ELECTROSYNTHESIS OF ZINC OXIDE-COPPER OXIDE SUPPORTED ON MESOSTRUCTURED SILICA NANOPARTICLES FOR PHOTOCATALYTIC DECOLORIZATION OF METHYL ORANGE

NURFATEHAH WAHYUNY BINTI CHE JUSOH

UNIVERSITI TEKNOLOGI MALAYSIA
ELECTROSYNTHESIS OF ZINC OXIDE-COPPER OXIDE SUPPORTED ON MESOSTRUCTURED SILICA NANOPARTICLES FOR PHOTOCATALYTIC DECOLORIZATION OF METHYL ORANGE

NURFATEH AH WAHYUNY BINTI CHE JUSOH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JUNE 2015
Specially dedicated to Aboh and Ma,
Che Jusoh bin Talib and Zahrah binti Mat,
To my beloved siblings, nephew and niece
'Thank you for the endless support during my ups and downs'
&
To my beloved one,
'Thank you for always be there and wait for me patiently
ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah. Peace and blessing to Prophet Muhammad S.A.W. his families and all muslims. Special thanks to my supervisors; Assoc. Prof. Dr. Aishah Abdul Jalil and Prof. Dr. Sugeng Triwahyono for the never ending advise and help during the study. Without their patience, criticisms, ideas and supports, this work could not have been accomplished.

A million thanks and appreciation goes to all the Green Technology and Advanced Materials (GTAM) research group members (Najwa, Jieha, Dina, Zahir, Azrul, Reza, Ziera, Ainul, Arif, Nazirah, Ayu, Tien, Aiza, Fana, Daia, Mun, Peng, Yana, Farah, Khalida, Shida, Rhea, Anis, Rubia, Suk and Lutfi), for giving me a hand in the process of doing this research. A lot of appreciation also goes to the staffs of Ibnu Sina Institute for their valuable help and cooperation. My gratitude to the Ministry of Higher Education through financial support from MyPhD awards.

Last but not least, I would like to extend my deepest gratitude and appreciation to my family and my close friends for their continuous support and endless attention. Thank you very much for everything.
ABSTRACT

Photodecolorization of dyes using heterogeneous catalyst is an important process in wastewater treatment. In this study, an electrochemical method was used to load zinc oxide and copper oxide onto mesostructured silica nanoparticles (CuO-ZnO/MSN). The catalysts were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy-energy dispersive X-ray (FESEM-EDX), transmission electron microscopy (TEM), nitrogen (N$_2$) adsorption-desorption, Fourier transform infrared (FTIR), 29Si magic angle spin nuclear magnetic resonance (29Si MAS NMR), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis/DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), photoluminescence (PL) and cyclic voltammetry (CV). The effects of Zinc (Zn) loading, alkaline treatment of MSN and Copper (Cu) loading were investigated for photocatalytic decolorization of methyl orange (MO) dye. Then, the optimization study was performed by response surface methodology (RSM) and the potential of the best synthesized catalyst was tested on decolorization of simulated dye wastewater. From the result, 5 wt% ZnO loaded on MSN (ZnO/MSN) showed the highest photodecolorization rate (9.93×10^{-2} h$^{-1}$) compared to 1 and 10 wt% ZnO/MSN, due to good dispersion of ZnO on the MSN surface. The alkaline treatment of MSN to load 5 wt% of ZnO catalyst (ZM) of using ammonium hydroxide (NH$_4$OH) (0.5–2.0 M) demonstrated that ZM prepared under 1.0 M NH$_4$OH was the best catalyst that improved the photodecolorization rate up to 3.87×10^{-1} h$^{-1}$. The formation of silicon-oxygen-zinc (Si-O-Zn) with new silicon-oxygen-silicon (Si-O-Si) bonds and creation of oxygen vacancies became the main factors that enhanced the photocatalytic performance. The introduction of Cu as a second metal (1, 3 and 5 wt%) onto ZM catalyst (C-ZM) showed the existence of a synergistic effect between both metal oxides by increasing the formation of Si-O-metal bonds, oxygen vacancies and lowering band gap energy. The high decolorization rate of MO was achieved (1.282 h$^{-1}$), which resulted in 99.5 % of photodecolorization when using 1.0 g L$^{-1}$ of 3 wt% CuO (3C-ZM) at pH 2 of MO solution. From the RSM experiments, a complete decolorization of MO was predicted (99.99 %) at the optimum conditions of pH 3.5 using 1.6 g L$^{-1}$ of 4 wt% CuO (4C-ZM) catalyst. Lastly, the high decolorization of simulated dye wastewater (>75 %) using CuO-ZnO/MSN catalyst proved that the modifications of ZnO would have great significance in the synthesis and developing the various catalysts for wastewater treatment as well as for other applications.
ABSTRAK

Fotopenyahwarnaan bahan pewarna menggunakan pemangkin heterogen telah menjadi salah satu proses yang penting dalam rawatan air sisa. Dalam kajian ini, satu kaedah elektrokimia telah digunakan untuk menyediakan pemangkin zink oksida dan tembaga oksida yang dimuatkan pada mesostruktur silika nanozarah (CuO-ZnO/MSN). Pemangkin telah dicirikan menggunakan pembelauan sinar-X (XRD), emisi medan mikroskopi elektron penskanan-tebaran tenaga sinar-X (FESEM-EDX), mikroskopi pancaran elektron (TEM), penjerapan-penyahjerapan nitrogen (N₂), spektroskopi inframerah transformasi Fourier (FTIR), ²⁹Si putaran sudut ajaib resonans magnet nukleus (²⁹Si MAS NMR), spektroskopi cahaya-nampak ultrungu-penyerapan reflektif spektroskopi (UV-vis/DRS), spektroskopi fotoelektron sinar-X (XPS), resonans putaran electron (ESR), sinar pendarcahaya (PL) dan kitaran voltammetrik (CV). Kesuapan zink (Zn), rawatan alkali pada MSN dan muatan tembaga (Cu) telah dikaji terhadap fotopenyahwarnaan metil jingga (MO). Kemudian, kajian pengoptimuman dilakukan menggunakan kaedah respon permukaan (RSM) dan potensi pemangkin terbaik yang disintesi telah diuji ke atas penyahwarnaan air sisa pewarna simulasi. Daripada hasil kajian, 5 wt% ZnO/MSN menunjukkan kadar fotopenyahwarnaan tertinggi (9.93×10⁻² h⁻¹) berbanding dengan 1 dan 10 wt% ZnO/MSN, ini adalah disebabkan oleh serakan yang baik daripada 5 wt% ZnO pada permukaan MSN. Rawatan alkali pada MSN untuk memuakan 5wt% ZnO (ZM) menggunakan ammonium hidroksida (NH₄OH) (0.5–2.0 M) menunjukkan bahawa ZM yang disediakan menggunakan 1.0 M NH₄OH adalah pemangkin terbaik yang telah menambahbaik kadar fotopenyahwarnaan sehingga 3.87 × 10⁻¹ h⁻¹. Pembentukan silikon-oksigen-zink (Si-O-Zn) dengan ikatan silikonoksigen-silikon (Si-O-Si) baru, dan juga pembentukan kekosongan oksigen menjadi faktor utama yang meningkatkan prestasi fotopemangkinan. Kemasukan Cu sebagai logam kedua (1, 3 dan 5 wt%) pada pemangkin ZM (C-ZM) menunjukkan bahawa kesan sinergi antara kedua-dua logam oksida dengan peningkatan pembentukan ikatan Si-O-logam, kekosongan oksigen dan merendahkan tenaga jurang jalur. Kadar penyahwarnaan yang tinggi telah dicapai (1.282 h⁻¹), dengan penyahwarnaan 99.5 % apabila meggunakan 1.0 g L⁻¹ pemangkin 3 wt% CuO (3C-ZM) pada pH 2 larutan MO. Daripada kajian RSM, penyahwarnaan lengkap MO telah diramal (99.99 %) pada keadaan optima pH 3.5 menggunakan 1.6 g L⁻¹ pemangkin 4 wt% CuO (4C-ZM). Akhir sekali, penyahwarnaan air sisa pewarna simulasi yang tinggi (>75 %) menggunakan pemangkin CuO-ZnO/MSN membuktikan bahawa modifikasi ZnO membawa makna yang besar dalam penyediaan dan pembangunan pelbagai pemangkin untuk rawatan air sisa dan juga aplikasi lain.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Research Background 1
1.2 Problem Statement and Hypothesis 4
1.3 Objectives of Research 5
1.4 Scopes of Research 6
1.5 Significance of Research 8
1.6 Thesis Outline 8

2 LITERATURE REVIEW
2.1 Dyes as Organic Pollutants 10
 2.1.1 Classification of Dyes 11
 2.1.2 Methyl Orange 15
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Technologies of Dyes Removal</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1 Biological Method</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2 Physical Method</td>
<td>18</td>
</tr>
<tr>
<td>2.2.3 Chemical Method</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Advanced Oxidation process (AOPs)</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Photocatalyst for Dye Degradation</td>
<td>23</td>
</tr>
<tr>
<td>2.4.1 Semiconductor Photocatalyst</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2 Zinc Oxide</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Method to Improve Efficiency of ZnO</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1 Synthesis of Nanosized ZnO</td>
<td>25</td>
</tr>
<tr>
<td>2.5.2 ZnO Supported Catalyst</td>
<td>29</td>
</tr>
<tr>
<td>2.5.2.1 Porous Material Supports</td>
<td>34</td>
</tr>
<tr>
<td>2.5.2.2 Mesostructured Silica Nanoparticles (MSN)</td>
<td>35</td>
</tr>
<tr>
<td>2.5.3 Generation of Defect Structure by Alkaline Treatment</td>
<td>35</td>
</tr>
<tr>
<td>2.5.4 Modification with Other Semiconductors</td>
<td>37</td>
</tr>
<tr>
<td>2.6 Techniques of Catalyst Characterization</td>
<td>39</td>
</tr>
<tr>
<td>2.6.1 Determination of Structural Properties</td>
<td>39</td>
</tr>
<tr>
<td>2.6.2 Determination of Morphological Properties</td>
<td>40</td>
</tr>
<tr>
<td>2.6.3 Determination of Chemical Composition and Oxidation</td>
<td>41</td>
</tr>
<tr>
<td>2.6.4 Determination of Textural Properties</td>
<td>42</td>
</tr>
<tr>
<td>2.6.5 Determination of Oxygen vacancies</td>
<td>42</td>
</tr>
<tr>
<td>2.7 Photocatalytic Kinetic</td>
<td>43</td>
</tr>
<tr>
<td>2.8 Optimization by Response Surface Methodology</td>
<td>44</td>
</tr>
<tr>
<td>2.8.1 Steps for RSM Application</td>
<td>45</td>
</tr>
<tr>
<td>2.8.1.1 Preliminary Work: Determination of Independent Variables and Their Levels</td>
<td>45</td>
</tr>
<tr>
<td>2.8.1.2 Selection of The Experimental Design, prediction and Verification Of the Model</td>
<td>46</td>
</tr>
</tbody>
</table>
3 METHODOLOGY

3.1 Introduction

3.2 Chemicals and Materials

3.3 Preparation of Catalysts

3.3.1 Preparation of MSN

3.3.2 Preparation of ZnO and ZnO/MSN

3.3.3 Preparation of ZM

3.3.4 Preparation of CZM

3.4 Characterization of Catalysts

3.5 Photocatalytic Testing

3.6 Stability and Reusability Study

3.7 Optimization by Response Surface Methodology (RSM)

3.8 Application to Simulated Dye Wastewater

3.9 Concluding Remarks

4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Effect of Zn Loading and Its Photocatalytic Activity

4.2.1 Physicochemical Properties of The Catalysts

4.2.2 Photocatalytic Testing

4.2.2.1 Effect of PH

4.2.2.2 Effect of Catalyst Dosage

4.2.2.3 Effect of Zn loading

4.2.3 Kinetics Analysis

4.2.4 Evaluation of Zn Leaching and Catalyst Stability
4.2.5 Proposed Mechanism for Formation of ZnO and ZnO/MSN 91

4.3 Effect of The Alkaline Treatment of MSN support and The Catalyst Photoactivity 94
4.3.1 Physicochemical Properties of the Catalysts 94
4.3.2 Photocatalytic Testing 109
4.3.3 Kinetics Analysis 113
4.3.4 Evaluation of Catalyst Stability 115
4.3.5 Proposed Mechanism for Formation of ZM Catalyst 117

4.4 Effect of Cu Loading on ZnO/MSN and Its Photoactivity 119
4.4.1 Physicochemical Properties of the Catalysts 119
4.4.2 Photocatalytic Testing 130
4.4.3 Kinetics Analysis 132
4.4.4 Proposed Mechanism for Formation of CZM Catalyst 133

4.5 Optimization of Photodecolorization of MO over CuO-ZnO/MSN by Response Surface Methodology (RSM) 135

4.6 Potential of CuO-ZnO/MSN on Photodecolorization of Simulated Dye Wastewater 139

4.7 Concluding Remarks 141

5 CONCLUSION 142
5.1 Conclusion 142
5.2 Future works 144

REFERENCES 145
Appendices A-F 168-178
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of dyes according to their usage (Hunger, 2003)</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Properties of Methyl Orange</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Existing principle and emerging process of dye removal (Crini, 2006)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>The band positions of semiconductor photocatalysts (Robertson, 1996)</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Synthesis condition and photocatalytic activity of various nanostructured ZnO catalysts</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>ZnO incorporated various support materials and their photocatalytic activity for decolorization of MO and other organic pollutant</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>List of chemicals</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>List of catalysts</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Coded levels for parameters used in the experimental design</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Experimental design of MO decolorization</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>The textural properties of the ZnO, MSN and ZnO/MSN catalysts</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>The kinetics parameter of photodecolorization using ZnO and ZnO/MSN catalysts</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Zn leaching in the solution determined by MP-AES for 5 wt% ZnO/MSN catalyst</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>Textural properties of the MSN and ZM catalysts</td>
<td>100</td>
</tr>
</tbody>
</table>
4.5 Band intensity of IR Gaussian curve-fitting of MSN and ZM catalysts 107
4.6 The kinetics parameter of photodecolorization using MSN and ZM catalysts 114
4.7 Textural properties of the MSN, ZM and CZM catalysts 123
4.8 The kinetics parameters of photodecolorization using 3C-ZM catalyst 133
4.9 Experimental design and results of the response surface design 136
4.10 ANOVA for photodecolorization of MO model 137
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structure of Methyl Orange</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>The schematic representation of excitation and separation of electrons and holes for CuO/T-ZnOw hetero-junction under irradiation (Wang et al., 2011a)</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>Profiles of surface response generated from a quadratic model (a) maximum, (b) plateau, (c) maximum outside the experimental region (d) minimum, and (e) saddle surfaces (Bezerra et al., 2008)</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Research methodology flow chart</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Preparation of MSN</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of ZnO/MSN</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Preparation of ZM</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Preparation of CZM</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Wide-angle XRD patterns of synthesized ZnO</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Small-angle XRD patterns of (a) MSN (b) 1 wt% ZnO/MSN (c) 5 wt% ZnO/MSN and (d) 10 wt% ZnO/MSN catalysts</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>FESEM–EDX images of (A) ZnO (B) MSN and (C) 5 wt% ZnO/MSN catalysts</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>TEM images of (A) ZnO (B) MSN and (C) 5 wt% ZnO/MSN catalysts</td>
<td>72</td>
</tr>
</tbody>
</table>
4.5 N\textsubscript{2} adsorption–desorption isotherm plots of (A) MSN (B) 1 wt% ZnO/MSN (C) 5 wt% ZnO/MSN and (C) 10 wt% ZnO/MSN catalysts 74

4.6 29Si MAS NMR spectra of (a) MSN and (b) 5 wt% ZnO/MSN catalysts 75

4.7 FTIR spectra of (a) ZnO (b) MSN (c) 1 wt% ZnO/MSN (d) 5 wt% ZnO/MSN and (e) 10 wt% ZnO/MSN catalysts 77

4.8 (A) IR spectra of activated catalysts and (B) Baseline correction of hydroxyl region; (a) MSN (b) 1 wt% ZnO/MSN (c) 5 wt% ZnO/MSN and (d) 10 wt% ZnO/MSN catalysts 78

4.9 IR spectra of pyridine adsorbed on activated catalysts at 423 K followed by removal of pyridine at 573 K of (a) MSN (b) 1 wt% ZnO/MSN (c) 5 wt% ZnO/MSN and (d) 10 wt% ZnO/MSN catalysts 79

4.10 IR spectra of CO adsorbed on activated catalysts at 123 K of (a) MSN (b) 1 wt% ZnO/MSN (c) 5 wt% ZnO/MSN and (d) 10 wt% ZnO/MSN catalysts 80

4.11 PL spectra of the catalysts with the excitation wavelength of 325 nm (a) MSN (b) 1 wt% ZnO/MSN (c) 5 wt% ZnO/MSN and (d) 10 wt% ZnO/MSN catalysts. Inset figure shows PL spectra for ZnO 82

4.12 Effect of pH on photodecolorization of MO [C\textsubscript{o} = 10 mg L-1; W = 1 g L-1; t = 8 h; 5 wt% ZnO/MSN; 303 K] 84

4.13 The isoelectric point (pH\textsubscript{pzc}) of 5 wt% ZnO/MSN catalyst 85

4.14 Effect of catalyst dosage on photodecolorization of MO [C\textsubscript{o} = 10 mg L-1; pH = 2; t = 8 h; 5 wt% ZnO/MSN; 303 K] 86

4.15 Effect of Zn loading on photodecolorization of MO [C\textsubscript{o} = 10 mg L-1; pH = 2; t = 8 h; W = 1 g L-1; 303 K] 87

4.16 Photodecolorization kinetics of MO using ZnO and ZnO/MSN catalysts 89

4.17 Stability of 5 wt% ZnO/MSN on decolorization of MO [10 mg L-1; pH = 2; t = 8 h; 303 K] 91

4.18 Possible reaction pathways for formation of ZnO 93

4.19 Possible reaction pathways for formation of ZnO/MSN 94
Small-angle XRD patterns of (a) ZM-0 (b) ZM-0.5 (c) ZM-1.0 and (d) ZM-2.0 catalysts. The Inset figure shows the XRD pattern of MSN

FESEM and TEM images of MSN (A,C) and ZM–1.0 (B,D,E,F) catalysts

N₂ adsorption–desorption isotherm plots of (A) MSN and ZM catalysts

N₂ adsorption–desorption isotherm plots of (A) MSN and ZM catalysts

N₂ adsorption–desorption isotherm plots of (A) MSN and ZM catalysts

\(^{29}\)Si MAS NMR spectra of (A) MSN (B) ZM-0 and (C) ZM-2.0 catalysts

FTIR spectra of (a) MSN (b) ZM-0 (c) ZM-0.5 (d) ZM-1.0 and (e) ZM-2.0 catalysts

Percentage change of the related band compared to bare MSN band which calculated based on intensity of the band

FTIR spectra of (A) MSN (B) ZM-0 (C) ZM-0.5 (D) ZM-1.0 and (E) ZM-2.0 catalysts and Gaussian curve-fitting of band at 966 cm\(^{-1}\)

(A) IR spectra of activated catalyst and (B) Baseline correction of hydroxyl region; (a) MSN (b) ZM-0 (c) ZM-0.5 (d) ZM-1.0 and (e) ZM-2.0 catalysts

Photoluminescence analysis of (a) ZM-1.0, (b) ZM-0 and (c) ZM-2.0 catalysts

Performance of MSN and ZM catalysts on photodecolorization of MO \([C_0 = 10 \text{ mg L}^{-1}; \text{pH} = 2; t = 8 \text{ h}; W = 1 \text{ g L}^{-1}; 303 \text{ K}]\)

Photodecolorization efficiencies of MO in the presence of scavengers \([C_0 = 10 \text{ mg L}^{-1}; \text{pH} = 2; t = 8 \text{ h}; W = 1 \text{ g L}^{-1}303 \text{ K}]\)

Proposed mechanism for photodecolorization of MO over ZM-1.0 catalyst

Photodecolorization kinetics of MO using MSN and ZM catalysts

Reusability of ZM-1.0 catalyst on photodecolorization of MO
4.35 Proposed structure of ZM catalysts

4.36 (A) Small-angle and (B) wide-angle XRD patterns of (a) MSN (b) ZM (c) 1C-ZM (d) 3C-ZM (e) 5C-ZM and (f) Z-3CM catalysts

4.37 FESEM images and EDX mapping of (A) 3C-ZM and (B) Z-3CM catalysts

4.38 (A) BET surface area and pore volume plots and (B) NLDFT pore size distribution of MSN, ZM and CZM catalysts

4.39 FTIR spectra of (a) MSN (b) ZM (c) 1C-ZM (d) 3C-ZM (e) 5C-ZM and (f) Z-3CM catalysts

4.40 FTIR spectra of deconvoluted band of (A) MSN (B) 3C-ZM (C) Z-3CM and (D) summarized peak area at band 1084 cm\(^{-1}\)

4.41 FTIR spectra of deconvoluted band of (A) MSN (B) 3C-ZM (C) Z-3CM and (D) summarized peak area at band 966 cm\(^{-1}\)

4.42 XPS spectra of O 1s for (A) MSN (B) 3C-ZM and (C) Z-3CM catalysts

4.43 ESR signals of catalysts of the MSN, ZM and CZM catalysts

4.44 Band gap value of ZM and CZM catalysts calculated by Tauc plot

4.45 Performance of MSN, ZM and CZM catalysts on photodecolorization of MO \([C_0 = 10 \text{ mg L}^{-1}; \text{pH} = 2; t = 5 \text{ h}; W = 1 \text{ g L}^{-1}; 303 \text{ K}]\)

4.46 (A) Photodecolorization kinetics and (B) Relationship between \(1/k_{\text{app}}\) and \(C_0\) for decolorization of MO using 3C-ZM catalyst

4.47 Proposed structure of CZM catalysts. Inset figure shows cyclic voltammogram of the catalysts

4.48 Parity plot for the observed and predicted photodecolorization of MO
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.49</td>
<td>Response surface plot of the combined (A) pH and catalyst dosage; (B) catalyst dosage and Cu loading and (C) Cu loading and pH for photodecolorization of MO</td>
<td>138</td>
</tr>
<tr>
<td>4.50</td>
<td>Pareto chart and p-values of photodecolorization of MO</td>
<td>139</td>
</tr>
<tr>
<td>4.51</td>
<td>Photodecolorization activity of 3C-ZM catalyst for photodecolorization of simulated dyes</td>
<td>140</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 wt% ZnO/MSN</td>
<td>1 wt% of Zn loaded on MSN</td>
</tr>
<tr>
<td>1C-ZM</td>
<td>1 wt% of Cu loaded on ZM-1.0</td>
</tr>
<tr>
<td>3C-ZM</td>
<td>3 wt% of Cu loaded on ZM-1.0</td>
</tr>
<tr>
<td>5 wt% ZnO/MSN</td>
<td>5 wt% of Zn loaded on MSN</td>
</tr>
<tr>
<td>5C-ZM</td>
<td>5 wt% of Cu loaded on ZM-1.0</td>
</tr>
<tr>
<td>10 wt% ZnO/MSN</td>
<td>10 wt% of Zn loaded on MSN</td>
</tr>
<tr>
<td>AOPs</td>
<td>Advances oxidation process</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmett-Teller</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic voltammetry</td>
</tr>
<tr>
<td>e^{-}_CB</td>
<td>Electron in the conduction band</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive X-ray</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron spin resonance</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>h^+_VB</td>
<td>Hole in the valence band</td>
</tr>
<tr>
<td>MP-AES</td>
<td>Microwave plasma-atomic emission spectrometer</td>
</tr>
<tr>
<td>NA</td>
<td>Not available</td>
</tr>
<tr>
<td>NLDFT</td>
<td>Non-local density functional theory</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>29Si MAS NMR</td>
<td>29Si Magic Angle Spinning Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet-visible</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>UV-vis DRS</td>
<td>Ultraviolet-visible/diffuse reflectance spectrophotometer</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>Z-3CM</td>
<td>5 wt% of Zn loaded on 3 wt% CuO/MSN synthesized in the presence of 1.0 M NH₄OH</td>
</tr>
<tr>
<td>ZM-0</td>
<td>5 wt% ZnO/MSN synthesized without NH₄OH</td>
</tr>
<tr>
<td>ZM-0.5</td>
<td>5 wt% ZnO/MSN synthesized in the presence of 0.5 M NH₄OH</td>
</tr>
<tr>
<td>ZM-1.0</td>
<td>5 wt% ZnO/MSN synthesized in the presence of 1.0 M NH₄OH</td>
</tr>
<tr>
<td>ZM-2.0</td>
<td>5 wt% ZnO/MSN synthesized in the presence of 2.0 M NH₄OH</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\%
- Percentage

°C
- Degree Celsius

cm
- Centimeter

eV
- Electron volt

g
- Gram

g L\(^{-1}\)
- Gram per liter

h
- Hour

K
- Kelvin

mA
- Miliamphere

min
- Minute

mg L\(^{-1}\)
- Miligram per liter

mM
- Milimolar

mL
- Mililiter

M
- Molar

nm
- Nanometer

μm
- Micromter

s
- Second

T
- Temperature

W
- Watt
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Calculation for the preparation of metal loaded on support</td>
<td>168</td>
</tr>
<tr>
<td>B</td>
<td>Standard calibration curve</td>
<td>169</td>
</tr>
<tr>
<td>C</td>
<td>Calculation of (100)/(002) ratio in XRD pattern of ZnO</td>
<td>172</td>
</tr>
<tr>
<td>D</td>
<td>Band gap calculation (Tauc Plot)</td>
<td>173</td>
</tr>
<tr>
<td>E</td>
<td>Data of RSM Verification Experiment</td>
<td>174</td>
</tr>
<tr>
<td>D</td>
<td>List of publications</td>
<td>175</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Research Background

The rapid growth in industrial activities, especially in the textile industries had resulted in serious environmental problem due to the discharge of an unprecedented amount of wastewater containing synthetic dyes. A statistic had been point out and it was calculated over 100,000 available dyes and pigments have been effectively commercialized with the production of more than 7×10^5 tonnes annually (ALzaydien (2009); Azhar et al., 2005; Hameed et al., 2008). The discharge of a large amount of wastewater containing these dyes from an industrial dying process into natural streams increases the toxicity and chemical oxygen demand of water. Then, they pollute the river and affect the environment, human health and additionally cause earnest harm to aquatic life (Haris and Sathasivam, 2009). The mutagenic and carcinogenic effect occurs too. Once these organic pollutants mainly dyes enter the water stream, they are difficult to treat due to their synthetic origin and complex molecular structure which make them more stable and difficult to be biodegraded (Gupta and Suhas, 2009).
In recent times, advances oxidation process (AOPs) is an emerging technology for an efficient treatment of industrial wastewater containing dyes. This process involves simultaneous use of more than one oxidation process to accelerate the production of reactive hydroxyl free radicals. They are included heterogeneous and homogeneous photocatalysis under ultraviolet (UV) or solar visible irradiation in the presence of hydrogen peroxide, ozone and/or Fenton reagents (Simonsen et al., 2010). The AOPs using heterogeneous semiconductor photocatalysts such as TiO₂, Fe₂O₃, ZnO, CuO, ZrO₂, CdS, and SnO₂ have gained much interest in the treatment of organic contaminant due to its safe and detoxification nature to the environment (Wahab et al., 2011). Besides, its capability to destruct pollutant at ambient temperature and pressure also become the reason for the researchers to increase their focus on this area.

ZnO is one of the important wide band gap semiconductor (3.37 eV), that comparable with TiO₂ because of its unique properties and numerous advantages (Kansal et al., 2011). However, ZnO can only absorb a small portion of solar spectrum in the UV region, which results in low photocatalytic efficiency (Xie et al., 2012). In order to improve the efficiency, many studies have been performed to modify this metal oxide. Generally, there are four major techniques have been highlighted in improving the photocatalytic efficiency of such semiconductor: (i) increasing the surface area of the metal oxide by synthesizing nanosized materials, (ii) adding a support such as silica, alumina, zeolite, etc. (iii) creation of a defect structure, and (iv) addition of other metal or semiconductor (Rusu and Yates, 1997; Saleh, 2013).

In parallel with the first techniques, electrochemical method has been realized to have many advantageous, particularly in the synthesis of nanoparticles materials. It was reported that several nanosized particles such as α-Fe₂O₃, ZrO₂ and CuO were easily prepared using a simple electrochemical method (Jaafar et al., 2012; Jalil et al., 2013; Sapawe et al., 2012), and they were successfully used as photocatalyst in the decolorization of various dyes.
On the other hand, the large surface area and high adsorption capacity are very important to increase the photocatalytic activity of semiconductor. The addition of support is a feasible approach (Pang et al., 2014). The studies on the mesoporous silica (MS) as support materials have received much attention. The MS materials, such as MCM-41 and SBA-15, have been extensively investigated due to their properties such as high surface area, highly uniform pore distribution, tunable pore size and unique hosting (Mihai et al., 2010). In response to this, mesostructured silica nanoparticles (MSN) has become increasingly important because it also has such properties which offers considerable potential as an excellent solid support for immobilization of heterogeneous catalysts.

The generation of defect structure mainly oxygen vacancy has been extensively investigated. It has been revealed that oxygen vacancy can behave as important adsorption and active sites for heterogeneous catalysis, which are able to strongly influence the activity of the catalyst (Pan et al., 2013). The modification of mesoporous materials using alkaline treatment is one of the beneficial approach to generate this oxygen vacancy.

The addition of a narrow band gap semiconductor with another having broad band gap was reported to enhance the photocatalytic activity by suppressed the recombination of photogenerated electron–hole pairs (Sathishkumar et al., 2011). The preparation of ZnO-CuO nanocomposites has been recognized to improve photocatalytic activity toward degradation of methyl orange and methyl blue when compared with bare ZnO (Saravanan et al., 2013b).

Although the large efforts have been undertaken to find a suitable catalyst for photocatalytic decolorization of dyes in wastewater, a lot of fundamental issues are not clear yet. There is still lack of report on the possible interaction between metal and support material which provide active sites to enhance their photocatalytic activity. Herein, we report a preparation of ZnO supported on MSN using an electrochemical method, in a relatively low temperature and simple experimental set-
The preparation of ZnO loaded on the alkaline treated MSN by altering the electrolyte condition was also performed. Then, a second metal, Cu was introduced into ZnO/MSN catalyst to enhance their catalytic activity toward decolorization of methyl orange (MO) dye. Next, optimization process was carried out using response surface methodology (RSM). Lastly, the potential used of the optimum catalyst was investigated on photodecolorization of simulated dye wastewater.

1.2 Problem Statement and Hypothesis

Recently, the development in manufacturing industries such as textile, foods, cosmetics and others leads to the usage of organic compound in the production of a wide variety of commercial products. This process causes the discharge of many different types of organic compounds, especially dyes into water bodies. The discharge of the effluents without treatment will cause harm to the environment and also human health. For the treatment reason, various techniques such as adsorption (Karim et al., 2012), coagulation and flocculation, oxidation or ozonation (Malik and Saha, 2003), and membrane separation (Ciardelli et al., 2001) had been developed from time to time. However, these conventional techniques still have their drawbacks, especially in their efficiency to remove pollutants and waste disposal problem.

AOPs appears to be a promising technique to remove the pollutants. This process have an ability to degrade the organic dyes and other nontoxic inorganic compounds without bringing secondary pollution (Zhu et al., 2012). In the past two decades, TiO$_2$ is frequently used as photocatalyst for photodegradation of organic compound. However TiO$_2$ tend to aggregate and uneconomical for large scale of production. ZnO has gained much interest as a photocatalyst to replace the use of TiO$_2$. However, the large band gap and high recombination rate of photo-induced electron–hole pairs limited its practical application in photocatalysis. Therefore,
several other studies have been developed to improve the activity of ZnO catalyst, such as adding of support material or second metal and by enhancing the defect sites as reported previously (Dai et al., 2014; Liu et al., 2008; Wang et al., 2012). Unfortunately, the detail studies on metal-support interaction and influence of the defect site rich-support is still scanty. Therefore, it is desirable to explore the structure of the synthesized catalysts, study the interaction between metal and support materials as well as the formation of defect sites, which play significant roles in enhancing the photocatalytic efficiency.

It was hypothesized that the preparation of ZnO and CuO supported on mesostructured silica nanoparticles (CuO-ZnO/MSN) via an electrochemical method give a great advantage as a facile synthesis route. The introduction of Zn species onto a silica framework via desilication followed by substitution was expected to form an active site, Si-O-Zn bond which enhanced the photocatalytic activity. Additionally, the alkaline treatment of MSN with ammonium hydroxide (NH₄OH) resulting in the restructuring of the silica framework by the creation of oxygen vacancies was expected to be a factor that enhanced the catalytic performance. Lastly, the introduction of the second metal, Cu to was also anticipated to endow extra properties on the characteristic of the catalyst, which believed to demonstrate the synergistic effect between both metal and support, thus also enhanced the photocatalytic activity

1.3 Objectives of Research

The objectives of this research are:

1. To synthesize and characterize the CuO-ZnO/MSN catalysts.
2. To determine the effect of Zn loading, alkaline treatment of MSN support and Cu loading toward the catalyst photoactivity.

3. To optimize the photodecolorization of MO over CuO-ZnO/MSN by response surface methodology (RSM).

4. To determine the potential of CuO-ZnO/MSN on photodecolorization of simulated dye wastewater.

1.4 Scopes of Research

To complete the objectives of this study, five main scopes are listed below,

1. Synthesis and characterization of the ZnO/MSN based catalysts.

The MSN were prepared using a co-condensation and sol–gel method as reported in previous literature (Karim et al., 2012). The ZnO loaded onto MSN based catalysts were prepared using electrochemical method. Then the catalysts were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), field emission scanning electron microscopy with energy dispersive X-ray (FESEM/EDX), transmission electron microscopy (TEM), N$_2$ physisorption, 29Si Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy (29Si MAS NMR), photoluminescence (PL), ultraviolet-visible/diffuse reflectance spectrometer (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), electron spinning resonance (ESR) and cyclic voltammetry (CV).
2. Determination of the effect of Zn loading, alkaline treatment of MSN support and Cu loading toward the catalyst photoactivity

i. Determine the effect of Zn loading.

Three different weight loading of Zn (1, 5 and 10 wt%) were loaded on the MSN via electrochemical method and the catalysts were evaluated for photodecolorization of MO dye.

ii. Determine the effect of alkaline treatment of MSN support.

The structure of MSN was tailored using a different concentration of alkaline base, NH₄OH (0, 0.5, 1.0 and 2.0 M), added into the electrolyte mixture. A 5 wt% of Zn was loaded into the treated MSN, and the catalysts were evaluated for the photodecolorization of MO dye.

iii. Determine the effect of Cu loading onto ZnO/MSN catalyst.

The 1, 3, and 5 weight% of Cu were loaded onto ZnO/MSN catalyst by changing the Zn plate anode with Cu plate. Besides, the effect of the metal introduction sequence was studied by changing the metal electrolysis order. Then, the catalysts were evaluated for the photodecolorization of MO dye.

3. Optimization of the photodecolorization of MO over CuO-ZnO/MSN by response surface methodology (RSM).

The optimum condition for photodecolorization of MO over CuO-ZnO/MSN catalyst was identified by RSM experiment using central composite design (CCD) developed by Statistica 6.0 StatSoft. The parameters are including initial pH (2–8), adsorbent dosage (0.4 - 1.6 g L⁻¹), and Cu loading (1-5 wt %). These parameters were chosen based on the results of preliminary studies.
that have been conducted. The performance of the catalyst was evaluated by analyzing the response of photodecolorization percentage of MO.

4. Determination of the potential of CuO-ZnO/MSN on photodecolorization of simulated dye wastewater.

The potential of the best catalyst was studied for photodecolorization of simulated dye wastewater which contained of four types of dyes, including methyl orange, methylene blue, congo red and malachite green.

1.5 Significance of Research

This study was conducted to synthesize the ZnO/MSN based catalysts. A detail investigation of physicochemical properties of the catalysts as well as the photocatalytic activity was conducted. It was well known that ZnO catalyst attracts much attention on photocatalytic application. Moreover, several studies had been done to further improve the photocatalytic activity of ZnO by adding support materials and second metal. However, the detail discussion on the properties related to the structure was still scanty in this area. It will be a good contribution to study the effect of modification of ZnO which enhanced its photoactivity.

1.6 Thesis Outline

This thesis was divided into five chapters. In Chapter 1, an introduction is given about the commercial use of dyes in industries and the importance of dye
removal in the effluent which generally cause a problem to the environment and human health. The conventional removal techniques of dyes were also mentioned. Besides that, the potential of ZnO as semiconductor photocatalyst and MSN as support material were highlighted. The problem of the current research was stated to give the clear objectives of the present study, while the scopes of study cover the research work done to meet these objectives.

Chapter 2 which is a literature review covers the details on previous studies that have been done in order to get the clear view in the synthesis, characterization and photocatalytic efficiency ZnO based catalyst.

Chapter 3 or experimental methodology describes in details on the materials and chemical reagents used in the present work, the procedure for catalyst preparation, characterization and photocatalytic reaction which includes experimental setup and analysis calculation.

Chapter 4 focuses on results and discussion comprehensively which divided into five parts, (i) effect of Zn loading and its photocatalytic activity, (ii) effect of the alkaline treatment of MSN support and the catalyst photoactivity, (iii) effect of Cu loading on ZnO/MSN and its photoactivity, (iv) optimization of photodecolorization of MO over CuO-ZnO/MSN by response surface methodology (RSM) and (v) potential of CuO-ZnO/MSN on photodecolorization of simulated dye wastewater.

Finally, Chapter 5 consists of the conclusions about the study. The recommendation for future studies were also given in this final chapter.
REFERENCES

Bouvy, C., Marine, W., and Su, B.-L. (2007). ZnO/mesoporous silica nanocomposites prepared by the reverse micelle and the colloidal methods:

of 'activated' silicalite-1 and ZSM-5 with different aluminum content. *Microporous Materials.* 8: 159-169.

terms of acid sites properties and their accessibility. *Journal of Catalysis.* 312: 46-57.

