HIGH AMPLITUDE WAVE LINER EFFECTS ON JOURNAL BEARING PERFORMANCE

ASRAL

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2015
DEDICATION

To Sukmawati, Suci, and Farabbi for all their love and understanding
ACKNOWLEDGEMENT

Firstly, I would like to express my gratitude to my thesis supervisor, Assoc. Prof. Dr. Kahar bin Osman, for his valuable guidance, and encouragement.

Secondly, my thanks are due to the following individuals:

Rectors of Universitas Riau, Indonesia for guarantee my study leave at Universiti Teknologi Malaysia.

All Staffs and technicians of Fluids Laboratory for the assistance given during the experimental part of the work.

All my colleagues in the department with whom I had many fruitful discussions.

My dear parents, wife, and daughters who had to endure the difficulties resulting from my absence.

Finally, I wish to thank Local Government of Riau Indonesia for financial support this work.
ABSTRACT

Modification on the liner bearing was one of the ways to achieve sufficient lubricant on a journal bearing system. Efforts had shown that the ability to retain some lubricant by introducing wave like grooves on the liner has improved the performance of the bearings. However, the database for the modifications is still lacking. This study aims to establish and correlate modifications of the liner with the performance of the journal bearing. Numerical and experimental work were done to compare and relate several geometries of liner bearing modifications based on previous studies as well as new ones. The previously studied sine wave liner bearing involved investigations with the square and semi circular liners. Plain liner bearing was used as reference. All cases were investigated experimentally by a test rig under low operating loads of 30 N to 450 N with high speed conditions of 1200 RPM to 2800 RPM. Some of the parameters were validated in order to compare the numerical and experimental data. Case studies also included engine oil and palm olein as the lubricants. The performance of the bearings was analyzed by examining the side flow rates, lubricant temperature change, eccentricity ratio, and pressure distributions. The results show that, modifying the shape liner bearing under all operating conditions could increase the lubricant flow rate which was approximately 1.5 times than the plain liner bearing and reduce the lubricant temperature change by about 35%. The bearings with the wave shape liner led to the eccentricity ratio increase but within the acceptable range of 0.6 to 0.9. Majority of the results showed lower a maximum pressure than the plain liner bearing with the exception of the bearing with the square wave shape liner.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxxi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxxiii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION | 1 |
1.1 Background of the Problem | 1 |
1.2 Problem Statement | 4 |
1.3 Objectives | 4 |
1.4 Scope of Research | 5 |
1.5 Research Contributions | 6 |
1.6 Outline of Thesis | 6 |

2 LITERATURE REVIEW | 8 |
2.1 Brief Overview | 8 |
2.2 Basic Concepts in Journal Bearing Studies | 10 |
2.2.1 Liner Bearing 11
2.2.2 Loads 11
2.2.3 Lubricants 11
2.2.4 Journal Bearing Eccentricity 12
2.2.5 Ratio Length to Diameter 13
2.2.6 Lubrication Regimes 14
2.2.7 Side Flow Journal Bearing 15
2.2.8 Minimum Film Thickness 17
2.2.9 Maximum Film Pressure 19

2.3 Lubricants Selection and Lubrications Studies 20
2.4 Thermal Characteristic of Journal Bearings 25
2.5 Pressure Distribution within Journal Bearings 30
2.6 Non-Circular Journal Bearings 32
2.7 Grooved Journal Bearings 35
2.8 Numerical Studies of Journal Bearings 37
2.9 New Gap for Current Study 42

3 METHODOLOGY 46
3.1 General 46
3.2 Lubricants 47
3.3 Experimental Setup 49
 3.3.1 Wavy Liner Bearing Concepts 52
 3.3.2 Fluid Film Pressure Measurement 63
 3.3.3 Fluid Film Thickness Measurement 66
 3.3.4 Oil Flow Side Measurement 68
3.4 Numerical Approach 71
 3.4.1 Mesh Assessment 71
 3.4.2 Flow Modeling 72
 3.4.3 Boundary Conditions 74
 3.4.4 Parameters of Iteration 75
 3.4.5 Determination of Flow Type 76
 3.4.6 Selection of Model 77
 3.4.7 Newtonians Order of Lubricants 79
 3.4.8 Validation 80
RESULTS AND DISCUSSION

4.1 General

4.2 Oil Side Flow Rate of Journal Bearing
 4.2.1 Oil Side Flow Rate under Constant Speed
 4.2.2 Oil Side Flow Rate under Various Speeds

4.3 Lubricants Temperature Changes
 4.3.1 Lubricants Temperature Changes under Constant Speed
 4.3.2 Lubricants Temperature Changes under Various Speeds

4.4 Journal Bearing Eccentricity
 4.4.1 Eccentricity under Constant Speed
 4.4.2 Eccentricity under Various Speeds

4.5 Pressure Distribution
 4.5.1 Pressure Distribution Circumferentially of Journal Bearing
 4.5.2 Peak of Maximum Pressure under Various Speeds

4.6 Data Validation
 4.6.1 Clarification of Negative Pressure
 4.6.2 Contours of Pressure on Journal bearing
 4.6.3 Comparisons of Pressure Profile

4.7 Details in Various Number and Amplitude of wave Liners Study on Journal Bearing Performance
 4.7.1 Square Wave Liner with Various Numbers of Wave Journal Bearing Performance
 4.7.2 Semi Circular Wave Liner with Various Amplitudes of Wave Journal Bearing Performance

4.8 Summary of Result and Discussion
 4.8.1 Summary of Oil Side Flow
 4.8.2 Summary of Lubricant Temperature Changes
 4.8.3 Summary of Journal Bearing Eccentricity
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of previous studies focused on modification of the liner bearing in order to find the gap for current study</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Properties of Palm Olein and Engine Oil SAE 20W-40 as lubricants</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Specification of main component the rig testing</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Wave liner bearing specifications</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Reynolds number calculation</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>Representation of data collection of wave journal bearing</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Side flow rate of square wave liner bearing with various number of wave and loads under lubricants of palm olein (PO) and engine oil (EO)</td>
<td>151</td>
</tr>
<tr>
<td>4.3</td>
<td>Lubricant temperature change of square wave liner bearing with various numbers of wave and loads under lubricant of palm olein (PO) and engine oil (EO)</td>
<td>153</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Eccentricity ratio of square wave liner bearing with various numbers of wave and loads under lubricant of palm olein (PO) and engine oil (EO)</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Peak of maximum pressure of square wave liner bearing with various numbers of wave and loads under lubricant of palm olein (PO) and engine oil (EO)</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Side flow rate of semi circular wave liner bearing with various amplitudes of wave and loads under lubricant of palm olein (PO) and engine oil (EO)</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Lubricant temperature change of semi circular wave liner bearing with various amplitudes of wave and loads under lubricant of palm olein (PO) and engine oil (EO)</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Eccentricity ratio of semi circular wave liner bearing with various amplitudes of wave and loads under lubricant of palm olein (PO) and engine oil (EO)</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Peak of maximum pressure of semi circular wave liner bearing with various amplitudes of wave and loads under lubricant of palm olein (PO) and engine oil (EO)</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic of journal bearing component, Khonsari and Booser (2008)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Stribeck curve for types of journal bearing lubrication related to the bearing parameter, Mott (2004)</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Raimondi and Boyd chart for flow variable, Shigley et al. (2004)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Raimondi and Boyd chart for determining the ratio of side flow to total flow, Shigley et al. (2004)</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Raimondi and Boyd chart for minimum film thickness variable and eccentricity ratio, Shigley et al. (2004)</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Raimondi and Boyd chart for determining the position of the minimum film thickness, Shigley et al. (2004)</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Raimondi and Boyd chart for determining the maximum film pressure, Shigley et al. (2004)</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Raimondi and Boyd chart for finding the terminating</td>
<td></td>
</tr>
</tbody>
</table>
2.9 Comparison of palm oil dynamics viscosity to engine oil SAE 20W under the effect of temperature increase

2.10 Characteristics of maximum temperature, power loss, and flow rate in various specific loads of circular journal bearing, Ma and Taylor (1996)

2.11 Characteristics of maximum temperature, power loss, and flow rate in various specific loads of elliptical journal bearing, Ma and Taylor (1996)

2.12 Lemon–bore bearing and model geometry, Ostayen and Beek (2009)

2.13 Non-circular journal bearing types, (a) Offset-halves journal bearing, and (b) Elliptical journal bearing, Chauhan et al. (2011)

2.15 Oil flow rate profile of wave journal bearing in various radial loads, Dimofte et al. (2007)

2.16 Journal bearings with one axial groove, Singh et al. (2008)

3.1 Viscosity variations of palm olein and engine oil as lubricants with temperature

3.2 (a) Real image of rig testing component, and (b) The arrangement of rig testing components; oil tank 1,
holder 2, main frame 3, belt 4, electric motor 5, load 6, pressure gage 7, pulley 8, main shaft 9, dial gauge 10, journal bearing 11, support bearing 12, load lever 13

3.3 (a) Real image of bearing with pressure tap, and (b) Schematic of bearing testing

3.4 Basic geometry of journal bearing

3.5 Detail of triangle geometry for fluid film evaluation

3.6 Parameters description on square-wave liner bearing

3.7 Parameters description on sinusoidal-wave liner bearing

3.8 Parameters description on semi circular-wave liner bearing

3.9 (a) Sectional area of three different types of wave liner bearings, and (b) displays the real image of wave liner bearing

3.10 Geometry of semi circular wave liner bearing, (a) design, and (b) real image.

3.11 Geometry of square wave liner bearing, (a) designs, and (b) real image

3.12 Geometry of sinusoidal wave liner bearing, (a) designs, and (b) real image

3.13 Real image of pressure gage

3.14 Schematic of pressure measurement
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.15</td>
<td>The manner of dial gauge placement on the bearing</td>
</tr>
<tr>
<td>3.16</td>
<td>Schematic of film thickness measurement</td>
</tr>
<tr>
<td>3.17</td>
<td>Schemes of lubricant side flow, (a) real image and (b) illustration</td>
</tr>
<tr>
<td>3.18</td>
<td>Sample of mesh assessment for circumferential pressure of journal bearing</td>
</tr>
<tr>
<td>3.19</td>
<td>Set of typical boundary condition</td>
</tr>
<tr>
<td>3.20</td>
<td>Displays of pressure contour of bearing calculated with, (a) laminar model, and (b) turbulence model</td>
</tr>
<tr>
<td>3.21</td>
<td>Comparisons of pressure distribution at the middle area of around circumference of bearing calculated with laminar and turbulence model</td>
</tr>
<tr>
<td>3.22</td>
<td>Pressure distributions around circumferential bearing as the variation of Power Law index, n</td>
</tr>
<tr>
<td>3.23</td>
<td>Sketch of circumferential and axial position</td>
</tr>
<tr>
<td>4.1</td>
<td>Side flow rate of plain liner in various loads and shaft speed of 1260 RPM constant</td>
</tr>
<tr>
<td>4.2</td>
<td>Side flow rate of various wave shapes liner with various loads and shaft speed of 1260 RPM constant</td>
</tr>
<tr>
<td>4.3</td>
<td>Side flow rate of plain liner in various shaft speeds under load condition of (a) 31.5 N, (b) 63 N, (c) 126 N, (d) 252 N, and (e) 441 N</td>
</tr>
</tbody>
</table>
4.4 Side flow rate of various wave shapes liner in various shaft speeds under load condition of (a) 31.5 N, (b) 63 N, (c) 126 N, (d) 252 N, and (e) 441 N

4.5 Lubricant temperature change of plain liner in various loads and shaft speed of 1260 RPM constant

4.6 Lubricant temperature changes of various wave shapes liner in various loads and shaft speed of 1260 RPM constant

4.7 Lubricant temperature changes of plain liner in various shaft speeds under load condition of (a) 31.5 N, (b) 63 N, (c) 126 N, (d) 252 N, and (e) 441 N

4.8 Lubricant temperature changes of various wave shapes liner in various shaft speeds under load condition of (a) 31.5 N, (b) 63 N, (c) 126 N, (d) 252 N, and (e) 441 N

4.9 Eccentricity ratio of plain liner bearing in various loads and shaft speed of 1260 RPM constant

4.10 Eccentricity ratio of various shapes wave liner in various loads and shaft speed of 1260 RPM constant

4.11 Eccentricity ratio of plain liner bearing in various shaft speeds under load condition of (a) 31.5 N, (b) 63 N, (c) 126 N, (d) 252 N, and (e) 441 N

4.12 Eccentricity ratio of various shapes wave liner in various shaft speeds under load condition of (a) 31.5 N, (b) 63 N, (c) 126 N, (d) 252 N, and (e) 441 N

4.13 Pressure profiles at middle area around circumference
of plain liner bearing under load condition of 31.5 N and shaft speed of 1260 RPM

4.14 Pressure profiles at middle area around circumference of plain liner bearing under load condition of 63 N and shaft speed of 1260 RPM

4.15 Pressure profiles at middle area around circumference of plain liner bearing under load condition of 126 N and shaft speed of 1260 RPM

4.16 Pressure profiles at middle area around circumference of plain liner bearing under load condition of 252 N and shaft speed of 1260 RPM

4.17 Pressure profiles at middle area around circumference of plain liner bearing under load condition of 441 N and shaft speed of 1260 RPM

4.18 Pressures profile at middle area around circumference of various wave shapes liner under load condition of 31.5 N and shaft speed of 1260 RPM

4.19 Pressures profile at middle area around circumference of various wave shapes liner under load condition of 63 N and shaft speed of 1260 RPM

4.20 Pressures profile at middle area around circumference of various wave shapes liner under load condition of 126 N and shaft speed of 1260 RPM

4.21 Pressures profile at middle area around circumference of various wave shapes liner under load condition of 252 N and shaft speed of 1260 RPM
4.22 Pressures profile at middle area around circumference of various wave shapes liner under load condition of 441 N and shaft speed of 1260 RPM

4.23 Peak of maximum pressure of plain liner in various shaft speeds under load condition of (a) 31.5 N, (b) 63 N, (c) 126 N, (d) 252 N, and (e) 441 N

4.24 Peak of maximum pressure of various wave shapes liner in various shaft speeds under load condition of (a) 31.5 N, (b) 63 N, (c) 126 N, (d) 252 N, and (e) 441 N

4.25 Comparison of pressure distribution numerically and experimentally in the middle area circumferentially of bearing with load of 31.5 N, 441 N and speed of 1260 RPM.

4.26 Comparison of pressure distribution numerically and experimentally in the minimum film thickness area along the length of bearing with load of 31.5 N, 441 N and speed of 1260 RPM

4.26 Comparison of pressure distribution numerically and experimentally in the middle area circumferentially of bearing with load of 31.5 N, 441 N and speed of 2880 RPM

4.28 Comparison of pressure distribution numerically and experimentally in the minimum film thickness area along the length of bearing with load of 31.5 N, 441 N and speed of 2880 RPM

4.29 Profile of pressure in the middle area of the bearing with varies of oil supply pressures

4.30 Contours of pressure projected on throughout plain
liner bearing under lower load condition of 31.5 N and
shaft speed of 1260 RPM with (a) palm olein and
(b) engine oil as lubricant

4.31 Contours of pressure projected on throughout plain
liner bearing under load condition of 31.5 N and shaft
speed of 2880 RPM with (a) palm olein and
(b) engine oil as lubricant

4.32 Contours of pressure projected on throughout plain
liner bearing surface under load condition of 441 N and
shaft speed of 1260 RPM with lubricant of (a) palm olein
and (b) with engine oil

4.33 Contours of pressure projected on throughout square
wave liner bearing with amplitude of 600 µm under
load condition of 31.5 N and shaft speed of 1260 RPM,
(a) two square-waves liner with palm olein,(b) two square
waves liner with engine oil, (c) four square-waves
liner with palm olein, and (d) four square-waves liner
with engine oil as lubricant

4.34 Contours of pressure projected on throughout semi-circular
wave liner bearing under load condition of 31.5 N and shaft
speed of 1260 RPM, (a) 200 m in amplitude with palm
olein, (b) 200 m amplitude with engine oil, (c) 600 m
in amplitude with palm olein, and (d) 600 m
in amplitude with engine oil as lubricant

4.35 Contours of pressure projected on throughout sinusoidal
wave liner bearing with amplitude of 600 µm under load
condition of 31.5 N and shaft speed of 2160 RPM with
(a) palm olein, and (b) engine oil as lubricant
4.36 Comparisons of pressure profile for two square waves liner bearing with amplitude of 600 µm under lower load of 31.5 N and shaft speed 1260 RPM

4.37 Comparisons of pressure profile for two square waves liner bearing with amplitude of 600 µm under lower load of 31.5 N and shaft speed 2160 RPM

4.38 Comparisons of pressure profile for two square waves liner bearing with amplitude of 600 µm under lower load of 31.5 N and shaft speed 2880 RPM

4.39 Comparisons of pressure profile for two square waves liner bearing with amplitude of 600 µm under higher load of 441 N and shaft speed 1260 RPM

4.40 Comparisons of pressure profile for two square waves liner bearing with amplitude of 600 µm under higher load of 441 N and shaft speed 2160 RPM

4.41 Comparisons of pressure profile for two square waves liner bearing with amplitude of 600 µm under higher load of 441 N and shaft speed 2880 RPM

4.42 Comparisons of pressure profile for four square waves liner bearing with amplitude of 600 µm under lower load of 31.5 N and shaft speed 1260 RPM

4.43 Comparisons of pressure profile for four square waves liner bearing with amplitude of 600 µm under lower load of 31.5 N and shaft speed 2160 RPM

4.44 Comparisons of pressure profile for four square waves liner bearing with amplitude of 600 µm under lower
Comparisons of pressure profile for four waves square liner bearing with amplitude of 600 µm under higher load of 441 N and shaft speed 2880 RPM

Comparisons of pressure profile for four waves square liner bearing with amplitude of 600 µm under higher load of 441 N and shaft speed 2160 RPM

Comparisons of pressure profile for four waves square liner bearing with amplitude of 600 µm under higher load of 441 N and shaft speed 2880 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 200 μm under lower load of 31.5 N and shaft speed 1260 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 200 μm under lower load of 31.5 N and shaft speed 2160 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 200 μm under lower load of 31.5 N and shaft speed 2880 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 200 μm under higher load of 441 N and shaft speed 1260 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 200 μm under higher load of 441 N and shaft speed 2160 RPM
Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 200 μm under higher load of 441 N and shaft speed 2880 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 400 μm under lower load of 31.5 N and shaft speed 1260 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 400 μm under lower load of 31.5 N and shaft speed 2160 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 400 μm under lower load of 31.5 N and shaft speed 2880 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 400 μm under higher load of 441 N and shaft speed 1260 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 400 μm under higher load of 441 N and shaft speed 2160 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 400 μm under higher load of 441 N and shaft speed 2880 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 400 μm under higher load of 441 N and shaft speed 2160 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 600 μm under lower load of 31.5 N and shaft speed 1260 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 600 μm under lower load of 31.5 N and shaft speed 2160 RPM
Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 600 μm under lower load of 31.5 N and shaft speed 2880 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 600 μm under higher load of 441 N and shaft speed 1260 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 600 μm under higher load of 441 N and shaft speed 2160 RPM

Comparisons of pressure profile for semi circular wave liner bearing with amplitude of 600 μm under higher load of 441 N and shaft speed 2880 RPM

Comparisons of pressure profile for sinusoidal wave liner bearing with amplitude of 600 μm under lower load of 31.5 N and shaft speed 1260 RPM

Comparisons of pressure profile for sinusoidal wave liner bearing with amplitude of 600 μm under lower load of 31.5 N and shaft speed 2160 RPM

Comparisons of pressure profile for sinusoidal wave liner bearing with amplitude of 600 μm under lower load of 31.5 N and shaft speed 2880 RPM

Comparisons of pressure profile for sinusoidal wave liner bearing with amplitude of 600 μm under higher load of 441 N and shaft speed 1260 RPM

Comparisons of pressure profile for sinusoidal wave liner bearing with amplitude of 600 μm under higher load of 441 N and shaft speed 2160 RPM
4.70 Comparisons of pressure profile for sinusoidal wave liner bearing with amplitude of 600 μm under higher load of 441 N and shaft speed 2160 RPM

4.71 Comparisons of pressure profile for sinusoidal wave liner bearing with amplitude of 600 μm under higher load of 441 N and shaft speed 2880 RPM

4.72 The highest achievement of side flow rate in various cases liners bearing

4.73 Ratio of side flow rate to load addition in various cases liners bearing

4.74 The highest achievement of temperature changes in various cases liners bearing

4.75 Ratio of the temperature changes to the loads addition in various cases liners bearing

4.76 The highest achievement of eccentricity ratio in various wave liners bearing

4.77 The peak of maximum pressure in various waves liners bearing

A.1 Pressure distribution circumferentially of plain liner bearing in various loads lubricated by palm oil and shaft speed of 1260 RPM

A.2 Pressure distribution circumferentially of plain liner bearing in various loads lubricated by palm oil and shaft speed of 2160 RPM
A.3 Pressure distribution circumferentially of plain liner bearing in various loads lubricated by palm oil and shaft speed of 2800 RPM

A.4 Pressure distribution circumferentially of plain liner bearing in various loads lubricated by engine oil and shaft speed of 1260 RPM

A.5 Pressure distribution circumferentially of plain liner bearing in various loads lubricated by engine oil and shaft speed of 2160 RPM

A.6 Pressure distribution circumferentially of plain liner bearing in various loads lubricated by engine oil and shaft speed of 2800 RPM

A.7 Pressure distribution circumferentially of semi circular wave liner bearing 200 μm amplitude in various loads lubricated by palm oil and shaft speed of 1260 RPM

A.8 Pressure distribution circumferentially of semi circular wave liner bearing 200 μm amplitude in various loads lubricated by palm oil and shaft speed of 2160 RPM

A.9 Pressure distribution circumferentially of semi circular wave liner bearing 200 μm amplitude in various loads lubricated by palm oil and shaft speed of 2800 RPM

A.10 Pressure distribution circumferentially of semi circular wave liner bearing 400 μm amplitude in various loads lubricated by palm oil and shaft speed of 1260 RPM

A.11 Pressure distribution circumferentially of semi circular wave liner bearing 400 μm amplitude in various loads lubricated
by palm oil and shaft speed of 2160 RPM

A.12 Pressure distribution circumferentially of semi circular wave liner bearing 400 m amplitude in various loads lubricated by palm oil and shaft speed of 2800 RPM

A.13 Pressure distribution circumferentially of semi circular wave liner bearing 600 m amplitude in various loads lubricated by palm oil and shaft speed of 1260 RPM

A.14 Pressure distribution circumferentially of semi circular wave liner bearing 600 m amplitude in various loads lubricated by palm oil and shaft speed of 2160 RPM

A.15 Pressure distribution circumferentially of semi circular wave liner bearing 600 m amplitude in various loads lubricated by palm oil and shaft speed of 2800 RPM

A.16 Pressure distribution circumferentially of semi circular wave liner bearing 200 m amplitude in various loads lubricated by engine oil and shaft speed of 1260 RPM

A.17 Pressure distribution circumferentially of semi circular wave liner bearing 200 m amplitude in various loads lubricated by engine oil and shaft speed of 2160 RPM

A.18 Pressure distribution circumferentially of semi circular wave liner bearing 200 m amplitude in various loads lubricated by engine oil and shaft speed of 2800 RPM

A.19 Pressure distribution circumferentially of semi circular wave liner bearing 400 m amplitude in various loads lubricated by engine oil and shaft speed of 1260 RPM
A.20 Pressure distribution circumferentially of semi circular wave liner bearing 400 μm amplitude in various loads lubricated by engine oil and shaft speed of 2160 RPM

A.21 Pressure distribution circumferentially of semi circular wave liner bearing 400 μm amplitude in various loads lubricated by engine oil and shaft speed of 2800 RPM

A.22 Pressure distribution circumferentially of semi circular wave liner bearing 600 μm amplitude in various loads lubricated by engine oil and shaft speed of 1260 RPM

A.23 Pressure distribution circumferentially of semi circular wave liner bearing 600 μm amplitude in various loads lubricated by engine oil and shaft speed of 2160 RPM

A.24 Pressure distribution circumferentially of semi circular wave liner bearing 600 μm amplitude in various loads lubricated by engine oil and shaft speed of 2800 RPM

A.25 Pressure distribution circumferentially of two-square wave liner bearing in various loads lubricated by palm oil and shaft speed of 1260 RPM

A.26 Pressure distribution circumferentially of two-square wave liner bearing in various loads lubricated by palm oil and shaft speed of 2160 RPM

A.27 Pressure distribution circumferentially of two-square wave liner bearing in various loads lubricated by palm oil and shaft speed of 2800 RPM

A.28 Pressure distribution circumferentially of four-square wave liner bearing in various loads lubricated by palm oil and
A.29 Pressure distribution circumferentially of four-square wave liner bearing in various loads lubricated by palm oil and shaft speed of 2160 RPM

A.30 Pressure distribution circumferentially of four-square wave liner bearing in various loads lubricated by palm oil and shaft speed of 2800 RPM

A.31 Pressure distribution circumferentially of two-square wave liner bearing in various loads lubricated by engine oil and shaft speed of 1260 RPM

A.32 Pressure distribution circumferentially of two-square wave liner bearing in various loads lubricated by engine oil and shaft speed of 2160 RPM

A.33 Pressure distribution circumferentially of two-square wave liner bearing in various loads lubricated by engine oil and shaft speed of 2800 RPM

A.34 Pressure distribution circumferentially of four-square wave liner bearing in various loads lubricated by engine oil and shaft speed of 1260 RPM

A.35 Pressure distribution circumferentially of four-square wave liner bearing in various loads lubricated by engine oil and shaft speed of 2160 RPM

A.36 Pressure distribution circumferentially of four-square wave liner bearing in various loads lubricated by engine oil and shaft speed of 2800 RPM
A.37	Pressure distribution circumferentially of sinusoidal wave liner bearing in various loads lubricated by palm oil and shaft speed of 1260 RPM	199
A.38	Pressure distribution circumferentially of sinusoidal wave liner bearing in various loads lubricated by palm oil and shaft speed of 2160 RPM	200
A.39	Pressure distribution circumferentially of sinusoidal wave liner bearing in various loads lubricated by palm oil and shaft speed of 2800 RPM	200
A.40	Pressure distribution circumferentially of sinusoidal wave liner bearing in various loads lubricated by engine oil and shaft speed of 1260 RPM	201
A.41	Pressure distribution circumferentially of sinusoidal wave liner bearing in various loads lubricated by engine oil and shaft speed of 2160 RPM	201
A.42	Pressure distribution circumferentially of sinusoidal wave liner bearing in various loads lubricated by engine oil and shaft speed of 2800 RPM	202
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wave amplitude (m)</td>
</tr>
<tr>
<td>c</td>
<td>Diametrical clearance of journal bearing</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of bearing (m)</td>
</tr>
<tr>
<td>F_i</td>
<td>External body forces (N)</td>
</tr>
<tr>
<td>h</td>
<td>Fluid film thickness (m)</td>
</tr>
<tr>
<td>k</td>
<td>Consistency index</td>
</tr>
<tr>
<td>L</td>
<td>Length of bearing (m)</td>
</tr>
<tr>
<td>N</td>
<td>Shaft rotational speed (RPM)</td>
</tr>
<tr>
<td>n</td>
<td>Power law index</td>
</tr>
<tr>
<td>P</td>
<td>Static pressure (Pa)</td>
</tr>
<tr>
<td>R</td>
<td>Radius of circle to draw a wave circle (m)</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>S</td>
<td>Sommerfeld number</td>
</tr>
<tr>
<td>S_m</td>
<td>Mass added to the continuous phase</td>
</tr>
<tr>
<td>T_o</td>
<td>Reference temperature (K)</td>
</tr>
<tr>
<td>U</td>
<td>Velocity of shaft surface (m/s)</td>
</tr>
<tr>
<td>v</td>
<td>Kinematics viscosity of lubricant (m2/s)</td>
</tr>
<tr>
<td>W</td>
<td>Load (N)</td>
</tr>
<tr>
<td>L_G</td>
<td>Length of a half wave (m)</td>
</tr>
<tr>
<td>n_v</td>
<td>Sum of wave valley</td>
</tr>
<tr>
<td>n_c</td>
<td>Sum of wave crest</td>
</tr>
<tr>
<td>Q_c</td>
<td>Lubricant flow rate (m3/s)</td>
</tr>
<tr>
<td>Q_{SC}</td>
<td>Lubricant flow rate for semi circular wave liner (m3/s)</td>
</tr>
<tr>
<td>Q_{SQ}</td>
<td>Lubricant flow rate for square wave liner (m3/s)</td>
</tr>
<tr>
<td>Q_{Sin}</td>
<td>Lubricant flow rate for sinusoidal wave liner (m3/s)</td>
</tr>
</tbody>
</table>
\[Qinlet \] - Sum of total oil enter the bearing (\(m^3/s\))
\[Qoutlet \] - Sum of total oil out the bearing (\(m^3/s\))
\[Qends \] - Sum of oil collected from both of the ends of bearing (\(m^3/s\))
\[Qloses \] - Sum of lubricant fluid uncollected (\(m^3/s\))
\[R_b \] - Radius of bearing (m)
\[r_j \] - Radius of shaft (m)
\[\theta \] - Angle of radius to draw a wave circle (º)
\[e \] - Eccentricity (m)
\[\varepsilon \] - Eccentricity ratio, \(\frac{e}{c} \)
\[\gamma \] - Shear rate (1/s)
\[\mu \] - Absolute viscosity (N.s/ m²)
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pressure Distribution in Various Loads and Shaft Speeds Circumferentially of Journal Bearings</td>
<td>181</td>
</tr>
<tr>
<td>B</td>
<td>List of Publications</td>
<td>203</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

In this study, current journal bearings designed are proposed to be improved by modifications of the inner side of the bearing at the usual location of the shaft slide. Performance of journal bearing has been reported to be greatly affected by changes in the profile of inner side surface (liner). This change has great effect on pressure distribution, lubricant temperature reduction, and side flow rate increment. All mentioned performance measurements are analyzed and compared to normal journal bearings.

1.1 Background of the Problem

Hydrodynamic lubrication is a condition where journal bearings operate in thick film creating sufficient hydrodynamic pressure to support the load (Bhusan, 2002). When fluid film is thick enough then the hydrodynamic lubrication condition can ensure solid contact does not occur. In many years, efforts deliver lubricant into the bearing has been considered. The aim is to ensure sufficient lubricant is always present in the journal bearing. In an attempt to meets this aspect, geometries of liner
bearings has been modified. Flack et al. (1980) introduced four lobes journal bearing and show that the maximum pressure occurred at middle area, circumferentially. Similarly, Goyal and Sinhasan (1991) developed two lobes journal bearing. From their study, it was shown that as the load increases the minimum film thickness reduces. The side flow rate also increases as the load increases. These efforts result in higher stability but lower in load carrying capacity. To complement the above findings, Dimofte (1995) conducted a study by developing three wave liner journal bearing with ratio of wave amplitude to radial clearance was 0.2 and 0.4, as in Figure 1.1. The result shows an increase in load carrying capacity.

![Figure 1.1](image)

Figure 1.1: Three wave liner journal bearing, Dimofte (1995)

Groove location has also been considered in the study of journal bearing. As reported by Costa et al. (2000) who has developed a steady load journal bearing in order to investigate the effect of three different axial groove location mounted on the bearing. They reported that the changes in groove locations have significantly affect the pressure characteristic in journal bearing. Moreover, other researchers also investigated the journal bearing with journal groove shape assorted to achieve a good performance, as mentioned by Sahu et al. (2006) and Hirayama et al. (2009). They found that the modification cause higher eccentricity.

The thermal effect on the journal bearing performance has also been studied. Van Ostayen and Van Beek (2009) have investigated the thermal effect on lemon bore liner journal bearing. They concluded that the result, in the condition of various shaft speeds and load constant, have shown that the maximum temperature remains constant. Also, the maximum temperatures are affected significantly by changed in type and viscosity of lubricant. As the theoretical study has been carried out by Ene
et al. (2007) on a wave journal bearing was shown that maximum temperature of the bearing take place in the vicinity of minimum fluid films thickness then decreased in region of maximum fluid films thickness. In addition, increases in the load experienced by the bearing also cause a raise in temperature distribution. Furthermore, Chauhan et al. (2010) has carried out the study concerning thermo-hydrodynamics analysis on the elliptical journal bearing (see Figure 1.2) with different grades lubricant. They found that as the shaft speed and eccentricity ratio increases, it affects the film temperature and thermal pressure.

![Elliptical journal bearing](image)

Figure 1.2: Elliptical journal bearing, Chauhan et al. (2010)

Various types of journal bearings have an important role in assisting the machine work although the data of about the characteristics and performance it under various operating conditions are lack and not abundantly available. Although numerous studies done in various methods that involve numerical analysis and experimental investigations. Based on the previously mentioned findings, generally the studies are focused on the liner-shape and groove arrangement on journal bearing. The combination of wave and groove on surface of liner bearing are a gap that would be adopted as topic in the present study associated with journal bearing.

From the previous studies, modifications of the liner have been show to increase the load carrying capacity of the journal bearing. However other problem could occur if modifications are not done correctly. This study introduces several new types of liner bearings and performance of the bearing has been evaluated. The effect of other lubricant, in order to study the effect of different lubricant properties, is also included.
1.2 Problem Statement

The modifications on the liner bearing have been studied and produce the improvement on journal bearing performance. The performance of journal bearing with liner modifications is very dependent on the operating conditions as well. There are variety operating conditions that might encounter in practice. Temperature operation, load imposed, shaft speed, lubricant condition are among other that have many effects on journal bearing performance. Either the parameter that most influence on the journal bearing operation was the change in the shape of the liner. Its changes to give effect to the pressure distribution, oil flow rate, load carrying capacity and journal bearing temperature. It was identified there is some profile of liner surface that have not been investigated. The changes of liner shape may affect on heat generated, pressure distribution, and lubricant flow behavior in journal bearing, are aims of the study. New types of various shapes wave liner are introduced in order to complement the lack of data. The effect of different types of lubricants to the modification was also studied.

1.3 Objectives

The objectives of present study are, to determine the effect of new type of liner, such as square wave, semi-circular wave and sinusoidal wave on:

i.) The side flow rate of journal bearing

ii.) The temperature change of the lubricant journal bearing

iii.) The eccentricity of journal bearing

iv.) The pressure distribution of journal bearing
v.) Comparisons of wave liner bearing performance to a plain liner journal bearing.

vi.) Pressure distribution of wave liner journal bearing experimentally and numerically aims to comparison.

1.4 Scope of Research

The scopes of this study directed as follows:

1. Numerical and experimental approach have been used for comparison

2. Mineral oil has been used as reference (SAE 20W-40)

3. One type of other lubricant, that is palm olein, has been analyzed.

4. Specific range of speed has been applied (1000 RPM -3000 RPM)

5. Load increment is limited up to 450 N to avoid metal contact.

6. Ambient pressure and temperature standard operating conditions where the experiment is carried out in laboratory.

7. The wave liner bearings (semi circular wave, square wave, sinusoidal wave) compared to a plain liner journal bearing.

8. The gravity oil supply system has been applied to reduce operational effect.
1.5 Research Contributions

1. This study provides the completeness of data to journal bearing with the effect of wavy liner surface for various wave shapes.

2. The data of this study can be used to support the design of journal bearing.

3. The non-mineral oil performs analysis can be used as feasibility data of lubricant for journal bearing applications.

4. This study will supplement the similarity and universality aspects of deficit lubricant behavior on type of wave liner bearing, as already known in the narrow gap, so then a practical characterization of the gap is complete possible.

1.6 Outline of Thesis

As an introduction to the whole of thesis the background of problem, problem statement, objectives, scope of research, and research contribution were outlined in this chapter.

Literature reviews about of the studies of journal bearing were outlined in Chapter 2. The chapter initiated with the review in relation to main component that was found in the journal bearing. Then followed by reconsider on some studies that are possible to support the use of bio-based as lubricant. To obtain the guidelines in the discussion of the results should be reviewed several studies, among others, about the thermal characteristics and pressure distribution. Subsequent to examine the extent to which the development of liner bearing deformation in recent years are summarized in a study of non-circular liner bearing and grooved journal bearing. At
the end of this chapter closes with an overview of research methods such as numerical study in the journal bearing.

Chapter 3 are the pages to describe the research methodology used during the study. In it contains the description of the lubricants, experimental setup, wavy liner bearing concepts, fluid film pressure measurement, fluid film thickness measurement, oil side flow measurement and data processing. The numerical by using Fluent CFD components were reviewed and then the validation has been conducted.

Results and discussion on the act of journal bearing were presented in Chapter 4. Some achievements were realized in the form of oil side flow, oil temperature, eccentricity, and pressure distribution in journal bearing.

Chapter 5 is to be the last place to express the essence of this study. This chapter contains the conclusion and recommendations in the future work.
REFERENCES

