INFLUENCE OF ULTRASONIC VIBRATION ON TiN COATED BIOMEDICAL Ti-13Zr-13Nb ALLOY

ARMAN SHAH BIN ABDULLAH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

OCTOBER 2015
Dedicated to

My wife, Siti Nurul Fasehah Binti Ismail
My father, Abdullah Bin Ahamad
My mother, Saadiah Binti Ismail
And
My mother-in-law, Siti Khadijah Binti Draman
ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah Almighty for His guidance, helping and giving me the strength to complete this thesis. A special thanks to my supervisor Assoc. Prof. Dr. Izman bin Sudin for his advice, encouragement and continuous assistance whenever required and the same goes to my co supervisor Prof. Dr. Mohammed Rafiq bin Dato’ Abdul Kadir for his assistance and advice.

I would like also to dedicate my sincere thanks to all technical staffs at Production and Material Science Laboratories, UTM for their helps and supports in completing this project. Their time and patience helping me throughout this project execution are very much appreciated. My gratitude goes to Universiti Teknologi Malaysia (UTM) for research funding through research grant (GUP Q.J130000.7124.02H60). Special thanks to Universiti Pendidikan Sultan Idris (UPSI) and Ministry of Education (MOE) for sponsoring my postgraduate studies.

I am also forever indebted to my parents Abdullah bin Ahamad and Saadiah binti Ismail, and my wife Siti Nurul Fasehah binti Ismail who give me real love, pray, moral support, and all their doa have. The magnitude of their contribution cannot be expressed in a few words, so it is to them that this thesis is dedicated. Finally, I would like to thank to all my friends and others who have contributed directly or indirectly towards the success of this PhD project.
ABSTRACT

Biomedical grade of titanium alloys are prone to undergo degradation in body fluid environment. Surface coating such as Physical Vapor Deposition (PVD) can serve as one of the alternatives to minimize this issue. Past reports highlighted that coated PVD layer consists of pores, pin holes and columnar growth which act as channels for the aggressive medium to attack the substrate. Duplex and multilayer coatings seem able to address this issue at certain extent but at the expense of manufacturing time and cost. In the present work, the effect of ultrasonic vibration parameters on PVD-Titanium Nitride (TiN) coated Ti-13Zr-13Nb biomedical alloy was studied. Disk type samples were prepared and coated with TiN at various conditions: bias voltage (-125V), substrate temperature (100 to 300 °C) and nitrogen gas flow rate (100 to 300 sccm). Ultrasonic vibration was then subsequently applied on extreme high and low conditions of TiN coated samples at two different frequencies (8 kHz, 16 kHz) and three set of exposure times (5 min, 8 min, 11 min). Encouraging results of PVD coating are observed on the samples coated at higher polarity of nitrogen gas flow rate (300 sccm) and substrate temperature (300 °C) in terms of providing better surface morphology and roughness, coating thickness and adhesion strength. All TiN coated samples treated with ultrasonic vibration exhibit higher corrosion resistance than the untreated ones. Microstructure analysis under (Field Emission Scanning Electron Microscopy (FESEM) confirms that the higher ultrasonic frequency (16 kHz) and the longer exposure time (11 minutes) produce the most compact coating. It is believed that hammering effect from ultrasonic vibration reduces the micro channels’ size in the coating and thus decelerates the corrosion attack. Nano indentation test conducted on the ultrasonic treated samples provides a higher Hardness/Elasticity (H/E) ratio than untreated ones. This suggests that the ultrasonic vibration treated samples could also have a lower wear rate.
ABSTRAK

Gred bioperubatan aloi titanium lebih cenderung mengalami kakisan dalam persekitaran cecair badan. Salutan permukaan seperti Physical Vapor Deposition (PVD) boleh digunakan sebagai salah satu alternatif untuk mengurangkan masalah ini. Hasil kajian sebelum ini menunjukkan bahawa lapisan salutan PVD terdiri daripada liang-liang, lubang pin, dan pertumbuhan kolumnar yang bertindak sebagai salah satu saluran untuk cecair menyerang substrat. Substrat yang disalut dengan dua lapisan atau lebih dilihat dapat mengatasi masalah ini pada kadar tertentu tetapi ianya melibatkan kos pembuatan yang tinggi dengan masa yang panjang. Dalam kajian ini, kesan parameter getaran ultrasonik ke atas PVD- Titanium Nitride (TiN) yang disalut ke atas aloi bioperubatan Ti-13Zr-13Nb telah dikaji. Sampel berbentuk cakera disediakan dan disalut dengan TiN pada voltan pincang (-125V), suhu substrat (100 hingga 300 °C) dan kadar aliran gas nitrogen (100-300 sccm). Getaran ultrasonik kemudiannya dikenakan ke atas sampel yang disalut dengan TiN dalam keadaan dua frekuensi yang berbeza (8 kHz, 16 kHz) dan tiga masa pendedahan (5 min, 8 min, 11 min). Hasil kajian salutan PVD yang menggalakkan diperolehi ke atas sampel yang dikenakan pada kadar aliran gas nitrogen dan suhu substrat yang tinggi dari segi morpologi dan keserataan permukaan, ketebalan salutan dan kekuatan lekatan yang lebih baik. Semua sampel yang dirawat dengan salutan TiN menggunakan getaran ultrasonik menunjukkan ketahanan kakisan yang tinggi jika dibandingkan dengan sampel tanpa rawatan. Analisis struktur mikro menggunakan Field Emission Scanning Electron Microscopy (FESEM) mengesahkan bahawa ultrasonik frekuensi yang tinggi dengan masa yang lama menghasilkan lapisan yang paling padat. Ini adalah disebabkan kesan ketukan yang dihasilkan oleh getaran ultrasonik yang mana dapat mengecilkan saiz saluran pada salutan tersebut dan dengan itu mengurangkan serangan kakisan. Ujian lekukan nano yang dijalankan ke atas sampel yang dirawat dengan getaran didapati menghasilkan nilai nisbah Hardness/Elasticity H/E yang tinggi jika dibandingkan dengan sampel tanpa rawatan. Ini menunjukkan bahawa sampel yang dikenakan rawatan getaran ultrasonik juga boleh menghasilkan kadar kehausan yang lebih rendah.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Background of the problem 1
1.2 Problem statements 3
1.3 Objectives of the study 3
1.4 Scopes of the Study 4
1.5 Significance of the Study 4
1.6 Thesis organization 5

2 LITERATURE REVIEW 6
2.1 Introduction 6
2.2 Implant biomaterials 6
2.3 Titanium and its alloys 10
2.3.1 Unalloyed titanium 11
2.3.2 Alpha and near alpha alloy 11
2.3.3 Alpha- beta alloy 12
2.3.4 Beta alloy 12
2.3.5 Ti-13Zr-13Nb 13

2.4 Issues in biomaterials 16

2.5 Overview of surface modification techniques 20

2.6 Physical vapour deposition 25
 2.6.1 Principle of arc vapour deposition and typical issues 34
 2.6.2 TiN coating via PVD technique 37

2.7 Ultrasonic and its types 39
 2.7.1 Ultrasonic machining 40
 2.7.2 Principle of ultrasonic machining 42

2.8 Evaluation of coating performance 43
 2.8.1 Overview of corrosion theory and fundamental 43
 2.8.2 Corrosion principle and mechanism 44
 2.8.3 Types of corrosion 46
 2.8.3.1 Uniform corrosion 46
 2.8.3.2 Galvanic corrosion 46
 2.8.3.3 Crevice corrosion 49
 2.8.4.4 Pitting corrosion 49
 2.8.3.5 Selective leaching or dealloying 50
 2.8.3.6 Erosion corrosion 50
 2.8.3.7 Intergranular corrosion (IGC) 50
 2.8.4 Corrosion testing techniques 52
 2.8.4.1 Tafel plot 52
 2.8.4.2 Electrochemical impedance spectroscopy (EIS) 54
 2.8.5 Coating adhesion strength measurement 55
 2.8.6 Nanoindentation testing 58

2.9 Summary of literature review 62
Methodology

3.1 Introduction

3.2 Overview of methodology

3.3 Substrate material and preparation

3.3.1 Cutting process

3.3.2 Grinding and polishing of substrate metal

3.3.3 Cleaning of the substrate

3.4 CAPVD coating procedure-stage I preliminary experiment

3.5 Experiment setup for stage II and III

3.5.1 CAPVD coating procedure – stage II

3.5.2 Ultrasonic assisted ball impingement procedure

3.6 Analytical and material characterizations

3.6.1 Surface morphology and compound analysis

3.6.2 TiN coating adhesion strength analysis

3.6.3 Corrosion test procedure

3.6.3.1 Tafel plot

3.6.3.2 Electrochemical impedance spectroscopy (EIS)

3.6.3.3 Hardness-elasticity (H/E) analysis

Results and Discussion

4.1 Introduction

4.2 Stage I – Preliminary experimental results and discussion

4.3 Stage II – Experimental results and discussion

4.3.1 Introduction

4.3.2 Effect of CAPVD parameters on properties of TiN coating

4.4 Stage III – Experimental results and discussion

4.4.1 Ultrasonic treatment (8 kHz) on TiN coated
samples (extreme high condition) 96

4.4.2 Ultrasonic treatment (8 kHz) on TiN coated samples (extreme low condition) 106

4.4.3 Ultrasonic treatment (16 kHz) on TiN coated samples (extreme high condition) 114

4.4.4 Ultrasonic treatment (16 kHz) on TiN coated samples (extreme low condition) 122

4.4.5 Effect of ultrasonic treatment on corrosion properties of TiN coated sample 130

4.5 Summary of findings 139

5 CONCLUSIONS AND RECOMMENDATIONS 140

5.1 Introduction 140

5.2 Conclusions 140

5.3 Recommendations for future works 141

REFERENCES 143

Appendices A-B 162-167
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Surgical use of biomaterial</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Class of materials used in the body</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical composition range of Ti-13Nb-13Zr</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Classification of biomaterials based on its interaction with its surrounding tissue</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Surface modification methods used for titanium and its alloys implants</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Steady state electrode material potential, volts referenced to saturated calomel half-cell</td>
<td>48</td>
</tr>
<tr>
<td>2.7</td>
<td>Advantages and disadvantages of scratch test methods</td>
<td>57</td>
</tr>
<tr>
<td>2.8</td>
<td>Comparison of critical load values obtained by scratch testing</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Mechanical properties of Ti-13Zr-13Nb</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>CAPVD parameters used in preliminary experiment</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>CAPVD parameters used in stage II</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>Parameters for ultrasonic milling</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of output data from nanoindentation test for ultrasonic treated on TiN at 8 kHz for different exposure times (extreme high condition)</td>
<td>102</td>
</tr>
</tbody>
</table>
4.2 Corrosion parameters calculated from Tafel and EIS for ultrasonic treated on TiN coating at 8 kHz for different holding times (extreme low condition) 105

4.3 Summary of output data from nanoindentation test for ultrasonic treated at 8 kHz for different exposure times (extreme low condition) 110

4.4 Corrosion parameters calculated from Tafel and EIS for ultrasonic treated on TiN coating at 8 kHz for different times (extreme low condition) 113

4.5 Summary of output data from nanoindentation test for ultrasonic treated at 16 kHz for different exposure times (extreme high condition) 118

4.6 Corrosion parameters calculated from Tafel and EIS for ultrasonic treated on TiN coating at 16 kHz for different exposure times (extreme high condition) 121

4.7 Summary of output data from nanoindentation test for ultrasonic treated at 16 kHz for different exposure times (extreme low condition) 126

4.8 Corrosion parameters calculated from Tafel and EIS for ultrasonic treated on TiN coating at 16 kHz for different holding times (extreme low condition) 130
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Elastic modulus of metallic biomaterials</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Cross sectioned views for multilayer Ti$_2$N ceramic coating on NdFeB substrate (a) crater with thin layer of ceramic coating (b) and pin hole in the ceramic coating.</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of CAPVD process.</td>
<td>37</td>
</tr>
<tr>
<td>2.4</td>
<td>Main elements of an ultrasonic machining system.</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Material removal mechanisms in USM.</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Electric double layers at metal-electrolyte interface in the presence of chemisorbed anions</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>The electrochemical reactions associated with the corrosion of ferum in an acid solution.</td>
<td>45</td>
</tr>
<tr>
<td>2.8</td>
<td>Excitation waveform for tafel plot.</td>
<td>53</td>
</tr>
<tr>
<td>2.9</td>
<td>Excitation measurement tafel plot.</td>
<td>54</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic of the nanoindentation of an elasto-plastic solid by a conical cone at full load and unload</td>
<td>60</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic of the load–displacement curve corresponding to the nanoindentation depicted by Figure 2.10</td>
<td>61</td>
</tr>
<tr>
<td>2.12</td>
<td>Wear behaviour versus Si content in CrN-based coating systems. on specific wear rate and H^3/E^2</td>
<td>62</td>
</tr>
</tbody>
</table>
3.1 Flow chart of overall research methodology 66
3.2 Buehler Isomet 4000 precision cutter machine 67
3.3 Sample after cutting 67
3.4 Strues Tegramin 25 polishing machine 68
3.5 Summarize of grinding and polishing step on Titanium substrate 69
3.6 Substrate cleaning equipment (a) Bransonic 2500 (b) Steam cleaner 70
3.7 Cathodic Arc Evaporation machine. 71
3.8 Sonic mill ultrasonic machine AP-10001X) 74
3.9 Steel ball used for impinging the TiN coated substrate 74
3.10 Field Emission Scanning Electron Microscopy available at faculty of mechanical engineering 76
3.11 X Ray Diffraction available at AMREC, SIRIM 76
3.12 Scratch tester machine available at UniMAP, Perlis 77
3.13 (a) Overall set-up of corrosion test on potential machine (b) Enlargement of corrosion cell set-up 79
3.14 Nanoindententer testing machine 80
4.1 SEM micrographs of TiN coating on Ti-13Zr 13Nb at different substrate temperatures and nitrogen gas flow rates. 82
4.2 Cross sectional views of TiN coating thickness obtained at different substrate temperatures and nitrogen gas flow rates 83
4.3 Effect of substrate temperature and nitrogen gas flow rate on coating thickness 84
4.4 Surface roughness of TiN coated at different nitrogen gas flow rate and substrate temperature 85
4.5 XRD patterns of TiN coating deposited at 100 sccm (a) 100°C (b) 200°C, (c) 300°C of substrate temperature, at 200sccm (d) 100°C (e) 200°C (f) 300°C, and at 300sccm, (g) 100°C, (h) 200°C. (i) 300°C.

4.6 SEM micrograph for TiN coated at different substrate temperature and nitrogen gas flow rate.

4.7 Size distribution of TiN coating microdroplets at various nitrogen gas flow and substrate temperatures.

4.8 Cross section view of TiN after coated at different nitrogen gas flow and substrate temperature.

4.9 Effect of substrate temperature and nitrogen gas flow rate on coating thickness.

4.10 Effect of substrate temperature and nitrogen gas flow rate on surface roughness.

4.11 Optical image of scratch tracks along with graphs of friction coefficient, friction force and normal forces at bias voltage, substrate temperature and nitrogen gas flow rate.

4.12 Critical load of TiN coated at various substrate temperature and nitrogen gas flow rate.

4.13 Surface morphology of extreme high conditions of TiN after ultrasonic treated at 8 kHz for exposure time (a) 5 minute (b) 8 minute and (c) 11 minute (extreme high condition).

4.14 Cross sectional view of TiN after ultrasonic treated at 8 kHz for exposure times (a) 5 minute (b) 8 minute and (c) 11 minute (extreme high condition).

4.15 Effect of ultrasonic treatment on TiN at 8 kHz for different exposure times (extreme high condition).
4.16 Load vs. displacement curve of TiN coated after ultrasonic treated at 8 kHz for exposure times (a) 5 min, (b) 8 min, and (c) 11 min (extreme high condition) 101

4.17 Tafel plots of TiN coated after ultrasonic treated at 8 kHz for exposure times a) 5 min (b) 8 min, and (c) 11 min, 16 kHz (extreme high condition) 103

4.18 Nyquist plots for of TiN coated after ultrasonic treated at 8 kHz for various exposure times (extreme high condition) 104

4.19 Bode Plots (a) log $|z|$ Vs log f and (b) Phase angle Vs log f for ultrasonic treated on TiN coating at 8 kHz for various exposure times (extreme high condition) 105

4.20 Surface morphology of TiN after ultrasonic treated at 8 kHz for exposure time (a) 5 minute (b) 8 minute and (c) 11 minute (extreme low condition) 107

4.21 Cross sectional view of TiN after ultrasonic treated at 8 kHz for exposure times (a) 5 minute (b) 8 minute and (c) 11 minute (extreme low condition) 108

4.22 Effect of ultrasonic treatment on TiN at 8 kHz for different exposure times (extreme low condition) 109

4.23 Load vs. displacement curve of TiN coated after ultrasonic treated at 8 kHz for times (a) 5 min, (b) 8 min, and (c) 11 min (extreme low condition) 110

4.24 Tafel plots of TiN coated after ultrasonic treated at 8 kHz for exposure times a) 5 min (b) 8 min, and (c) 11 min, (extreme low condition) 111

4.25 Nyquist plots for of TiN coated after ultrasonic treated at 8 kHz for various exposure times (extreme low condition) 112

4.26 Bode Plots (a) log $|z|$ Vs log f and (b) Phase angle Vs
log f for ultrasonic treated on TiN coating at 8 kHz for various holding times

4.27 Surface morphology of TiN after ultrasonic treated at 16 kHz for exposure time (a) 5 minute (b) 8 minute and (c) 11 minute (extreme high condition)

4.28 Cross sectional view of TiN after ultrasonic treated at 16 kHz for exposure times (a) 5 minute (b) 8 minute and (c) 11 minute (extreme high condition)

4.29 Effect of ultrasonic treatment on TiN at 16 kHz for different exposure times (extreme high condition)

4.30 Load vs. displacement curve of TiN coated after ultrasonic treated at 16 kHz for holding times (a) 5 min, (b) 8 min, and (c) 11 min

4.31 Tafel plots of TiN coated after ultrasonic treated at 8 kHz for exposure times a) 5 min (b) 8 min, and (c) 11 min, (extreme high condition)

4.32 Nyquist plots for TiN coated after ultrasonic treated at 16 kHz for various exposure times (extreme high condition)

4.33 Bode Plots (a) log |z| Vs log f and (b) Phase angle Vs log f for ultrasonic treated on TiN coating at 16 kHz for various exposure times (extreme high condition)

4.34 Surface morphology of TiN after ultrasonic treated at 16 kHz for exposure times (a) 5 minute (b) 8 minute and (c) 11 minute (extreme low condition)

4.35 Cross sectional view of TiN after ultrasonic treated at 16 kHz for exposure times (a) 5 minute (b) 8 minute and (c) 11 minute (extreme low condition)

4.36 Effect of ultrasonic treatment on TiN at 16 kHz for different holding times (extreme low condition)
4.37 Load vs. displacement curve of TiN coated after ultrasonic treated at 16 kHz for exposure times (a) 5 min, (b) 8 min, and (c) 11 min (extreme low condition) 126
4.38 Tafel plots of TiN coated after ultrasonic treated at 16 kHz for exposure times (a) 5 min (b) 8 min, and (c) 11 min, (extreme low condition) 127
4.39 Nyquist plots for of TiN coated after ultrasonic treated at 16 kHz for various holding times (extreme low condition) 128
4.40 Bode Plots (a) log |z| Vs log f and (b) Phase angle Vs log f for ultrasonic treated on TiN coating at 16 kHz for various holding times (extreme low condition) 129
4.41 Equivalent circuit to fit electrochemical impedance data 130
4.42 SEM micrographs of TiN coated samples (extreme high PVD coating condition) after being treated under ultrasonic vibration at different frequency and exposure times 132
4.43 SEM micrographs of TiN coated samples (extreme low PVD coating condition) after being treated under ultrasonic vibration at different frequency and exposure times 133
4.44 Effect of TiN coated samples after subjected with ultrasonic vibration a) before (b) after ultrasonic vibration 134
4.45 Effect of ultrasonic frequencies on coating thickness at different exposure times on (a) high and (b) low extreme conditions 135
4.46 Schematic diagram for coated sample before and after subjected with ultrasonic vibration 135
4.47 Effect of ultrasonic frequencies on coating hardness at
different exposure times on (a) high and (b) low extreme conditions 136

4.48 Effect of ultrasonic frequencies on current density at different holding time on (a) high and (b) low extreme conditions 137

4.49 Effect of ultrasonic frequencies on charge transfer resistance at different holding time on (a) high and (b) low extreme conditions 138

4.50 Schematic diagrams representing the phenomena occur when sample coated with TiN immersed in Kokubo solution along with their equivalent circuits 138
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>a-C</td>
<td>Amorphous carbon</td>
</tr>
<tr>
<td>CA-PVD</td>
<td>Cathodic arc physical vapour deposition</td>
</tr>
<tr>
<td>C_{dl}</td>
<td>Double layer capacitance</td>
</tr>
<tr>
<td>Cp-Ti</td>
<td>Commercial pure titanium</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical vapour deposition</td>
</tr>
<tr>
<td>DLC</td>
<td>Diamond like carbon</td>
</tr>
<tr>
<td>E_{corr}</td>
<td>Corrosion potential</td>
</tr>
<tr>
<td>EIS</td>
<td>Electrochemical vapour deposition</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscope</td>
</tr>
<tr>
<td>FRA</td>
<td>Frequency response analyser</td>
</tr>
<tr>
<td>H/E</td>
<td>Hardness/Elasticity</td>
</tr>
<tr>
<td>HFCVD</td>
<td>Hot filament chemical vapour deposition</td>
</tr>
<tr>
<td>I_{corr}</td>
<td>Corrosion current density</td>
</tr>
<tr>
<td>IGC</td>
<td>Intergranular corrosion</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>OCP</td>
<td>Open circuit potential</td>
</tr>
<tr>
<td>PVD</td>
<td>Physical vapor deposition</td>
</tr>
<tr>
<td>R_{ct}</td>
<td>Charge transfer resistance</td>
</tr>
<tr>
<td>SCE</td>
<td>Saturated calomel electrode</td>
</tr>
<tr>
<td>sccm</td>
<td>Standard cubic centimetres per minute</td>
</tr>
<tr>
<td>SiC</td>
<td>Silicon carbide</td>
</tr>
<tr>
<td>TiN</td>
<td>Titanium nitride</td>
</tr>
<tr>
<td>TiAlN</td>
<td>Titanium aluminum nitride</td>
</tr>
<tr>
<td>UBM</td>
<td>Unbalanced magnetron sputtering</td>
</tr>
<tr>
<td>USM</td>
<td>Ultrasonic machining</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction Spectroscopy</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Output images of microdroplets counting using image analyser</td>
<td>162</td>
</tr>
<tr>
<td>B</td>
<td>Effect of CAPVD parameters adhesion strength of TiN coating</td>
<td>163</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the problem

The field of biomaterial has caught attention of researchers because it can increase the length and quality of human life. Natural and artificial biomaterials are used to make implants or structures that replace biological structures lost to diseases or accidents. The application of biomaterial in musculoskeletal implants include dental implants, artificial hips, and knees prostheses and incorporate the screws, plates, and nails in these devices [1]. The materials used in surgical implants include stainless steel (316LSS), Co-Cr-based alloys, and Ti alloys. Titanium based alloys are preferable due to their excellent biocompatibility, outstanding corrosion resistance, relatively good fatigue resistance, and lower elastic modulus [2, 3].

Several types of titanium alloys have been developed and one of them is Ti-6Al-4V. Ti-6Al-4V was the first standard alloys employed as a biomaterial for implants. Although this alloy has an excellent reputation in terms of its biocompatibility and corrosion resistance, studies have shown that the release of aluminium and vanadium ions from this alloy causes long term problem, such as peripheral neuropathy, osteomalacia, and Alzheimer diseases [4]. Consequently other titanium alloys group have been developed as alternatives to the Ti-6Al-4V...
alloy. Among them, Ti-13Zr-13Nb is the most attractive biomaterial due to its low Young’s modulus and non-toxic composition. It has been reported that Ti-13Zr-13Nb alloy is preferred for biomedical applications due to its superior corrosion resistance and biocompatibility. The good biocompatibility of this alloy is due to the corrosion products of the minor alloying elements (niobium and zirconium) that are less soluble than those of aluminium and vanadium. This material also has good tensile and corrosion resistance compared to Ti-6Al-4V and Ti-6Al-7Nb alloys [5].

Although the Ti-13Zr-13Nb alloy has excellent corrosion resistance and biocompatibility under normal conditions, it is still subject to corrosion, especially when it is in contact with body fluids. The environment found in the human body is very harsh owing to the presence of chloride ions and proteins. As an implant corrodes, it releases toxic ions and causes inflammation, which may require further surgery [6]. This issue can be addressed by using a surface coating or surface modification techniques. Several studies have been conducted that attempt to increase Ti-13Zr-13Nb. Techniques including thermal oxidation [2, 7-12], anodic oxidation [13-16], thermal spray [17], laser nitriding [18], plasma spray [19, 20], Chemical Vapour Deposition (CVD) [21], and Ion Implantation [22] have all been investigated. The processing temperature of surface modification techniques in these studies are relatively high (600 – 2000 °C), which restricts the type of substrates that can be used, as well as causing unexpected phase transitions and excessive residual stresses. Nevertheless, a few studies use surface modification techniques with low processing temperatures. Other surface modification techniques such as Physical Vapour Deposition (PVD) offer promising results using low processing temperatures (<500° C) over a wide range of coating thickness. In this thesis, PVD coating on Ti-13Zr-13Nb was proposed as a way to improve the corrosion resistance of medical implants.
1.2 Problem statements

Surface coatings, such as PVD, can minimize the corrosion rate of titanium alloys that are exposed to body fluids. Past reports indicated that coated PVD layers have pores, pin holes, and columnar growths that act as channels for aggressive mediums to attack the substrate [23-26]. Duplex and multilayer coatings address this issue but at the expense of manufacturing time and cost. Therefore, an alternative method is needed to reduce the penetration of body fluids and react with bare substrate. One of possible surface modifications to PVD coatings uses a mechanical treatment. Several studies have demonstrated that sand blasting PVD coatings increases the compactness and hardness of the coating, which leads to lower wear rates [27-34]. However, very limited literature exists on surface mechanical treatment especially on the application of ultrasonic vibration to reduce corrosion attack of TiN coated Ti based implants. Most researchers have reported the behaviour of mechanical treatment on wear rate mechanism only. Therefore, a detailed study is needed to evaluate the effect of ultrasonic treatments on PVD-TiN coated Ti-13Zr-13Nb alloys in terms of corrosion resistance.

1.3 Objectives of the study

The objectives of this study were:

i. To analyse the effect of PVD coating parameters on the surface morphology, coating thickness, and adhesion strength of TiN coated biomedical grade Ti alloys.

ii. To investigate the effect of ultrasonic vibration treatment on the hardness and coating thickness of TiN coated samples.

iii. To compare the corrosion performance of ultrasonic treated and untreated TiN coating samples under simulated body fluids.
1.4 Scopes of the study

The study was conducted using the following limits:

i. Ti-13Zr-13Nb was used as the substrate material.

ii. The variable CAPVD parameters included nitrogen gas flow rates (100-300 sccm) and substrate temperature (100-300°C). The bias voltage was fixed at -125V.

iii. An ultrasonic machine (Sonic mill AP-10001X) was used to hammer the TiN coated samples using micro steel balls.

iv. Ultrasonic parameters varied from 8 to 16 kHz for 5, 8, and 11 minutes of exposure time.

v. FESEM was used to characterize surface morphology and coating thickness. A nano-indenter was used to determine TiN hardness.

vi. Tafel plot and EIS were used to evaluate corrosion on untreated and treated TiN coated samples.

vii. A Kokubo solution was used to simulate body fluids during corrosion resistance testing.

1.5 Significance of the study

The use of ultrasonic vibrations as a post treatment on TiN coated layers was expected to reduce corrosion when the implant was subjected to body fluids. The hypothesis was that ultrasonic vibration would provide micro-steel ball impingement that would result in a TiN coated layer with higher hardness and less porosity. The technique applied was less expensive than the multilayer and duplex coatings suggested by other researchers. The application of TiN coated Ti-13Zr-13Nb is appropriate for orthopaedic plates that are commonly used in bone surgery. The success of this method will improve the life of prosthesis and reduce implant revision costs. In addition, this study will help manufacturers produce more
sustainable biomedical implants by increasing the surface hardness of the implant and thus providing better wear resistance capabilities. This study will also add to the knowledge and understanding of the behaviour of TiN coatings on biomedical implants.

1.6 Thesis organization

This thesis consists of five chapters. Chapter 1 is the introduction, which covers the background of research, the problem statement, and the objectives, scope, and significance of study. Chapter 2 provides an overview of general implant materials, a review of surface modification techniques, PVD, ultrasonic vibration, and an evaluation of coating performances. At the end of this chapter, the literature is summarized and gaps in the research are discussed.

In Chapter 3, the experimental approach adopted in this study is discussed including the substrate material and its preparation, and an explanation of the procedure for testing CAPVD and ultrasonic treatments. The analytical equipment used in this study is also discussed in this chapter, including a corrosion test, adhesion strength, nano indenter, FESEM, and XRD.

In Chapter 4, the results of Experiment Stages I, II and III are described and discussed. Experiment Stage I discusses the preliminary trials conducted before the actual experiment began. In Stage II, the effects of CAPVD parameters on surface morphology, coating thickness, and adhesion strength are discussed. Stage III describes the effect of ultrasonic treatments under extreme PVD conditions on corrosion resistance and hardness. Chapter 5 presents the conclusions from this study and recommendations for future work.
REFERENCES

135. Subramanian, B., Muraleedharan, C.V., Ananthakumar, R., and Jayachandran, M. A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface

169. Chang, C.-L., Huang, C.-S., and Jao, J.-Y. Microstructural, mechanical and wear properties of Cr–Al–B–N coatings deposited by DC reactive magnetron

