surface roughnesses after each step of
pretreatment

4.6 WC-Co substrate surface pretreatment prior diamond
deposition

4.7 Optical micrographs of morphology type 1 (a) x 200 and
(b) x 500

4.8 FESEM micrograph of morphology type 1 at low
magnifications (a) x 1000 (b) x 2500 (c) x 10 000 and (d)
x 25 000
4.9 FESEM micrograph of morphology type 1 at high magnification (a) x 50 000 (b) x 75 000

4.10 FESEM micrograph of morphology type 1 at further magnifications (a) presence of few cubic and octahedral crystals and (b) diamond crystals with no clear facets. (a) x 150 000 and (b) x 200 000

4.11 FESEM and EDS results of diamond coating of substrate which has been precision cut to represent batch A

4.12 Optical micrograph of morphology type 2 (a) Uniformly coated surface and (b) Diamond coated scratches

4.13 FESEM micrograph of morphology type 2 (a) x 500 (b) x 150

4.14 Optical micrograph of morphology type 3 (a) network-like structure of diamond (x 200) and (b) diamond ballas are observable within the boundaries (x 500)

4.15 SEM micrograph of morphology type 3 (a) fine boundaries (x 500) and (d) higher magnification of the boundaries (x 25 000)

4.16 FESEM micrographs of morphology type 3 shows new layers of ballas growing on previous layer of diamond (a) sparingly propagation of new ballas layer area, encircled is a large ballas about 30 microns in diameter and (b) elaborate propagation of new ballas layer area

4.17 FESEM images of morphology type 3 with bright particles at various magnifications (a) x 1000 (b) x 2500 (c) x 5000 (d) x 10 000 and (e) x 25 000

4.18 FESEM and EDS results showing presence of cobalt particles

4.19 Optical micrograph of morphology type 4 (a) x 200 and (b) x 500

4.20 FESEM micrograph showing diamond ballas on the floors of the boundaries (a) x 500 and (b) x 1000

4.21 FESEM image and EDS results of morphology type 4
4.22 FESEM micrograph showing an unaggregated single ballas

4.23 Cross-sectional FESEM micrograph of morphology type 4 (a) low magnification to show multiple nicks and (b) high magnification to show a diamond coated nick

4.24 Micrograph of diamond coating on untreated substrates (a) Optical (x 500) (b) FESEM (x 25 000)

4.25 FESEM micrograph showing thickness of diamond to be about 6 µm

4.26 FESEM micrograph diamond cross-section (a) uniform diamond layer and (b) non-uniform diamond layer

4.27 SEM micrograph of cross-sectioned diamond coating (plan view)

4.28 SEM image showing different types of break off surface (a) intra-ballas break-off (b) inter-ballas break-off (c) break off follows the boundaries (d) intra-ballas with cracks on the surface of diamond

4.29 3D topographical view of morphology type 1 at different scan size

4.30 2D plan view and line profile of morphology type 1 at different scan size

4.31 Graph of surface roughness vs. scan size for morphology type 1

4.32 Roughness vs. profile line distance for morphology type 1

4.33 3D topographical view of morphology type 2 of different scan size

4.34 2D plan view and line profile of morphology type 2 at different scan size

4.35 Graph of surface roughness vs. scan size for morphology type 2

4.36 Roughness vs. profile line distance for morphology type 2

4.37 3D topographical view of morphology type 3 of different scan size
4.38 2D plan view and line profile of morphology type 3 at different scan size
4.39 Surface roughness vs. scan size for morphology type 3
4.40 Roughness vs. line scan distance for morphology type 3
4.41 3D topographical view of morphology type 4 of different scan size
4.42 2D plan view and line profile of morphology type 3 at different scan size
4.43 Surface roughness vs. scan area for morphology type 4
4.44 Roughness vs. line distance for morphology type 4
4.45 3D topographical view of diamond grown on non-pretreated substrates of different scan size
4.46 2D plan view and line profile of diamond coating grown on non-pretreated substrates at different scan size
4.47 Surface roughness vs. scan area for diamond coating grown on non-pretreated substrates
4.48 Roughness vs. line distance for diamond coating grown on non-pretreated substrates
4.49 XRD results from batch A using 0-20 scan with large incident angle
4.50 XRD results for diamond deposited in batch A using detector scan with (a) 1.0 degree grazing angle (b) 1.5 degree grazing angle (c) 2.0 degree grazing angle (d) 2.5 degree grazing angle and (e) 3.0 degree grazing angle
4.51 2.0 degrees grazing angle XRD results of morphology type 1 with green line representing diamond peaks and blue lines representing WC peaks
4.52 2.0 degrees grazing angle XRD results of morphology type 2 with green line representing diamond peaks and blue lines representing WC peaks
4.53 2.0 degrees grazing angle XRD results of morphology type 3 with green line representing diamond peaks and blue lines representing WC peaks
2.0 degrees grazing angle XRD results of morphology type 4 with green line representing diamond peaks and blue lines representing WC peaks

2.0 degrees grazing angle XRD results diamond coating on unpretreated substrate with green line representing diamond peaks and blue lines representing WC peaks

Williamson-Hall plot for samples morphology type 1, 2, 3, 4 and diamond coating on unpretreated substrate

Raman spectrometry of sample N, representing morphology type 1, C representing morphology type 4 and AJ, representing diamond coating on unpretreated substrate (a) 200-4000 cm⁻¹ (b) 1000-2000 cm⁻¹

Optical micrograph of diamond delamination under 15kg Rockwell indentation of unpretreated substrate

Nanoindentation test results for batch A

FESEM (secondary electrons) micrograph of substrates seeded with <1 µm natural diamond seeds. (a) x 5000 and (b) x 25000

FESEM (back scattered electrons) micrograph and spot EDS results showing higher carbon at bright area thus suggesting it is a diamond seed while dark area, shows lower carbon mass percentage

FESEM micrograph of substrates seeded with <0.5 µm synthetic diamond seeds (a) x 10000 and (b) x 50000

FESEM micrograph of substrates seeded with <0.25 µm natural diamond seeds (a) x 10000 and (b) x 50000

FESEM micrograph of substrates seeded with <0.1 µm synthetic diamond seeds (a) x 10000 and (b) x 100000 and (c) x 25000

Optical micrograph of diamond coating of batch B (a) planar view (x 500) and (b) cross-section view (x 500)

FESEM micrographs of diamond coating of batch B (a) cross-section of diamond multi-layered (x 20000) (b) interface between MCD and NCD (x 50000) (c) cross-
section of diamond multi-layered coating with
delaminated NCD layer (x 25 000) (d) planar view of
NCD layer (x 150 000)

4.67 AFM image of diamond coating of batch B (20 µm x 20
µm) (a) 2D plan view and (b) Cross-section profile

4.68 AFM image of diamond coating of batch B (1 µm x 1 µm)
(a) 2D plan view and (b) Cross-section profile

4.69 Summary of XRD results for sample of batch B with
variation of seeding method

4.70 Summation of Raman spectra of the diamond coatings

4.71 Nanoindentation test results of sample from batch B

4.72 FESEM micrographs of substrates seeded with <1 µm
natural diamond seeds (a) x 2500 (b) x 25 000 (c) x 100
000 and (d) x 100 000

4.73 FESEM micrographs of substrates seeded with <0.25 µm
natural diamond seeds (a) x 10 000 (b) x 50 000 and (c) x
200 000

4.74 Optical micrograph of batch C (a) planar view (x 500) (b)
cross-section view (x 500)

4.75 FESEM micrographs of diamond coatings of batch C (a)
fractured surface, planar view, x 500 (b) Planar view, x
5000 (c) Planar view, x 100 000

4.76 FESEM micrographs of diamond cross-section of batch C
(a) x 15 000 (b) x 25 000 (c) x 15 000 (d) x 15 000 (e)
fracture surface of cross-section, x 15 000 and (f) ground
surface of cross-section, x 15 000

4.77 FESEM micrograph of diamond cross-section of batch C,
x 100 000

4.78 3D topographical view diamond coating of batch C of
different scan size

4.79 Diamond coating by batch C of 10 µm x 10 µm (a) 2D
plan view and (b) line profile

4.80 Diamond coating by batch C of 500 nm x 500 nm (a) 2D
plan view and (b) line profile
4.81 XRD result for diamond coating of batch C of seeding treatment with no hammering

4.82 XRD result for diamond coating of batch C of seeding treatment with hammering

4.83 Raman spectrum of diamond coating in batch C

4.84 Optical micrograph of indentation site of diamond coating in batch C

4.85 Optical micrograph crack of coating instead of delamination

4.86 Nanoindentation test results of diamond coating in batch C

4.87 Optical micrograph of diamond coating cross-section of batch D (a) 15 minutes Murakami agent (b) 20 minutes Murakami agent (c) 25 minutes Murakami agent (d) 30 minutes Murakami agent (e) 30 seconds acid etching and (f) 45 seconds acid etching. (a), (b), (c) and (d) 60 seconds acid etching time. (e) and (f) 20 minutes Murakami agent

4.88 Optical micrograph showing plan view of diamond coating deposited using batch D parameters

4.89 FESEM micrograph of diamond coating of batch D (a) x 100 000 and (b) x 250 000

4.90 FESEM micrograph of diamond cross-section deposited using batch D parameters (a) x 10 000 (b) x 25 000 (c) x 50 000, with dark lines to illustrate growth of diamond and (d) x 100 000

4.91 3D topographical view diamond coating of batch D of different scan size

4.92 Diamond coating by batch D of 20 μm x 20 μm (a) 2D plan view and (b) line profile

4.93 Diamond coating by batch D of 500 nm x 500 nm (a) 2D plan view and (b) line profile

4.94 AFM topography results of diamond coating of batch D
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.95</td>
<td>AFM DMT Modulus map results of diamond coating of batch D</td>
</tr>
<tr>
<td>4.96</td>
<td>AFM dissipation map results of diamond coating of batch D</td>
</tr>
<tr>
<td>4.97</td>
<td>AFM adhesion results of diamond coating of batch D</td>
</tr>
<tr>
<td>4.98</td>
<td>5 mm surface profile of diamond coating of batch D</td>
</tr>
<tr>
<td>4.99</td>
<td>XRD results of diamond coating of batch D of different chemical pretreatment</td>
</tr>
<tr>
<td>4.100</td>
<td>A zoom in of the diamond 43.9° peaks of XRD results diamond coating of batch D of different chemical pretreatment and corresponding FPM Eval model created</td>
</tr>
<tr>
<td>4.101</td>
<td>Raman spectra of diamond coating of batch D</td>
</tr>
<tr>
<td>4.102</td>
<td>Nanoindentation test results of diamond coating deposited using batch D parameters</td>
</tr>
<tr>
<td>4.103</td>
<td>Relative thickness of diamond coatings between batches A, B, C and D</td>
</tr>
<tr>
<td>4.104</td>
<td>Relative surface roughness of batches A, B, C and D</td>
</tr>
<tr>
<td>4.105</td>
<td>The comparison between hardness, reduce modulus and elastic modulus between batches A, B, C and D</td>
</tr>
<tr>
<td>4.106</td>
<td>FESEM micrograph of diamond cross-section of batch D (a) cross-section of two ballases and (b) a copy of image (a) with schematic drawings (blue colour are location of two cross-section ballas, red colour is a removed ballas, lines are identified radial diamond crystals)</td>
</tr>
<tr>
<td>4.107</td>
<td>FESEM micrographs of fracture diamond coating of batch D with radial grains (a), (b) and (c) x 100 000, (d) and (e) x 200 000</td>
</tr>
<tr>
<td>4.108</td>
<td>FESEM micrographs of fracture diamond coating of batch D with radial grain</td>
</tr>
<tr>
<td>4.109</td>
<td>FESEM micrographs of fracture diamond coating of batch D with boundary where two ballas meet</td>
</tr>
<tr>
<td>4.110</td>
<td>FESEM micrographs of fracture diamond coating of batch D with parallel growing grains (a) x 250 000 (b) x 200 000</td>
</tr>
</tbody>
</table>
4.111 Schematic diagram of NCD crystal growth

4.112 TEM micrograph of the WC-diamond interface (a) growth of diamond in substrate crevices and (b) TEM micrograph diamond layer adjacent to the tungsten carbide-diamond interface

4.113 Selected area diffraction (SAD) patterns (a) the approximate area indicator of SAD (b) area 1 (c) area 2 (d) area1_C and (e) area2_C (f) schematic diagram of SAD of WC (g) schematic diagram of SAD of diamond

4.114 TEM and FFT micrograph of the diamond interface (a) High resolution TEM (x 250 000) (b) FFT of entire micrograph (c) FFT of ROI 1 (d) FFT of ROI 2 (e) FFT of ROI 3 (f) FFT of ROI 4 (g) FFT of ROI 5

4.115 High resolution TEM micrograph of the WC-diamond interface

4.116 Schematic cross-section of diamond on tungsten carbide with respect to {111} FCC diamond 90° to the (100) HCP WC planes. (Red-green-blue spheres represent the ABC stacking of the {111} planes of diamond and light green spheres represent tungsten atoms. Both grey spheres represent carbon atoms.)

4.117 Schematic single layer diamond atoms on tungsten carbide with respect to {111} FCC diamond 90° to the (100) HCP WC planes (Plan view). (Red-green-blue spheres represent the ABC stacking of the {111} planes of diamond and light green spheres represent tungsten atoms. Grey spheres represent carbon atoms. The light hatched green spheres represent tungsten atoms of the next layer.)

4.118 High resolution TEM image of defects in the diamond

4.119 TEM micrograph of diamond coating and its’ EDS results

4.120 TEM micrograph of diamond coating deposited using batch D parameters (a) TEM image of location of FFT
performed (x 250 000) (b) FFT image and (c) FFT image with masking

4.121 High resolution TEM micrograph of diamond adjacent to WC substrate

4.122 Schematic cross-section of diamond on tungsten carbide with respect to {111} FCC diamond 76° to the (100) HCP WC planes (Red-green-blue spheres represent the ABC stacking of the {111} planes of diamond and light green spheres represent tungsten atoms. Both grey spheres represent carbon atoms.)

4.123 Schematic single layer diamond atoms on tungsten carbide with respect to {111} FCC diamond 76° to the (100) HCP WC planes (Plan view). (Red-green-blue spheres represent the ABC stacking of the {111} planes of diamond and light green spheres represent tungsten atoms. The light hatched green spheres represent tungsten atoms of the next layer. Grey spheres represent carbon atoms.)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>Atomic Force Microscope</td>
</tr>
<tr>
<td>BEN</td>
<td>Bias Enhanced Nucleation</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapour Deposition</td>
</tr>
<tr>
<td>EDM</td>
<td>Electrical Discharge Machining</td>
</tr>
<tr>
<td>FIB</td>
<td>Focus Ion Beam Milling</td>
</tr>
<tr>
<td>HFCVD</td>
<td>Hot Filament Chemical Vapour Deposition</td>
</tr>
<tr>
<td>HPHT</td>
<td>High Pressure High Temperature</td>
</tr>
<tr>
<td>HRTEM</td>
<td>High Resolution Transmission Electron Microscope</td>
</tr>
<tr>
<td>MCD</td>
<td>Microcrystalline Diamonds</td>
</tr>
<tr>
<td>MEMS</td>
<td>Microelectromechanical Systems</td>
</tr>
<tr>
<td>MPCVD</td>
<td>Microwave Plasma Chemical Vapour Deposition</td>
</tr>
<tr>
<td>NCD</td>
<td>Nanocrystalline Diamonds</td>
</tr>
<tr>
<td>PVD</td>
<td>Physical Vapour Deposition</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>SAD</td>
<td>Selected Area Diffraction</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SIMS</td>
<td>Secondary Ion Mass Spectrometry</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>UNCD</td>
<td>Ultra Nanocrystalline Diamonds</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>XRF</td>
<td>X-Ray Fluorescence</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>'</td>
<td>minute (degree)</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>°</td>
<td>degree</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>at.%</td>
<td>atomic percent</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere</td>
</tr>
<tr>
<td>bar</td>
<td>bar (10⁵ Pascal)</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>eV</td>
<td>electron Volt</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GPa</td>
<td>Gigapascal</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>keV</td>
<td>kilo-electron Volt</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kJ</td>
<td>kilojoule</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolt</td>
</tr>
<tr>
<td>l</td>
<td>liter</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mbar</td>
<td>milli-bar</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mln/minute</td>
<td>milliliter normal per minute</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
</tr>
<tr>
<td>MPa</td>
<td>Megapascal</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>pm</td>
<td>picometer</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>vol.%</td>
<td>volume percent</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>wt.%</td>
<td>weight percent</td>
</tr>
<tr>
<td>α</td>
<td>growth parameter</td>
</tr>
<tr>
<td>Δa</td>
<td>slope angle</td>
</tr>
<tr>
<td>θ</td>
<td>Angle</td>
</tr>
<tr>
<td>θB</td>
<td>Bragg's angle</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>λc</td>
<td>Cut-off value</td>
</tr>
<tr>
<td>μm</td>
<td>micrometer</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Atomic Force Microscopy Data</td>
<td>235</td>
</tr>
<tr>
<td>B</td>
<td>X-Ray Diffraction Data</td>
<td>240</td>
</tr>
<tr>
<td>C</td>
<td>Optical Micrographs of Adhesion Test</td>
<td>257</td>
</tr>
<tr>
<td>D</td>
<td>Publications</td>
<td>259</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Diamond is a wonder of nature and has properties exceeding other materials such as extreme hardness, high thermal conductivity and wear resistance, and low coefficient of friction and thermal expansion, which make it a very effective cutting material. Deposition of microcrystalline diamond (MCD) films via Chemical Vapour Deposition (CVD) method has been progressively improved over the past 30 years of research [1] but three main problems remain for tungsten carbide with cobalt binder (WC-Co) substrates, 1. Poor adhesion to the WC-Co substrate due to difference in coefficient of thermal expansion of diamond and WC-Co, with the cobalt binder phase is a graphite forming promoter, 2. Low diamond growth rates in compromise to quality crystalline grains, and 3. Surface roughness of the diamond thin films [2, 3]. High surface roughness will cause high tool wear and shorter tool life, in addition to affecting machining precision [4] and give poorer surface finish [5]. While various polishing methods for diamond has been introduced, diamond, being the hardest material on earth, makes its polishing process costly and time consuming. Thus, depositing low roughness films by reducing the diamond crystals to nano-size becomes important.

Nanocrystalline diamonds (NCD) has first made its appearance 14 years ago using Hot Filament Chemical Vapour Deposition (HFCVD) method [6]. NCD has superior properties in comparison to MCD of having roughness of a few orders of magnitude lower while retaining the excellent properties of diamond. Much research has been done on depositing NCD on various types of substrates. Many recent
researches have contributed on HFCVD deposition parameters for NCD deposition [7].

Diamond coated tungsten carbide with cobalt binder (WC-Co) surpasses uncoated tool performance in machining of materials such as metal matrix composites, carbon fibers, Aluminium-Silicon Carbide (AlSiC), Aluminium-Silicon (AlSi), wood, odontological and micro-machining tools [3, 5, 8-14]. The performance of the WC-Co tool has been increased with the coating of MCD film [12].

1.2 Problem Statement

The two main problems related to diamond deposition which require further research are; 1. Poor adhesion to the WC-Co substrate due to difference in coefficient of thermal expansion of diamond and WC-Co, with the cobalt binder phase is a graphite forming promoter and 2. Surface roughness of the diamond thin films. Low roughness will reduce associated diamond surface wear [9], and increase cutting performance. While various polishing methods for diamond has been introduced, diamond, being the hardest material on earth, has makes its polishing process costly, time consuming and not practical for complex geometry. Thus, the importance of depositing low roughness films by depositing NCD films becomes significant [15].

HFCVD units are normally used for large area MCD coatings. While research units for HFCVD that coats NCD films have relatively small chambers [4, 16] and small filament to substrate distance in comparison with the commercial MCD units, large chamber deposition unit like CC800s/Dia low pressure HFCVD machine are at least 10 times more volume than small chambers that are mostly custom made [17]. Deposition parameters for NCD using large chamber HFCVD differs from that of small research chambers. Thus there is a need to establish deposition parameters for large chamber units. Previous research by Dayangku [18] shows that crystallite size of approximately 70 nm was successfully grown on different substrates using a large chamber HFCVD unit. Work by Izman and colleagues [19, 20] focused mainly on effects of pretreatment towards diamond deposition for large chamber HFCVD unit.
While Hassan and colleagues [21-23] focused on developing an interlayer for diamond deposition for large chamber HFCVD unit. Thus, there is also a need to understand fundamentals of diamond growth mechanism for large chamber HFCVD unit.

The mechanism of growth of NCD using Microwave Plasma Chemical Vapour deposition (MPCVD) method [24] has been well established. However NCD growth mechanism using HFCVD is still under investigations. The main reason underlining this is that the reactions that form NCD in MPCVD involves plasma formed in MPCVD that is not available in HFCVD. Thus much is not understood about the nucleation and growth mechanisms of NCD in a HFCVD reactor. Nevertheless HFCVD is able to deposit diamond films more uniformly than MPCVD as plasma is limited by the plasma ball.

Furthermore, while NCD deposition has been well studied on silicon substrate, and there are many studies for MCD deposition on WC-Co, the subject on NCD-WC-Co boundaries are limited [4]. Another field of research is to explore whether pretreatment of NCD in large HFCVD units differ to that of NCD deposited in small units.

1.3 Objectives of Research

The objectives of the research are as follows:

1. To perform parametric study on the cutting and substrate pretreatments and to establish deposition parameters to produce strong adhesion of nanocrystalline diamond on tungsten carbide with cobalt binder surface for hot filament chemical vapour deposition method with large reaction chamber.

2. To characterise the deposited diamond coating by evaluating its chemical, morphological and mechanical properties.

3. To determine the characteristics of the bonding interface and growth mechanism of nanocrystalline diamond on tungsten carbide.
1.4 Scopes of the Research

The scopes of the research are as follows:

1. Tungsten carbide substrate sample pretreatment for nanocrystalline diamond deposition.
2. Deposition of thin coalescent nanocrystalline diamond film on tungsten carbide substrate.
4. Adhesion test analysis between diamond and tungsten carbide surface.

1.5 Significance of the Research

This research is expected to produce better and improved adhesion and mechanical properties of NCD coated on WC-Co cutting tool produced by large chamber HFCVD. This may be achieved by varying the deposition parameters and performing pretreatment on the substrate. Analysis of the results will give better understanding on the chemical, morphology and mechanical properties of the NCD that will affect the function of the film as well as better understanding of the NCD-WC interface. This will in turn give better understanding of the nucleation and growth mechanism of the film thus enabling progressive improvements for better diamond coating on cutting tools.
1.6 Organisation of Thesis

This thesis is organised five chapters. Chapter 1 briefly introduces the background of the research, objectives, scopes and significance of the research. Chapter 2 is the literature review. This chapter introduces the subject of study in detail. It deliberates the substrate, the coating, the technique and it is experimental parameters chosen, and the analyses required. This deliberation is based on the works of other researchers.

Chapter 3 is the detailed experimental and analysis methodology. The experiment set up is done in two major phases i.e. the substrate pretreatment phase and the diamond deposition phase. Description of diamond coating preparation for analyses was included.

Chapter 4 portrays the related analytical results to answer the objectives. The results were obtained from Optical Microscope, Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) for topographical data. X-Ray Diffraction (XRD) and Raman Spectroscope produced data for chemical identification. Adhesion test was done to qualitatively measure the adhesion strength of the coating to substrate. Nanoindentation test was done to obtain nano-mechanical properties of the coating. Transmission Electron Microscope (TEM) was done to obtain atomic, chemical and morphology of the diamond to substrate bonding interface. All the data were analysed and discuss in depth to satisfy the objectives.

This thesis ends at Chapter 5. Chapter 5 concludes the findings, elaborates the main limitations of the findings and gives recommended work for future.
REFERENCES

2007

37. Shen, B. and Sun, F. Deposition and friction properties of ultra-smooth

73. Pierson, H.O., *Handbook of Carbon, Graphite, Diamond, and Fullerenes*:

83. Ali, M. Influence of processing parameters on the properties of tin coatings
deposited on tool steels using cathodic arc physical vapour deposition technique. Ph.D. Thesis. Universiti Teknologi Malaysia; 2007

91. Hamzah, E., Pumiawan, A., and Toff, M.R.M. Residual stress analysis using Raman spectra on polycrystalline diamond coated WC deposited by Microwave Plasma Assisted CDV. *International Conference on Sustainable*

109. Polini, R., Delogu, M., and Marcheselli, G. Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase Thin

127. [cited 2010 8 February]; Available from: http://www.insaco.com/MatPages/mat_display.asp?M=TC

132. Chee, K. M. F. Deposition polycrystalline diamond on silicon nitride and tungsten carbide by using hot filament chemical vapor deposition. Bachelor Degree Project Report. Universiti Teknologi Malaysia; 2009.

146. Olympus, *Olympus Micro cantilever OMCL/TR400PSA-1*. 2009

150. Yan, C.-S. and Vohra, Y.K. *Multiple twinning and nitrogen defect center in chemical vapor deposited homoepitaxial diamond*. Diamond & Related

