COLLABORATIVE-BASED DECISION MAKING FOR WEB SERVICE COMPOSITION USING SERVICE LEVEL AGREEMENT NEGOTIATION AND CROWDSOURCING

MAHDI SHARIFI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Computer Science)

Faculty of Computing
Universiti Teknologi Malaysia

AUGUST 2015
To our prophet, *Mohammad*, the messenger of truth, fraternization and kindness

To my dear and beloved *wife* who encouraged and supported me

To my dears *mother*, *father*, and *sister*

To my dears *mother*, *father*, *brothers* and *sisters-in-law*

And to all who supported me in my study, especially my *supervisor*
ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful. I thank Allah S.W.T for granting me perseverance and strength I needed to complete this thesis.

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. First and foremost, I wish to express my sincere appreciation to my thesis supervisor, Professor Dr. Azizah Abdul Manaf, for continuous support, advice, and guidance throughout my candidature. She has built and directed an environment that granted me an opportunity to learn and practice research skills, meet and collaborate with brilliant researchers, and transfer the long journey of PhD to a great and lovely experience. I would like to thank Mrs. Haslina Md. Sarkan, my project leader for her support during my study. I am also indebted to Universiti Teknologi Malaysia (UTM) and the Ministry of Education (MOE), Malaysia for funding my PhD study.

In particular, I would like to express my gratitude towards Dr. Amir Vahid Dastjerdi for University of Melbourne, Ali Memariani from University of Houston, Dr. Ali Ordi from Universiti Teknologi Malaysia who closely collaborated with me. Moreover, I am very thankful to Dr. Behrang Barekatain, Mohammad Reza Rostami, Dr. Sajjad Dadkhah, Aliakbar Keshtkaran from Universiti Teknologi Malaysia, and Dr. Mahmoud Danaee from Universiti Putra Malaysia for their supports and friendships.

I would particularly like to thank my parents and my wife’s parents, who deserve my gratitude for their inseparable prayer, encouragement and endless patience. Words fail me in expressing my deepest appreciation to my wife, Homa, whose encouragement and love gave me confidence. My thesis would not have been possible without her support. Thank you.
ABSTRACT

Quality of Service (QoS)-aware Web Service Composition as complex problem solver has become one of the most highlighted issues in service computing area. It maps to multi-objective optimization problem that is classified as Non-deterministic Polynomial-time hard (NP-hard) problem. The diversity of subjective and potentially dishonest evaluations impose an obstacle to QoS-aware service assessment. The vague preferences of users have also to be considered in multi-criteria service selection. Last but not least, the budget-constrained service negotiation needs to make trade-off between the desired QoS metrics and the imposed budget constraints by service users. There is a large body of research covering aforementioned different aspects of service composition. This research tries to open a new horizon for service composition to utilize collaborative decision support systems. The proposed system involves three phases, namely Trust-Aware Crowd-enabled consensus-based Service Assessment (TACSA), Fuzzy inference-based multi-criteria Service Ranking (FASER), and Pareto-optimal service composition (PALEN). In the first phase, TACSA is responsible to assess all candidate services with respect to the required QoS metrics and guarantee this assessment not to suffer from subjective and dishonest evaluations by means of the collaborative decision making. The incurred complexity in capturing users’ preferences and objectives is the second obstacle to rank services. FASER, the fuzzy inference engine, is then used to capture user preferences and support multi-criteria QoS-based service ranking. After that, the composer is required to negotiate with ranked service providers and select the best-possible candidate service based on users’ QoS desires and constraints. PALEN enables composer to achieve this aim using the autonomous service level agreement negotiation strategy and surplus management. The focus of the proposed negotiation strategy is restricted to the time-dependent tactic that can handle the deadline imposed by users. Besides, a novel approach proposed to dynamically adjust time-dependent function parameter based on service demand and utilization, and redistribute surplus to optimize the composite service. The research promises to select the best candidate services that maximizes QoS metrics while adheres to users’ budget constraints. The extensive experimental results along with simulated scenarios demonstrate the applicability and effectiveness of the proposed approach. It is interesting to note that the consensus on assessed QoS metrics is achieved with respect to different parameters and the crowd converge to the most trustworthy service assessment. Moreover, the results indicate that the composition optimality is averagely increased by almost 80% considering different composition scenarios.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td></td>
<td>xxvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Overview 1

1.2 Background of the Problem 2

1.3 Statement of the Problem 6

1.4 Purpose of the Research 8

1.5 Objectives of the Research 9

1.6 Scope of the Research 9

1.7 Significance of the Research 10

1.8 Thesis Organization 11

2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Service Oriented Computing 15
2.2.1 Web Services 15
2.2.2 Web Service Standardization 16
2.2.3 Web Service Modelling 17
2.2.4 Web Service Stack and Key Dimensions 20
2.2.5 Web Service Classification 24
 2.2.5.1 Development Perspective 24
 2.2.5.2 Functional Perspective 25
2.3 Web Service Composition 26
 2.3.1 Web Service Composition Lifecycle 26
 2.3.2 Web Service Composition Classification 27
 2.3.2.1 Composition Time Perspective 28
 2.3.2.2 Autonomics Perspective 28
 2.3.2.3 Collaboration Perspective 30
 2.3.3 Web Service Composition Challenges 31
 2.3.3.1 Dependability and Reliability 32
 2.3.3.2 Adaptability and Autonomous 34
 2.3.3.3 Pervasiveness and Acquisition 35
 2.3.3.4 RESTful Services and Mashups Support 36
 2.3.3.5 Security and Trust 37
2.4 Decision Support Systems 37
 2.4.1 Decision Support System Taxonomy 38
 2.4.1.1 Alter Taxonomy 38
 2.4.1.2 Power Taxonomy 40
 2.4.1.3 Holsapple Taxonomy 41
 2.4.2 Collaborative Decision Support System 44
2.4.3 Crowdsourcing 46
 2.4.3.1 Crowdsourcing Conceptual Framework 47
 2.4.3.2 Crowd Application in Decision Making Process 49
2.4.4 Consensus 50
 2.4.4.1 Consensus in Networks 51
 2.4.4.2 Consensus Protocols 52
2.5 Fuzzy Inference System 54
2.6 Service Level Agreement Negotiation System 55
 2.6.1 Time-Dependent Technique 56
 2.6.2 Behaviour-Dependent Technique 57
 2.6.3 Resource-Dependent Technique 57
 2.6.4 Policy-Based Technique 58
 2.6.5 Prediction-Based 59
 2.6.6 Trade-off Based Technique 59
 2.6.7 Competition-Aware Technique 59

2.7 Existing Works vs. Research Gaps 60
 2.7.1 Collaborative QoS-Aware Service Assessment 60
 2.7.2 Multi-Criteria Service Selection under Fuzzy Preferences of Users 69
 2.7.3 Autonomous Adaptive SLA Negotiation for Service Composition 71

2.8 Summary 72

3 RESEARCH METHODOLOGY 74
3.1 Introduction 74
3.2 Research Scheme Overview 75
3.3 Research Scheme Phases 76
 3.3.1 Phase 1: Trust-Aware Crowd-Enabled Consensus-based Service Assessment 78
 3.3.1.1 Crowd Formation Process 79
 3.3.1.2 Consensus Process 80
 3.3.2 Phase 2: Fuzzy Inference Based Multi-Criteria Service Ranking 82
 3.3.2.1 Fuzzy Sets 83
 3.3.2.2 Membership Functions 84
 3.3.2.3 Logical Operations 85
 3.3.2.4 If-Then Rules 86
 3.3.2.5 Fuzzy Inference Process 87
 3.3.3 Phase 3: Pareto-Optimal Service Composition 89
 3.3.3.1 Budget Decomposition 91
3.4 Analysis of Requirements
3.4.1 Requirement Analysis of Phase 1
3.4.2 Requirement Analysis of Phase 2
3.4.3 Requirement Analysis of Phase 3

3.5 Development
3.5.1 Proposed Methodologies for Phase 1
3.5.2 Proposed Methodologies for Phase 2
3.5.3 Proposed Methodologies for Phase 3

3.6 Evaluation
3.6.1 Evaluation of Phase 1
3.6.2 Evaluation of Phase 2
3.6.3 Evaluation of Phase 3

3.7 Operational Framework

3.8 Assumptions and Limitations

3.9 Instrumentation

3.10 Summary

4 RESEARCH DESIGN AND IMPLEMENTATION
4.1 Introduction

4.2 Crowd-Sourced Consensus-based Service Selection under Fuzzy Preference of Users
4.2.1 System Model
4.2.1.1 Service Model
4.2.1.2 Crowd Model
4.2.1.3 User Request Model
4.2.1.4 Objective
4.2.2 Multi-Criteria Consensus-Based Service Ranking Scheme
4.2.2.1 Crowd-Sourced Consensus-Based Service Assessment for Single QoS Criterion
4.2.2.2 Trust Model
4.3 Pareto Optimal Service Composition using Autonomous Negotiation Strategy

4.3.1 Negotiation Framework

4.3.2 Negotiation Strategy

4.3.2.1 Negotiation Model

4.3.2.2 Negotiation Tactic

4.3.2.3 Provider Negotiation Strategy

4.3.2.4 Component Negotiation Strategy

4.3.2.5 Budget Decomposition and Surplus Redistribution

4.4 Summary

5 EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Introduction

5.2 Experimental Results on Crowd-Sourced Consensus-based Trust-Aware Service Selection

5.2.1 Experimental Setup

5.2.2 Applicability and Feasibility of the Proposed Approach

5.2.2.1 Scenario One

5.2.2.2 Scenario Two

5.2.2.3 Fuzzy Desirability Estimation

5.2.3 Effect of Network Density

5.2.3.1 Effect of Network Density on Convergence Time

5.2.3.2 Effect of Network Density on Degree of Convergence

5.2.3.3 Effect of Network Density on Consensus Strength

5.2.4 Effect of Number of Peers
5.2.4.1 Effect of Number of Peers on Convergence Time 154
5.2.4.2 Effect of Number of Peers on Degree of Convergence 158
5.2.5 Effect of Different Trust Maps 163
 5.2.5.1 Effect of Different Trust Maps on Consensus Strength 164
 5.2.5.2 Effect of Different Trust Maps on Degree of Convergence 165
5.2.6 Effect of Consensus Step Size 168
 5.2.6.1 Effect of Consensus Step Size on Degree of Convergence 168
 5.2.6.2 Effect of Consensus Step size on Time of Convergence 174
5.2.7 Effect of Strategy of Peers 177
 5.2.7.1 Effect of Strategy of Peers on Degree of Convergence 179
 5.2.7.2 Effect of Strategy of Peers on Time of Convergence 183
5.2.8 Effect of Authority of Peers 187
 5.2.8.1 Effect of Authority of Peers on Degree of Convergence 188
 5.2.8.2 Effect of Authority of Peers on Time of Convergence 190
5.2.9 Effect of Strategy of Leaders 192
 5.2.9.1 Effect of Strategy of Leaders on Degree of Convergence 192
 5.2.9.2 Effect of Strategy of Leaders on Time of Convergence 194
5.2.10 Effect of Tolerance and Confirmation 198
5.3 Experimental Results on Pareto Optimal Service Composition 201
 5.3.1 Experimental Setup 201
5.3.2 Effect of Negotiation Parameters and Strategies on the Negotiation Outcome 204
5.3.3 Effect of Change in Negotiation Deadline on the Composition Optimality 209
5.3.4 Effect of Number of Request on the Composition Optimality 210
5.3.5 Effect of Number of Request on the Combined Utility Value 211
5.3.6 Effect of Importance of Component on the Utility Value 216
5.4 Summary 218

6 CONCLUSION 219
6.1 Introduction 219
6.2 Objective Revisited 220
6.3 Contribution of the Research 223
6.4 Recommendations for Future Works 224
6.4.1 Crowd Discovery and Formation 225
6.4.2 Modelling Trust Dynamics in the Consensus Process 225
6.4.3 Considering Time-Delayed Consensus Protocol in Convergence Process 225
6.4.4 Studying Heterogeneous Negotiation Strategies in Negotiation-Based Service Selection 226
6.4.5 Integrating Time-Dependent Negotiation Strategies and Fuzzy Similarity to Support Pareto-Optimal Service Composition 226
6.5 Closing Remarks 226

REFERENCES 230
Appendix A 249-250
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of State-of-the-art Collaborative QoS-Aware Service Assessment</td>
<td>66</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of Existing Works Supporting Dynamic Assessment</td>
<td>69</td>
</tr>
<tr>
<td>3.1</td>
<td>Positioning of This Research</td>
<td>97</td>
</tr>
<tr>
<td>3.2</td>
<td>Operational Framework</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>Description of Symbols</td>
<td>111</td>
</tr>
<tr>
<td>4.2</td>
<td>Negotiation Objectives</td>
<td>122</td>
</tr>
<tr>
<td>4.3</td>
<td>Description of Symbols used in The Negotiation Process</td>
<td>130</td>
</tr>
<tr>
<td>5.1</td>
<td>Experimental Parameters Descriptions</td>
<td>141</td>
</tr>
<tr>
<td>5.2</td>
<td>Response Time Evaluation Results Before and After Consensus</td>
<td>143</td>
</tr>
<tr>
<td>5.3</td>
<td>Success Rate Evaluation Results Before and After Consensus</td>
<td>145</td>
</tr>
<tr>
<td>5.4</td>
<td>Fuzzy Selection Desirability Estimation based on Presented Case Studies</td>
<td>146</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of Network Density on Convergence Time</td>
<td>148</td>
</tr>
<tr>
<td>5.6</td>
<td>Convergence Time with respect to Different Number of Peers</td>
<td>155</td>
</tr>
<tr>
<td>5.7</td>
<td>R Squared of Different Situations for Convergence Time</td>
<td>157</td>
</tr>
<tr>
<td>5.8</td>
<td>Effect of Number of Peers on Convergence Degree</td>
<td>158</td>
</tr>
<tr>
<td>5.9</td>
<td>Specified Thresholds for Different Networks</td>
<td>160</td>
</tr>
<tr>
<td>5.10</td>
<td>R Squared of Different Situations for Convergence Degree</td>
<td>161</td>
</tr>
<tr>
<td>5.11</td>
<td>Generated Connected Digraphs with Different Trust Map</td>
<td>163</td>
</tr>
<tr>
<td>5.12</td>
<td>Consensus Strength with regard to Different Trust Maps</td>
<td>164</td>
</tr>
<tr>
<td>5.13</td>
<td>Degree of Convergence with respect to Different Trust Maps</td>
<td>166</td>
</tr>
<tr>
<td>5.14</td>
<td>Generated Connected Digraphs with Different Density (n = 20)</td>
<td>168</td>
</tr>
<tr>
<td>5.15</td>
<td>Effect of Consensus Step Size on Convergence Degree</td>
<td>169</td>
</tr>
</tbody>
</table>
5.16 Different Thresholds with Regards to Different Consensus Step Size

5.17 Generated Connected Digraphs with Different Density (n = 100)

5.18 Convergence Time with respect to Different Consensus Step Size

5.19 Generated Connected Digraphs with Different Density (n = 30)

5.20 Defined Scenarios to be Used in The Convergence Process

5.21 Degree of Convergence Considering Different Strategies of Peers

5.22 Time of Convergence Considering Different Strategies of Peers

5.23 Generated Connected Digraphs with Different Number of Peers

5.24 Monoploy and Oligopoly Leader Nodes with respect to Each Network

5.25 Degree of Convergence Considering Different Authorities of Peers

5.26 Time of Convergence Considering Different Authorities of Peers

5.27 Degree of Convergence with respect to Different Strategies of Leaders

5.28 Time of Convergence with respect to Different Strategies of Leaders

5.29 Time of Convergence with respect to Different Tolerance and Confirmation Parameters

5.30 Functional Requirements Requested by User for SPS

5.31 Different Composite Services with respect to User Requirements

5.32 Experimental Settings

5.33 CUV of Proposed and Pure Time-dependent Strategies

5.34 CUV with respect to Different Percentage of High-Demand Components

5.35 Different Utility Values for Different Importance of Component (Polynomial Function)

5.36 Different Utility Values for Different Importance of Component (Exponential Function)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>High-level Architectural View of Service Computing Systems</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Web Service Reference Model</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Enhanced Web Service Model</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Web Service Stack and Key Dimensions</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Web Service Management System (WSMS) Architecture</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Web Service Classification</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>The Life Cycle of Web Service Composition</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Web Service Composition Classification</td>
<td>29</td>
</tr>
<tr>
<td>2.8</td>
<td>Service Orchestration vs. Service Choreography</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Web Service Composition Challenges</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Decision Support System Taxonomy</td>
<td>39</td>
</tr>
<tr>
<td>2.11</td>
<td>Different Collaboration Technologies with respect to Time and Space Dimensions</td>
<td>45</td>
</tr>
<tr>
<td>2.12</td>
<td>The Evolution of Integrated Collaborative Environments</td>
<td>46</td>
</tr>
<tr>
<td>2.13</td>
<td>Conceptual Framework for Crowdsourcing to Support Decision Making</td>
<td>48</td>
</tr>
<tr>
<td>2.14</td>
<td>Roles of a Crowd with respect to Different Stages of Decision Making</td>
<td>50</td>
</tr>
<tr>
<td>2.15</td>
<td>Consensus in Network of Agents</td>
<td>52</td>
</tr>
<tr>
<td>2.16</td>
<td>Mamdani Fuzzy Controller</td>
<td>55</td>
</tr>
<tr>
<td>2.17</td>
<td>SLA Negotiation Techniques</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Framework</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Research Scheme Overview</td>
<td>78</td>
</tr>
<tr>
<td>3.3</td>
<td>Consensus Process</td>
<td>81</td>
</tr>
<tr>
<td>3.4</td>
<td>Example of a Membership Function</td>
<td>84</td>
</tr>
</tbody>
</table>
5.5 Impact of Network Density on Convergence Time
5.6 Impact of Network Density on Convergence Degree
5.7 Impact of Network Density on Consensus Strength
5.8 Impact of Number of Peers on Time of Convergence
5.9 Correlation Analysis between Number of Peers and Convergence Time
5.10 Impact of Number of Peers on Degree of Convergence (Scenario 1)
5.11 Impact of Number of Peers on Degree of Convergence (Scenario 2)
5.12 Correlation Analysis between Number of Peers and Threshold
5.13 Correlation Analysis between Number of Peers and Convergence Degree
5.14 Impact of Different Trust Maps on Consensus Strength
5.15 Correlation Analysis Between Numbr of Peers and Consensus Strength
5.16 Impact of Different Trust Maps on Convergence Degree
5.17 Correlation Analysis Between Numbr of Peers and Convergence Degree
5.18 Impact of Consensus Step Size on Convergence Degree in Not Regular Connected Networks
5.19 Impact of Consensus Step Size on Convergence Degree in k-Regular Connected Networks
5.20 Effect of Different Consensus Step Size on Consensus Process
5.21 Correlation Analysis between Consensus Step Size and Convergence Degree
5.22 Impact of Consensus Step Size on Threshold
5.23 Impact of Consensus Step Size on Time of Convergence
5.24 Correlation Analysis between Consensus Step Size and Convergence Time
5.25 Defined Scenarios Indicating Different Behavioral Strategies of the Peers
5.26 Impact of Different Strategies of Peers on Convergence Degree
5.27 Degree of Convergence with Respect to Different Scenarios
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.28</td>
<td>Correlation Analysis between Number of Conservative and Conceder Peers and Degree of Convergence</td>
<td>182</td>
</tr>
<tr>
<td>5.29</td>
<td>Impact of Different Strategies of Peers on Convergence Time</td>
<td>184</td>
</tr>
<tr>
<td>5.30</td>
<td>Time of Convergence with Respect to Different Scenarios</td>
<td>185</td>
</tr>
<tr>
<td>5.31</td>
<td>Correlation Analysis between Number of Conservative and Conceder Peers and Time of Convergence</td>
<td>186</td>
</tr>
<tr>
<td>5.32</td>
<td>Impact of Different Authorities of Peers on Convergence Degree</td>
<td>189</td>
</tr>
<tr>
<td>5.33</td>
<td>Impact of Different Authorities of Peers on Convergence Time</td>
<td>191</td>
</tr>
<tr>
<td>5.34</td>
<td>Impact of Different Strategies of Leaders on Convergence Degree</td>
<td>192</td>
</tr>
<tr>
<td>5.35</td>
<td>Different Degree of Convergence with respect to Different Strategies of Leaders (Comparative Perspective)</td>
<td>195</td>
</tr>
<tr>
<td>5.36</td>
<td>Impact of Different Strategies of Leaders on Convergence Time</td>
<td>197</td>
</tr>
<tr>
<td>5.37</td>
<td>Different Time of Convergence with respect to Different Strategies of Leaders (Comparative Perspective)</td>
<td>199</td>
</tr>
<tr>
<td>5.38</td>
<td>Effect of Different Tolerance and Confirmation Parameters on Convergence Time</td>
<td>200</td>
</tr>
<tr>
<td>5.39</td>
<td>Specialized Property Search Composite Service</td>
<td>202</td>
</tr>
<tr>
<td>5.40</td>
<td>Impact of Initial Offer and Conceding Factor on NSO (First Scenario)</td>
<td>206</td>
</tr>
<tr>
<td>5.41</td>
<td>Impact of Initial Offer and Conceding Factor on NSO (Second Scenario)</td>
<td>208</td>
</tr>
<tr>
<td>5.42</td>
<td>Impact of Deadline on Composition Optimality</td>
<td>209</td>
</tr>
<tr>
<td>5.43</td>
<td>Impact of Number of Request on Composition Optimality</td>
<td>210</td>
</tr>
<tr>
<td>5.44</td>
<td>Impact of Number of Request on Combined Utility Value</td>
<td>213</td>
</tr>
<tr>
<td>5.45</td>
<td>Impact of Number of Request on Combined Utility Value Considering Different PHC (Polynomial Function)</td>
<td>215</td>
</tr>
<tr>
<td>5.46</td>
<td>Impact of Number of Request on Combined Utility Value Considering Different PHC (Exponential Function)</td>
<td>215</td>
</tr>
<tr>
<td>5.47</td>
<td>Impact of Importance of Component on Utility Value (Polynomial Function)</td>
<td>217</td>
</tr>
<tr>
<td>5.48</td>
<td>Impact of Importance of Component on Utility Value (Exponential Function)</td>
<td>218</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

N - Number of peers (experts or monitoring services)

x_i - Decision value (evaluation of QoS criteria)

k - Number of iteration

ε - Consensus step size

u_i - Normalized sum of signals entity i receives from its trustworthy neighbors

Δ_i - Weighted degree of all received signals by entity i

T_{ij} - Pair-wise trust between entity i and entity j

N_i - Set of first-neighbours of entity i

z_{ij} - Collaboration Willingness between entity i and entity j

δ_{ij}(k) - Disagreement distance between entity i and entity j

z_{ij}^r - Set of last r movement toward an agreement from entity i to entity j

τ - Number of tolerable observations before trust destruction

c - Number of favourable observations before full trust achievement

T̂_j - Trustworthiness of entity j

T̅ - Overall network trust indicates the strength of consensus

a, b - Negotiation Parties

x_i - Defines the range of value for an issue i

min_i^a - Minimum acceptable (most preferred) value of issue i for a

max_i^a - Maximum acceptable (least preferred) value of issue i for a

V_i - Offer value for issue I
UV - Utility value of the offer

W_i - Importance of issue i

t_{max} - Negotiation deadline

$x_{b \rightarrow a}^{t_k} [i]$ - The offer a received from b at time t_k for issue i

$x_{a \rightarrow b}^{t_{k+1}} [i]$ - The counter offer a sent to b at time t_{k+1} for issue i

$\alpha_i^a(t)$ - Time dependent decision function of issue i for a

β - Convexity degree

k_i^a - Initial offer value for issue i by a

SP_j^t - Price of a service j at t

αSP_j - Time dependent function for price of service j

ISP_j - Initial price offer for service j

β_j - Convexity degree for price of service j

R_j - Current number of utilization requests for service j

\hat{R}_j - Expected number of utilization requests for service j

CF - Conceding factor

DL - Desirability level to reach an agreement

SUx - Service utilization oriented tactic

Px - Preferences oriented tactic

SDx - Service demand oriented tactic

SIx - Service importance oriented tactic

D_j, \bar{D}_j - Current and expected demands for service j

S - Service

Nm - Service Name

Sp - Service Provider

T_{request} - Indicates the time when the request is sent or delegated to a service

T_{response} - Indicates the time when the corresponding response is received
n - The number of nodes (experts)
n(SReq) - Number of successful served requests
n(FReq) - Number of failed served requests
\(Q_i(S) \) - QoS attribute of a service S
\(Q_i^{\text{min}} \) - Minimum values of the QoS attribute,
\(Q_i^{\text{max}} \) - Maximum values of the QoS attribute
MS\(_k\) - Monitoring service
\(E_i \) - Interactions between peers
\(E_T \) - Trust relations among peers
d - The density of network (crowd)
CS - The consensus strength
\(T_{\text{cov}} \) - The convergence time
\(D_{\text{cov}} \) - The convergence degree
\(\theta_d \) - The difference threshold
\(CV_{BC} \) - Coefficient of variations of crowd member’s assessments before consensus
\(CV_{AC} \) - Coefficient of variations of crowd member’s assessments after consensus
\(\sigma \) - The standard deviation of variant assessments
\(\mu \) - The mean of variant assessments
\(\tau \) - Tolerance
c - Confirmation
\(\max_i^{\text{PNS}} \) - Maximum value of last-ranked candidate service providers for each component service
\(\max_i^{\text{PNS1}} \) - Maximum value of top-ranked candidate service providers for each component service
CF - Conceding Factor
k - Initial Offer
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSO</td>
<td>Normalized Social Optimality</td>
</tr>
<tr>
<td>UV_{CS}</td>
<td>Utility value of Component Service</td>
</tr>
<tr>
<td>UV_{SP}</td>
<td>Utility value of Service Provider</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytical Hierarchy Process</td>
</tr>
<tr>
<td>ANP</td>
<td>Analytic Network Process</td>
</tr>
<tr>
<td>BPEL</td>
<td>Business Process Execution Language</td>
</tr>
<tr>
<td>CSP</td>
<td>Composite Service Provider</td>
</tr>
<tr>
<td>COOP</td>
<td>Composition Optimality</td>
</tr>
<tr>
<td>CS</td>
<td>Consensus Strength</td>
</tr>
<tr>
<td>CNS</td>
<td>Component Negotiation Service</td>
</tr>
<tr>
<td>CF</td>
<td>Conceding Factor</td>
</tr>
<tr>
<td>CDSS</td>
<td>Collaborative Decision Support System</td>
</tr>
<tr>
<td>COPS-SLS</td>
<td>Common Open Policy Service for Service</td>
</tr>
<tr>
<td>CS</td>
<td>Cold Start</td>
</tr>
<tr>
<td>CF</td>
<td>Collaborative Filtering</td>
</tr>
<tr>
<td>CPC</td>
<td>Constrained Pearson Correlation</td>
</tr>
<tr>
<td>DSS</td>
<td>Decision Support System</td>
</tr>
<tr>
<td>FLC</td>
<td>Fuzzy Logic Controller</td>
</tr>
<tr>
<td>GDSS</td>
<td>Group-based Decision Support System</td>
</tr>
<tr>
<td>ICE</td>
<td>Integrated Collaborative Environment</td>
</tr>
<tr>
<td>IOS</td>
<td>Internet of Services</td>
</tr>
<tr>
<td>IOT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>KB</td>
<td>Knowledge Base</td>
</tr>
<tr>
<td>MDSS</td>
<td>Multi Participant Decision Support System</td>
</tr>
<tr>
<td>MCDM</td>
<td>Multi Criteria Decision Making</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>MUAT</td>
<td>Multi Attribute Utility Making</td>
</tr>
<tr>
<td>NSS</td>
<td>Negotiation Support System</td>
</tr>
<tr>
<td>NSO</td>
<td>Normalized Social Optimality</td>
</tr>
<tr>
<td>OLAP</td>
<td>Online Analytical Processing</td>
</tr>
<tr>
<td>OD</td>
<td>Optimal Distance</td>
</tr>
<tr>
<td>PALEN</td>
<td>Pareto Optimal Service Composition</td>
</tr>
<tr>
<td>PDP</td>
<td>Policy Decision Point</td>
</tr>
<tr>
<td>PCC</td>
<td>Pearson Correlation Coefficient</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RCM</td>
<td>Relational Clustering based Collaborative Filtering Model</td>
</tr>
<tr>
<td>RT</td>
<td>Response Time</td>
</tr>
<tr>
<td>REST</td>
<td>Representation State Transfer</td>
</tr>
<tr>
<td>SOC</td>
<td>Service Oriented Computing</td>
</tr>
<tr>
<td>SLA</td>
<td>Service Level Agreement</td>
</tr>
<tr>
<td>SOA</td>
<td>Service Oriented Architecture</td>
</tr>
<tr>
<td>SOAP</td>
<td>Simple Object Access Protocol</td>
</tr>
<tr>
<td>SC</td>
<td>Strongly Connected</td>
</tr>
<tr>
<td>SAW</td>
<td>Simple Additive Weighting</td>
</tr>
<tr>
<td>SPS</td>
<td>Specialized Property Search</td>
</tr>
<tr>
<td>TR</td>
<td>Associated Trust value of Response Time</td>
</tr>
<tr>
<td>TC</td>
<td>Associated Trust value of Success Rate</td>
</tr>
<tr>
<td>TACSA</td>
<td>Trust-Aware Crowd-Enabled Consensus-based Service Assessment</td>
</tr>
<tr>
<td>URL</td>
<td>University Resource Locator</td>
</tr>
<tr>
<td>URI</td>
<td>University Resource Identifier</td>
</tr>
<tr>
<td>UDDI</td>
<td>Universal Description and Integrity</td>
</tr>
<tr>
<td>WOT</td>
<td>Web of Things</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>WSDL</td>
<td>Web Service Description Language</td>
</tr>
<tr>
<td>WSMS</td>
<td>Web Service Management System</td>
</tr>
<tr>
<td>WSC</td>
<td>Web Service Composition</td>
</tr>
<tr>
<td>WS-CDL</td>
<td>Web Service Choreography Description Language</td>
</tr>
<tr>
<td>WS-Security</td>
<td>Web Service Security</td>
</tr>
<tr>
<td>WS-Trust</td>
<td>Web Service Trust</td>
</tr>
<tr>
<td>WS-Federation</td>
<td>Web Service Federation</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>223</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

Service Oriented Computing (SOC) is a dominant technology in software development and Internet-based applications that presents distinctive experiences and opportunities to service users. Their daily life is made easy because SOC brings comfort to a variety of their desired tasks and jobs by introducing progressive concepts, such as e-commerce, e-science, and e-health services. Moreover, SOC offers a brilliant opportunity for enterprises to maximize their profits and reduce their costs. It lets enterprises grow and still do not strain them financially.

The SOC paradigm is undeniably grounded on the Web service technology as its preferred delivery method (Bouguettaya et al., 2014b). Web services have evolved over the years and paved the way to modern software development. Advent of Web service technology enables enterprises to make their internal business processes accessible via the Internet. Nowadays, giant IT services companies such as Google, Facebook, Twitter, and Amazon offer access to their resources and services utilizing Web services such that they can reuse and compose. According to recent seedka report (Web service search engine available at www.seekda.com), 28,606 Web services are available offered by 7739 different service providers on the Web in the context of e-tourism.

Moreover, the statistics published by several Web services publication websites e.g., WebServiceList (available at http://www.webservicelist.com), ProgrammableWeb (available at http://www.programmableweb.com), and WSIndex
(available at http://www.wsindex.org) prove that digital world have witnessed an exponential increase in Web services usage and popularity over the past few years. This trend is being accelerated via the rapid adoption of new computing paradigms such as social networks, cloud computing, and Web of Things (WoT) (Bessis et al., 2012; Bouguettaya et al., 2014a; Qiang et al., 2012). Thus, Web services will evidently continue to play a significant role for those new emerged paradigms.

However, an atomic or elementary service (Sheng et al., 2002) may not satisfy users’ goals. Several services thus need to be combined to provide the functionality to fulfil the requested goals. This created value-added service is called composite service and its development process is called service composition (Dustdar and Schreiner, 2005). A composite service aggregates the functionalities of all its component services. The composite services in turn may involve in the composition process of other composite services. Assuming that composite services fulfil the requested requirements, service users have to go through a process to select the most suitable service to satisfy their desires. The process of making a service ready to be used is called service coordination and deployment. This process often comprises multiple deployment of interrelated software components into heterogeneous environments (Dastjerdi, 2013).

A growing number of services provide the same functionalities, and variant Quality of Service (QoS) makes the coordination and deployment process difficult and complicated. This thesis introduces an architecture for service selection and composition and investigates methodologies and algorithms for each phase to outperform service coordination and deployment in SOC environments. The reminder of this chapter details the need for service selection and composition and discusses the research problems, objectives, scope, significance, and organization of this thesis.

1.2 Background of the Problem

The SOC has experienced the growth of X-as-a-service phenomenon leading to a profound evolution on system integration in B2C and B2B applications. Services aim to unify a variety of distinct disciplines such as business process management,
autonomic computing, distributed systems, knowledge-based systems, and networking, to name but a few (Bouguettaya et al., 2014a). Service coordination and deployment plays a central role to fully realize this promising phenomenon as shown in Figure 1.1. It consists of several phases namely discovery, selection, composition, and execution. In the discovery phase, the best suited services among various available services - offered by different service providers- are discovered with respect to requested functionalities in user requirements (used as input). The discovered services provide the same functionalities and variant QoS (i.e., non-functional properties). The selection phase is responsible to select the best candidate services complying user desires on QoS criteria. Then, a composite service as a value-added service is created and executed based on the selected component services in the composition and execution phases, respectively.

Each of these phases have their own challenges and issues. The focus of this study is on service selection and composition phases. Selection phase faces a great number of discovered services claim same functionalities. It makes the selection decision difficult and complicated. QoS metrics are introduced to address this issue. The QoS of a service presents the non-functional properties in different aspects. The literature features varying QoS understandings. A QoS model of a service is defined in ISO 840216 and ITUE.80017 (Liu et al., 2012). The service user’s requirements can be properly reflected in this model. The QoS model can affect the service user’s satisfaction from different aspects, such as the response time, success rate, reliability, availability, performance, and cost.

Selecting the best candidate service from numerous discovered services given different QoS values is considered a well-known research problems in the service computing area (Barakat et al., 2014; Michlmayr et al., 2010). A number of studies have been proposed to address this problem (Benouaret et al., 2012a, 2012b; D'Mello and Ananthanarayana, 2010; Rehman et al., 2014; Sun et al., 2011). However, the QoS perceived by users does not always match the one promised by the service provider (Ishikawa, 2014; Pan and Baik, 2010). It leads to propose QoS evaluation of the Web services and provide feedbacks by third parties either service consumers or service evaluators (Tao et al., 2012).
However, none of the aforementioned approaches considered the evaluation of human agents, i.e., experts, in the service evaluation process. The limitation of the current evaluation solutions is that they can only evaluate the QoS attributes of a service by relying on monitoring services assessments. However, some services must be assessed based on user friendliness. Compared to experts, monitoring services are not suitable to evaluate such QoS criteria.

Different evaluator entities either human agents (e.g., experts) or software agents (e.g., monitoring services) are involved in the assessment of QoS parameters of candidate services in the other approaches (Hang and Singh, 2011; Hien Trang et al., 2010; Mehdi et al., 2012; Motallebi et al., 2012; Paradesi et al., 2009). They independently assess the promised QoS metrics of service based on the perceived facts. These facts are based on either their own experiences, i.e., first-hand information, or

Figure 1.1 High-level Architectural View of Service Computing Systems
other entities’ experiences, i.e., second- or third-hand information. However, these assessments suffer from subjective or dishonest contributions and the trustworthiness levels of contributors are not considered. Moreover, the diversity of subjective evaluations imposes an obstacle to assess the service. The existing diversity necessitates a methodology to converge these evaluations to reach an agreement. Proposing an appropriate mechanism for QoS-aware assessment is considered the first research gap of this study.

Recently, Collaborative Decision Support Systems (CDSS) and techniques such as crowdsourcing and consensus present some potential solutions to address the convergence problem in SOC. Nonetheless, two important principles should be considered: first because services behave dynamically, past and current assessment should be differentiated to reach a consensus on service evaluation. Second because the trustworthiness of each crowd member evolves over time, a model to update and maintain this trust should be in place. This model works based on cooperative knowledge sharing between crowd members.

Furthermore, service users usually have different preferences with respect to QoS parameters and want to make trade-off between them. They would like these preferences and priorities to be considered in the QoS-aware selection process. Therefore, they need a system to support multi-criteria assessment and ranking and capture their preferences which incur complexity in selecting the best-suited candidate services. The proposed system should be able to specify and enforce user preferences while makes a multi-criteria selection decision. Addressing these complexities to support multi-criteria service selection with respect to the vague preferences of users (on multiple QoS criteria) is the second research gap that needs to be answered.

Cost of service is the subset of QoS that has been neglected in the majority of proposed existing approaches for service composition. In contrast, it is extensively investigated in the form of Service Level Agreement (SLA) in new emerging computing paradigms such as cloud and utility computing (Linlin and Rajkumar, 2012). SLA refers to “an explicit statement of exceptions and obligations that exist in a business relationship between two organizations: the service provider and customer” (Verma, 2004). Service providers specify the cost of offered service in the created
Service Level Agreement (SLA) templates. Service consumers then use the templates for negotiation on the cost of services. If both sides can reach an agreement, an SLA contract will be achieved.

Similar to the commodity-market, higher-reputed service providers offer higher service costs compared to the less-known ones. Service consumers tend to use more reliable services based on their affordability levels. As a result, a negotiation process should be in place to support trade-off between providers’ supplies and users’ demands. The negotiation failure (i.e. reach no agreement within negotiation deadline) for even a single atomic service leads to failure of the entire composition. Surplus management is the proposed solution to address this issue. (Richter et al., 2012). However, unbalanced surplus distribution may lead to decrease the quality of composition. Proposing a suitable negotiation strategy to support budget-constrained service composition is a demanding task that is considered as the third research gap of this study.

Moreover, current SOC environments are becoming more open, changing, and dynamic. It makes adaptable and autonomous service composition a challenging task. Self-optimizing is one of the adaptable and autonomous composition aspects that needs to be resolved (Sheng et al., 2014b). It concentrates on fulfilling QoS constraints in the selection of component services and achieving the self-optimized composite service. Proposing the appropriate mechanism to ensure achieving the self-optimized composite service and increasing the utility of entire composition introduces a significant research challenge to be addressed.

1.3 Statement of the Problem

Nowadays, service computing is increasingly gaining momentum as latest emerging paradigm for distributed computing in order to change the way of design, delivery and consumption of software applications. In order to enhance and optimize the service deployment and coordination, it is important to exploit the benefits of autonomous, reliable, and optimized service selection and composition. The budget-constrained QoS-aware composition problem maps to multi-objective optimization
problem that is classified as NP-hard problem. It consists of selecting the best candidate services that maximizes QoS metrics and adhere to the budget constraints of users. It has attracted a great deal of interest in the context of SOC (Barakat et al., 2014; Menascé et al., 2010; Rehman et al., 2014; Wang, 2009; Wu et al., 2013). However, none of the existing approaches addressed this problem in an integrated manner, which is the focus of this research. The general research question this research plans to address is:

“How an autonomous, reliable, and optimized service selection and composition would be achieved by integrating a novel crowdsourced consensus-aware service assessment, fuzzy service ranking, and budget-constrained service composition, respectively?”

On a journey towards autonomous, reliable, and optimized service selection and composition, following questions will arise in each phase that need to be addressed:

RQ1: How to select the best candidate services reliably with respect to users’ QoS constraints and preferences utilizing the crowdsourced consensus-based methodology? (Service selection phase)

The proposed solution should be able to answer the following sub-questions raised in service assessment and ranking:

i. How to employ the power of crowdsourcing, as a collaborative decision support system, to assess the QoS attributes of candidate services to not suffer from subjective or dishonest contributions?

ii. How to converge diverse subjective QoS evaluations and reach consensus on the assessed candidate services considering dynamic behaviour of services and trustworthiness levels of crowd members?
iii. How to capture and enforce user preferences in QoS-aware service ranking mechanism while reduce its complexity for non-expert users?

iv. How to propose multi-criteria ranking mechanism for the assessed candidate services with respect to different QoS constraints and preferences of users?

RQ2: How to compose the best candidate services to support Pareto-optimal selection for each component service and increase the utility of entire composition autonomously? (Service composition phase)

The proposed solution should be able to answer the following sub-questions raised in service negotiation:

i. What is the best SLA-based negotiation strategy for service composition?

ii. How to utilize the power of surplus management to raise the chance of achieving an overall agreement in composition process (i.e. no negotiation failure for component services)?

iii. How to achieve optimized surplus redistribution over the composite service to maximize QoS metrics and adhere to the budget constraints of users?

1.4 Purpose of the Research

The purpose of this research is to design an autonomous, reliable, and optimized service selection and composition to be used in service deployment and coordination for SOC environments by introducing a crowdsourced consensus-based service selection under fuzzy preferences of users and QoS-aware budget-constrained service composition using concurrent SLA negotiation and surplus management.
1.5 Objectives of the Research

Driven by the aforementioned challenges and research questions in the background and statement of the problem sections, the objectives of the research are identified as follows:

i. To investigate the application of collaborative decision support systems and techniques in SOC and utilize their power to support service selection and composition

ii. To eliminate the imposed diversity in QoS-aware assessment of service behaviour using the power of crowdsourcing and consensus theory to support reliable service selection

iii. To develop multi-criteria service selection based on the consensus-achieved assessed QoS criteria and vague preference of users using fuzzy inference engine

iv. To develop the autonomous optimized budget-constrained QoS-aware service composition using concurrent SLA-based negotiation and optimized surplus redistribution

1.6 Scope of the Research

Considering the aforementioned sections, this research was inspired by four research directions comprising collaborative decision support systems, Web service selection and composition, fuzzy inference systems, and SLA-based service negotiation. In this research:

- Crowdsourcing as collaborative decision support technique is utilized to support QoS-aware assessment of Web services
• Consensus as collaborative decision support technique is employed to converge diverse subjective assessments based on the trustworthiness levels of involved crowd members to support reliable service selection

• Fuzzy inference engine is used to support multi-criteria ranking strategy and handle and enforce vague preference of users on QoS metrics for service selection

• SLA-based concurrent negotiation is applied to support budget-constrained service composition

• Surplus redistribution is utilized to support self-optimized service composition

The discovery process of a crowd that supports QoS-aware service assessment and fulfills the required conditions is beyond the scope of this research. It is assumed that the suitable formed crowd is ready to be involved in the consensus process and this research only focuses on the consensus and aggregation processes.

1.7 Significance of the Research

The advantages of service computing such as being platform-independent, loosely coupled, and standard-based encourage enterprises and companies to utilize it for low-cost and rapid developments of their distributed applications in heterogonous environments (Bouguettaya et al., 2014b; Papazoglou and van den Heuvel, 2007; Yu et al., 2008). SOC is continuously progressing to the extent that Internet of Services (IoS) will offer service consumers variant web services in all areas of their life and business in near future.

Considering a growing number of services provide the same functionalities and variant QoS, service users face a competitive situation to choose the accurate and appropriate services to fulfill their goals and desires. This leads to the problem of service selection and composition considered a NP-hard problem in SOC (Ben Mabrouk et al., 2009b). Web service selection and composition is an active area of research in SOC that has been heavily investigated over the past decade (Ishikawa, 2014; Jula et al., 2014; Sheng et al., 2014b). Despite its massive improvements, the
process of selection and composition of Web Services is still considered as a complicated task due to the following reasons:

- First, dynamic behaviour of service results to QoS changes over the time. It necessitates the service assessment mechanism to be evolved over the time.
- Second, service assessment usually faces diversity of evaluations which may suffer from subjective or dishonest contributions.
- Third, service users have their own preferences on QoS metrics and budget constraints that need to be accounted in service selection and composition.
- Forth, service composition is required to select the best candidate services that maximizes QoS metrics while adheres to the budget constraints of users.

Moreover, rising the new emerging service oriented paradigms such as social computing, cloud computing, and Internet of things imposes new unaddressed challenges and requires revisit the previously addressed problems to propose new outperformed solutions. Considering the intrinsic nature of service computing, CDSSs have great potential to support service selection and composition. This research tries to open a new horizon for service selection and composition to utilize crowd-enabled consensus-based decision making.

1.8 Thesis Organization

This chapter is completely explained the nature of the research, the facing problems, the purpose and objectives of the research to address these problems and scope of the research. The reminder of this thesis is organized as follows:

- Chapter 2 presents the background on research directions, discusses the unaddressed challenges, and describes literature review on existing works in service selection and composition
- The proposed research methodology is elaborated in Chapter 3 providing an overview of the research phases, analysis of requirements and explanations on development and evaluation of these phases.

- Chapter 4 presents research design and implementation introducing a crowd-enabled consensus-based service selection mechanism under fuzzy preference of users and Pareto-optimal service composition mechanism using SLA negotiation and surplus redistribution. The proposed techniques and algorithms are described in details.

- Experimental results and discussion are provided in chapter 5 to indicate the applicability and feasibility of the proposed approaches and investigate their performance evaluations.

- Finally, the thesis is summarized and concluded in chapter 6 by discussing the contributions of this research and suggestions for future research directions.
REFERENCES

QoS-Aware Service Composition in Dynamic Service Oriented Environments, 5896 123-142 2009b).

efficacy of a computerized negotiation support system (NSS). *Decis. Support
Syst.*, 20(3), 185-197.

Edge Perspectives*, 1(1).

Ding, Z. H., Chen, M. H., and Li, X. X. (2014). Online reliability computing of
composite services based on program invariants. *Information Sciences*, 264,
340-348.

Evaluation Method for Co-selecting a Shared Service*. Paper presented at the
Web Services (ICWS), 2011 IEEE International Conference on, 145-152.

Web Grid Serv.*, 1(1), 1-30.

Faratin, P., Sierra, C., and Jennings, N. R. (2002). Using similarity criteria to make
issue trade-offs in automated negotiations. *Artificial Intelligence*, 142(2), 205-
237.

architectures*. University of California, Irvine.

Figueira, J., Greco, S., and Ehrgott, M. (2005). *Multiple criteria decision analysis:

Gholam Hassan Tabatabaei, S., Vahid Dastjerdi, A., Wan Kadir, W. M. N., Ibrahim,
semantic web services. *International Journal of Web Information Systems*,
6(3), 203-229.

Medjahed, B. (2004). Semantic web enabled composition of web services. Virginia Polytechnic Institute and State University, Falls Church, Virginia, USA.

