ADSORPTION OF CARBON DIOXIDE AND METHANE ON ALKALI METAL EXCHANGED SILICOALUMINOPHOSPHATE ZEOLITE

UMAR MUHTAR BABA

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Gas Engineering)

Faculty of Petroleum and Renewable Energy Engineering
Universiti Teknologi Malaysia

JUNE 2015
To my dear parents, siblings and my late sister Amina Umaru Baba. Allah’s Rahma on your soul our beloved sister. You will always be in our hearts.
ACKNOWLEDGEMENT

All thanks and glory to Almighty Allah (SWT) for guiding me throughout the period of my studies. I wish to express my sincere gratitude and appreciation to my supervisor Assoc. Prof. Dr. Khairul Sozana Nor Kamarudin for her guidance, advice and encouragement throughout the stages of this research. Many thanks are due to Assoc. Prof. Dr. Fadzilah Adibah Abdul Majid, Professor Ahmed Fauzi Ismail and all the staff at the Advanced Membrane Technology Research Centre (AMTEC). Special thanks to my dear friend Dr. Yusuf Isa Makarfi from the Chemical Engineering Department, Cape Peninsula University of Technology Bellville Campus, South Africa

I would like to thank all my colleagues, technicians, especially Norhidayu Bashir and all the Staff of the Gas Engineering Department. Great thanks to my friends Abubakar Muhammad Umar, Ahmed Razzak Ajeal, Noor Diana Muhammad Nur and Nabila Binti Zaini for their contribution in making my research successful. I shall forever remain indebted to my parents and my family the “Umbaba’s” for their unending support and motivation throughout the period of my studies.
ABSTRAK

Zeolit aluminosilikat kekal menjadi bahan berliang mikro yang paling banyak digunakan untuk aplikasi penting dalam pemisahan gas perindustrian. Molekul saringan aluminofosfat (AlPO-n) adalah bahan berliang mikro pertama yang disintesis tanpa silika. Penggantian silika di dalam rangka AlPO-n bagi menghasilkan molekul saringan silikoaluminofosfat (SAPO-n). Dalam kajian ini, Na-SAPO-34 zeolit telah disintesis dan ion ditukar dengan kation logam alkali (K\(^+\) dan Li\(^+\)) menggunakan prosedur penukaran ion dua-langkah, dengan setiap langkah selama 24 jam. Bahan yang disediakan telah dicirikan menggunakan pembelauan sinar-X (XRD), mikroskopi imbasan elektron pancaran medan (FESEM), spektrometer pancaran optik plasma berganding aruh (ICP-OES), dan spektroskopi Fourier inframerah transformasi (FTIR). Analisis terma dijalankan menggunakan penganalisis termogravimetri (TGA) dan kalorimeter imbasan perbezaan (DSC). Ciri-ciri tekstur (luas permukaan, saiz liang dan isipadu liang) telah daripada penyerapan isoterma N\(_2\) pada 77 K. Keseimbangan penyerapan isoterma dan kapasiti penyerapan diukur secara volumetr pada 273, 298 dan 323 K bagi CO\(_2\) dan 298 K bagi CH\(_4\), pada tekanan 101.3 kPa. Haba isosterik bagi penyerapan CO\(_2\) yang sepadan telah dikira menggunakan persamaan Clausius-Clapeyron. Model Langmuir, Freundlich dan Sips untuk mengaitkan data penyerapan isoterma. Prestasi keseimbangan bagi bahan yang disediakan untuk pemisahan CO\(_2\) dari campuran CO\(_2\)/CH\(_4\) pada suhu bilik telah diikir berdasarkan kepada kapasiti kerja, kebolehjanaan semula, dan kepemilihan. Keputusan telah menunjukkan walaupun berlaku perubahan pada sifat-sifat struktur namun struktur bahan yang disediakan tidak runtuh selepas penukaran ion. Semua bahan yang disediakan telah menunjukkan kecenderungan yang tinggi terhadap CO\(_2\) berbanding CH\(_4\). Pada 273 K, bahan ion tukaran K\(^+\) tahap pertama mempunyai kapasiti penyerapan CO\(_2\) yang tertinggi (2.90 mmol/g), manakala pada 323 K, bahan ion tukaran Li\(^+\) tahap pertama mempunyai kapasiti tertinggi (1.90 mmol/g). Walau bagaimanapun, pada 298 K, kapasiti penyerapan tidak meningkat. Bahan ion tukaran K\(^+\) tahap pertama mempunyai kapasiti penyerapan CH\(_4\) tertinggi (0.54 mmol/g) pada 298 K. Model Sips memberikan padanan terbaik dengan data eksperimen. Bahan ion tukaran K\(^+\) tahap pertama mempunyai haba penyerapan tertinggi yang menggambarkan interaksi yang lebih kuat antara kation rangka tambahan dan CO\(_2\). Berdasarkan penilaian prestasi bahan penyerap, semua bahan yang disediakan menunjukkan potensi bagi penyingkiran CO\(_2\) dari campuran CO\(_2\)/CH\(_4\) pada suhu bilik dengan pengecualian bagi bahan tukaran ion K\(^+\) tahap kedua. Siri penukaran ion Li\(^+\) mempunyai kapasiti kerja dan kebolehjanaan semula yang lebih tinggi berbanding siri penukaran ion kalium pada suhu 298 K. Kajian ini telah menunjukkan kapasiti penyerapan CO\(_2\) dan CH\(_4\) bukan hanya bergantung sunu tetapi kepada ciri-ciri kation tukaran seperti saiz, cas, lokasi, dan taburan di dalam saluran dan rongga bahan yang disediakan.
TABLE OF CONTENTS

CHAPTER TITLES PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xx
LIST OF SYMBOLS xxii
LIST OF APPENDICES xxiv

1 INTRODUCTION 1
1.1 Research Background 1
1.2 Problem Statement 3
1.3 Aim of Objectives 5
1.4 Scope of Research 5
1.5 Significance of Research 7
1.6 Limitation 7
1.7 Report Outline 8
1.8 Summary 8

2 LITERATURE REVIEW 9

2.1 Introduction to Natural Gas 9
 2.1.1 Composition of Natural Gas 10
 2.1.2 Natural Gas Reserve in Malaysia 10
2.2 Carbon Dioxide in Natural Gas 12
 2.2.1 Absorption 13
 2.2.2 Membrane Separation 15
 2.2.3 Adsorption 17
 2.2.3.1 Adsorption Isotherm 20
 2.2.3.2 Adsorbate-Adsorbent Interaction 22
2.3 Gas-Solid Adsorption Mechanism 24
 2.3.1 Layer Formation 24
 2.3.2 Micropore Filling 25
 2.3.3 Pore Condensation or Capillary Condensation 27
2.4 Adsorbents 29
 2.4.1 Activated Carbon and Carbon Molecular Sieve 30
3.2.2 Zeolites
3.2.3 Aluminophosphate (AlPO-n) Molecular Sieve
3.2.4 Silicoaluminophosphate (SAPO-n) Molecular Sieve
3.2.5 Activated Alumina
3.2.6 Silica Gel
3.2.7 Hydrotalcite-like Compounds
3.2.8 Metal Organic Framework (MOF)
3.2.9 Mesoporous Silica

3.5 Surface Modification
3.5.1 Ion Exchange
3.5.2 Cationic Treatment of Hydrotalcite (HTlc)
3.5.3 Chemical Modification of Porous Carbon
3.5.4 Functionalization Using Amine

3.6 Mechanism of Gas Separation Involving Extra Framework Cation
3.6.1 Mechanism of Gas Adsorption in Different Zeolite Framework
3.6.2 Mechanism of Gas Adsorption in Different Zeolite Framework

3.7 Summary

3 MATERIALS AND METHODS

3.1 Introduction
3.2 Chemicals 56

3.2.1 Gases 57

3.3 Experimental Procedure 57

3.3.1 Ion Exchange Procedure 60

3.4 Characterization 61

3.4.1 X-Ray Diffraction (XRD) Analysis 61

3.4.2 Field Emission Scanning Electron Microscopy (FESEM) 62

3.4.3 Fourier Transform Infrared Spectroscopy (FTIR) 63

3.4.4 Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) 64

3.4.5 Nitrogen Adsorption 65

3.4.5.1 Brunauer-Emmet-Teller (BET) Analysis 65

3.4.5.2 T-plot Method 66

3.4.5.3 Pore Size Distribution 67

3.4.5.3 Pore Volume 67

3.4.6 Thermogravimetric Analysis (TGA) 68

3.4.7 Differential Scanning Calorimetry (DSC) 69

3.5 Gas Adsorption Measurement 69

3.5.1 Isosteric Heat of Adsorption 76

3.6 Equilibrium Isotherm Equations 77

3.6.1 Langmuir Model 78

3.6.2 Freundlich Model 80

3.6.3 Sips Model 81
4 RESULTS AND DISCUSSION 85

4.1 Introduction 85

4.2 Properties of Cations Used in Ion Exchange 86

4.2.1 Introduction to Metal Cations 86

4.3 Characterization 87

4.3.1 X-Ray Diffraction (XRD) Analysis 88

4.3.2 Field Emission Scanning Electron Microscopy (FESEM) Analysis 93

4.3.3 Fourier Transform Infrared Spectroscopy (FTIR) Measurement 94

4.3.4 Elemental Composition 97

4.3.5 Nitrogen Adsorption Isotherm 98

4.3.6 Thermogravimetric Analysis (TGA) 103

4.3.7 Differential Scanning Calorimetry (DSC) 105

4.4 Adsorption Studies 106

4.4.1 Equilibrium Adsorption Isotherm Measurement 107

4.4.2 Adsorption Capacity 117

4.4.3 Effect of Surface Area and Pore Volume on Gas Adsorption 120

4.4.4 Effect of Crystallinity on Gas Adsorption 128
4.5 Isosteric Heat of Adsorption 130
4.6 Equilibrium Adsorption Isotherm Models 135
 4.6.1 Henry’s Constant 149
 4.6.2 Adsorbent Performance Evaluation 150
4.7 Mechanism of CO₂ and CH₄ adsorption in Alkali Metal Exchanged Na-SAPO-34 Zeolite 154
4.8 Summary 158

5 CONCLUSION AND RECOMMENDATIONS 159
 5.1 Introduction 159
 5.2 Conclusion 159
 5.3 Recommendations for Future Work 161

REFERENCES 162

Appendices A-F 184-222
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Composition of natural gas</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Malaysia natural gas reserve and production as at 1<sup>st</sup> January 2012</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Characteristics of physical and chemical adsorption Process</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Advantages and disadvantages of the current technologies and methods for CO<sub>2</sub> removal from gas streams</td>
<td>55</td>
</tr>
<tr>
<td>3.1</td>
<td>General chemicals used for synthesis and ion exchange</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Properties of metal cations involved during ion exchange</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Peak position and intensities of Na-SAPO-34, 1<sup>st</sup> stage K<sup>+</sup> and 2<sup>nd</sup> stage K<sup>+</sup> obtained from XRD data</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Peak position and intensities of Na-SAPO-34, 1<sup>st</sup> stage Li<sup>+</sup> and 2<sup>nd</sup> stage Li<sup>+</sup> obtained from XRD data</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>Relative crystallinity after ion exchange</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Average particle size distribution</td>
<td>92</td>
</tr>
<tr>
<td>4.6</td>
<td>Infrared band positions of the prepared materials</td>
<td>97</td>
</tr>
<tr>
<td>4.7</td>
<td>Elemental composition of all the prepared materials</td>
<td>98</td>
</tr>
<tr>
<td>4.8</td>
<td>Surface area, pore size and pore volume analysis</td>
<td>101</td>
</tr>
<tr>
<td>4.9</td>
<td>Previous studies of CO<sub>2</sub> and CH<sub>4</sub> adsorption on some</td>
<td></td>
</tr>
</tbody>
</table>
adsorbents

4.10 Effect of crystallinity on CO$_2$ adsorption at different temperature

4.11 Effect of crystallinity on CH$_4$ adsorption at 298 K

4.12 Isosteric heat of adsorption of CO$_2$

4.13 Distance between CO$_2$-cation interacting pair

4.14 Langmuir, Freundlich and Sips model parameters at 273 K for CO$_2$

4.15 Langmuir, Freundlich and Sips model parameters at 298 K for CO$_2$

4.16 Langmuir, Freundlich and Sips model parameters at 323 K for CO$_2$

4.17 Langmuir, Freundlich and Sips model parameters at 298 K for CH$_4$

4.18 Correlation coefficient and error function for Langmuir, Freundlich and Sips model equations at 273 K for CO$_2$

4.19 Correlation coefficient and error function for Langmuir, Freundlich and Sips model equations at 298 K for CO$_2$

4.20 Correlation coefficient and error function for Langmuir, Freundlich and Sips model equations at 323 K for CO$_2$

4.21 Correlation coefficient and error function for Langmuir, Freundlich and Sips model equations at 298 K for CH$_4$

4.22 Henry’s constant or product of Langmuir equilibrium constants $H_K\approx (q_s, b)$

4.23 Adsorbent evaluation for a binary separation of CO$_2$/CH$_4$ in a PSA system at 298 K ($P_{Ads}=101.3$ KPa, $P_{Des}\approx 7$ KPa)

4.24 Capacity of CO$_2$ at adsorption and desorption conditions ($P_{Ads}=101.3$ KPa, $P_{Des}\approx 7$ KPa)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Malaysian natural gas reserve</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Possible reaction pathways of CO₂ with amine during absorption</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Pore size distribution on a typical porous material</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>The IUPAC classification of adsorption isotherm</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Multilayer formation in BET theory</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Micropore filling mechanism</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Adsorption-desorption isotherm of a pure gas in a single mesopore of cylindrical shape</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>Pore or capillary condensation mechanism in mesopore</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic of template synthesis procedure of microporous carbon using zeolite Y</td>
<td>32</td>
</tr>
<tr>
<td>2.10</td>
<td>Zeolite framework with alternating AlO₄ and SiO₄ tetrahedra</td>
<td>33</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic diagram of zeolite A type</td>
<td>34</td>
</tr>
<tr>
<td>2.12</td>
<td>Secondary Building Units (SUB’s) Found in Nanoporous Materials with TO₄ Tetrahedra</td>
<td>36</td>
</tr>
<tr>
<td>2.13</td>
<td>Mechanism of Si substitution in AlPO framework</td>
<td>37</td>
</tr>
<tr>
<td>2.14</td>
<td>SAPO-34 (Chabazite) framework with possible cation locations</td>
<td>39</td>
</tr>
</tbody>
</table>
2.15 Structure of hydrotalcite compound 42

2.16 Some MOFs used for CO₂ separation (a) MOF-5, (b) MOF-177, (C) MOF-74 and (d) MOF-199 44

2.17 Possible schematic mechanistic pathways for the formation of MCM-41: (1) Liquid crystal phase Initiated and (2) Silicate anion initiated 46

2.18 A schematic diagram of CH₄ molecule diffusion in the presence of different sized cations 50

2.19 A schematic diagram of adsorbate-adsorbent interaction with different sized cations 51

2.20 Electrostatic interaction between methane and ion exchanged zeolite surface, M1 and M2 represents two different cations 52

2.21 Schematic diagram illustrating gas diffusion inside different zeolite structures 53

2.22 Schematic diagram illustrating gas diffusion on different zeolite structures 54

3.1 General synthesis procedure 58

3.2 ASAP 2020 Micromeritics instrument 70

3.3 Schematic diagram of the volumetric adsorption system 71

3.4 Schematic diagram showing the Langmuir adsorption model 79

3.5 Heterogeneous surface having non-equivalent adsorption sites 82

4.1 XRD pattern of synthesized Na-SAPO-34 and zhabazite zeolite from IZA 88

4.2 XRD pattern: (a) Na-SAPO-34, (b) 1st stage K⁺ and (c) 2nd stage K⁺ 89

4.3 XRD pattern: (a) Na-SAPO-34, (b) 1st stage Li⁺ and
(c) 2nd stage Li+

4.4 FESEM monograph of the prepared materials

4.5 Fourier transform infrared spectroscopy (FTIR) patterns of all the prepared Samples

4.6 Nitrogen adsorption isotherm on all the prepared samples

4.7 N2 adsorption-desorption isotherm at 77 K (a) Na-SAPO-34, (b) 1st stage K+, (c) 2nd stage K+, (d) 1st stage Li+ and (e) 2nd stage Li+

4.8 TGA curves: (a) Na-SAPO-34, 1st stage K+ and 2nd stage K+, (b) Na-SAPO-34, 1st stage Li+ and 2nd Stage Li+

4.9 DSC curves: (a) Na-SAPO-34, 1st stage K+ and 2nd stage K+, (b) Na-SAPO-34, 1st stage Li+ and 2nd stage Li+

4.10 Equilibrium adsorption isotherm of Na-SAPO-34, 1st stage K+ and 2nd stage K+ at a) 273 K, b) 298 K and c) 323 K

4.11 Equilibrium adsorption isotherm of Na-SAPO-34, 1st stage Li+ and 2nd stage Li+ at (a) 273 K, (b) 298 K and (c) 323 K

4.12 Equilibrium adsorption isotherm of methane at 298 K on (a) Na-SAPO-34, 1st stage K+ and 2nd stage K+, b) Na-SAPO-34, 1st stage Li+ and 2nd stage Li+

4.13 Possible shielding effect experienced by Cations depending on cation size during CO2 adsorption

4.14 Effect of temperature on CO2 adsorption at 273, 298 and 323 K on Na-SAPO-34, 1st stage K+ and 2nd stage K

4.15 Effect of temperature on CO2 adsorption at 273, 298 and 323 K: (a) Na-SAPO-34, 1st stage Li+ and 2nd stage Li+

4.16 Effect of cation size on CH4 adsorption
4.17 Adsorption capacity on the prepared materials
(a) CO$_2$ adsorption capacity at 273, 298 and 323 K and,
(b) CH$_4$ adsorption at 298 K

4.18 Effect of BET surface area on CO$_2$ adsorption on the
prepared materials: (a) 273, (b) 298 and, (c) 323 K

4.19 Effect of micropore surface area on CO$_2$ adsorption on the
prepared materials: (a) 273, (b) 298 and, (c) 323 K

4.20 Effect of surface area on CH$_4$ adsorption on the prepared
materials at 298 K: a) BET Surface Area,
b) Micropore surface area

4.21 Effect of micropore volume on CO$_2$ adsorption on the prepared
materials: (a) 273, (b) 298 and, (c) 323 K

4.22 Effect of pore volume on CH$_4$ adsorption on the prepared
materials at 298 K

4.23 Isosteric heat of adsorption as a function of loading:
(a) Na-SAPO-34, 1st stage K$^+$ and 2nd stage K$^+$,
(b) Na-SAPO-34, 1st stage Li$^+$ and 2nd stage Li$^+$

4.24 Multilayer type adsorption on a heterogeneous Surface

4.25 Model fits with experimental data for CO$_2$ on Na-SAPO-34 at
different temperatures, (a) 273, (b) 298 K and (c) 323 K

4.26 Model fits with experimental data for CO$_2$ on 1st stage K$^+$ at
different temperatures, (a) 273, (b) 298 K and (c) 323K

4.27 Model fits with experimental data for CO$_2$ on 2nd stage K$^+$ at
different temperatures, (a) 273, (b) 298 K and (c) 323K

4.28 Model fits with experimental data for CO$_2$ on 1st stage Li$^+$ at
different temperatures, (a) 273, (b) 298 K and (c) 323K

4.29 Model fits with experimental data for CO$_2$ on 2nd stage Li$^+$ at
different temperatures, (a) 273, (b) 298 K and (c) 323K
4.30 Model fits with experimental data for CH\textsubscript{4} at 298 K on the prepared materials, (a) Na-SAPO-34, (b) 1st stage K+, (c) 2nd stage K+, d) 1st stage Li+ and e) 2nd stage Li+. 148

4.31 Adsorption-desorption isotherm of CO\textsubscript{2} and CH\textsubscript{4} at 298 K, (a) Na-SAPO-34, (b) 1st stage K+, (c) 2nd stage K+, (d) 1st stage Li+, (e) 2nd stage Li+ 151

4.32 Effect of cation size and mobility on gas adsorption 155

4.33 Proposed mechanistic adsorption model of CO\textsubscript{2} and CH\textsubscript{4} on alkali metal ion exchanged Na-SAPO-34 zeolite 156

4.34 Proposed mechanism of the separation of CO\textsubscript{2} from its mixture with CH\textsubscript{4} in Na-SAPO-34 structure 157
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Ar</td>
<td>Argon</td>
</tr>
<tr>
<td>ALPO-n</td>
<td>Aluminophosphate</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminium oxide</td>
</tr>
<tr>
<td>Al₂O₃.3H₂O</td>
<td>Bauxite</td>
</tr>
<tr>
<td>BDDT</td>
<td>Brunauer, Deming, Deming and Teller</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer, Emmette and Teller</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>Ethane</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>Propane</td>
</tr>
<tr>
<td>C₄H₁₀</td>
<td>Butane</td>
</tr>
<tr>
<td>CHA</td>
<td>Chabazite</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Cs</td>
<td>Cesium</td>
</tr>
<tr>
<td>D-A</td>
<td>Dubinin and Astakhov</td>
</tr>
<tr>
<td>DEA</td>
<td>Diethanolamine</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>Fr</td>
<td>Francium</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen sulfide</td>
</tr>
<tr>
<td>He</td>
<td>Helium</td>
</tr>
<tr>
<td>HK-CY</td>
<td>Horvath and Kawazoe-Cheng and Yang</td>
</tr>
<tr>
<td>HTlcs</td>
<td>Hydrotalcite-like compounds</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductive coupled plasma-optical emission spectroscopy</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>Term</td>
<td>Definition/Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>IUPAC</td>
<td>Internation Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>K⁺</td>
<td>Potassium cation</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium bromide</td>
</tr>
<tr>
<td>L⁺</td>
<td>Lithium cation</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied natural gas</td>
</tr>
<tr>
<td>M⁺</td>
<td>Monovalent cation</td>
</tr>
<tr>
<td>M²⁺</td>
<td>Divalent cation</td>
</tr>
<tr>
<td>M³⁺</td>
<td>Trivalent cation</td>
</tr>
<tr>
<td>MDEA</td>
<td>Methyl diethanolamine</td>
</tr>
<tr>
<td>MOF</td>
<td>Metal organic framework</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Sodium cation</td>
</tr>
<tr>
<td>Na-SAPO-34</td>
<td>Sodium-silicoaluminophosphate-34 zeolite</td>
</tr>
<tr>
<td>N₂</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>Ne</td>
<td>Neon</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxyl group</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>Phosphorous pentoxide</td>
</tr>
<tr>
<td>P/VSA</td>
<td>Pressure/vacuum swing adsorption</td>
</tr>
<tr>
<td>PSD</td>
<td>Pore size distribution</td>
</tr>
<tr>
<td>Rb</td>
<td>Rubium</td>
</tr>
<tr>
<td>SAPO</td>
<td>Silicoaluminophosphate</td>
</tr>
<tr>
<td>SBU</td>
<td>Secondary building units</td>
</tr>
<tr>
<td>SERP</td>
<td>Sorption enhanced reaction process</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>Sr³⁺</td>
<td>Strontium cation</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethanolamine</td>
</tr>
<tr>
<td>TETA</td>
<td>Triethylenetetramine</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>TSA</td>
<td>Temperature swing adsorption</td>
</tr>
<tr>
<td>Tscf</td>
<td>Trillion standard cubic feet</td>
</tr>
<tr>
<td>Xe</td>
<td>Xenon</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>Sorbate-sorbent interaction energy</td>
</tr>
<tr>
<td>$-\Delta G$</td>
<td>Free energy change</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>P_0</td>
<td>Saturation pressure</td>
</tr>
<tr>
<td>P/P_0</td>
<td>Relative pressure</td>
</tr>
<tr>
<td>R</td>
<td>Universal gas constant</td>
</tr>
<tr>
<td>V</td>
<td>Physical volume of container</td>
</tr>
<tr>
<td>Φ_D</td>
<td>Dispersion energy</td>
</tr>
<tr>
<td>Φ_R</td>
<td>Repulsion energy</td>
</tr>
<tr>
<td>Φ_P</td>
<td>Polarization energy</td>
</tr>
<tr>
<td>$\Phi_{F\mu}$</td>
<td>Field-dipole interaction energy</td>
</tr>
<tr>
<td>Φ_{FQ}</td>
<td>Field-gradient quadruple interaction energy</td>
</tr>
<tr>
<td>Φ_{SP}</td>
<td>Adsorbate-adsorbate interaction energy</td>
</tr>
<tr>
<td>θ</td>
<td>Surface coverage</td>
</tr>
<tr>
<td>q</td>
<td>Quantity of gas adsorbed</td>
</tr>
<tr>
<td>q_m</td>
<td>Quantity of gas adsorbed when the entire surface is covered with a monolayer</td>
</tr>
<tr>
<td>C</td>
<td>BET constant</td>
</tr>
<tr>
<td>W</td>
<td>Quantity of gas adsorbed at relative pressure</td>
</tr>
<tr>
<td>W_0</td>
<td>Limiting micropore volume</td>
</tr>
<tr>
<td>β</td>
<td>Affinity constant</td>
</tr>
<tr>
<td>D_p</td>
<td>Particle size</td>
</tr>
<tr>
<td>B</td>
<td>Dimensionless factor equal to 0.94</td>
</tr>
<tr>
<td>λ</td>
<td>X-Ray wavelength</td>
</tr>
<tr>
<td>β</td>
<td>Line broadening at half the maximum intensity</td>
</tr>
<tr>
<td>θ_B</td>
<td>Bragg angle</td>
</tr>
</tbody>
</table>
\(K \) - Avagadro’s number
\(N_a \) - Number of atoms per unit area of adsorbate
\(N_A \) - Number of moles per unit area of adsorbate
\(A_a \) - Constants in the Lennard-Jones potential for the adsorbent
\(A_A \) - Constant in the Lennard-Jones potential for the adsorbate
\(l \) - Distance between two nuclei of two layers
\(d \) - Diameter of the adsorbed molecule
\(V_0 \) - Limiting micropore volume
\(n_{DA} \) - Dubinin-Astakhov parameter
\(n \) - Number of moles of a gas
\(V_m \) - Manifold volume
\(V_s \) - Reference volume
\(V_v \) - Void volume of sample
\(P_m \) - Manifold pressure
\(T_m \) - Manifold temperature
\(V_{vf} \) - Free space volume
\(V_d \) - Total volume of the adsorptive dosed
\(q_{st} \) - Isoteric heat of adsorption
\(b \) - Langmuir constant
\(q_s \) - Maximum amount adsorbed
\(H_K \) - Henry’s constant
\(n_F \) - Heterogeniety parameter in the Freundlinch equation
\(n_s \) - Heterogeneity parameter in the Sips equation
\(y \) - Data point
\(y_{mean} \) - Average value of \(y \) data
\(df \) - Degree of freedom
\(\Delta N_1 \) - Working capacity
\(R \) (\%) - Regenerability
\(\alpha_{1,2} \) - Selectivity
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Carbon dioxide and methane equilibrium adsorption tabular data report</td>
<td>184</td>
</tr>
<tr>
<td>B1</td>
<td>Isoster plots of all the prepared materials</td>
<td>190</td>
</tr>
<tr>
<td>B2</td>
<td>Heat of adsorption tabular report</td>
<td>195</td>
</tr>
<tr>
<td>C</td>
<td>Linear plots of Langmuir model for Carbon dioxide on all the prepared materials at different temperature</td>
<td>198</td>
</tr>
<tr>
<td>D</td>
<td>Linear Plots of Langmuir model for methane on all the prepared materials at 298 K</td>
<td>199</td>
</tr>
<tr>
<td>E</td>
<td>Linear Plots of Freundlich model for carbon dioxide on all the prepared materials at different temperature</td>
<td>200</td>
</tr>
<tr>
<td>F</td>
<td>Linear Plots of Freundlich model for methane on all the prepared materials at 298 K</td>
<td>201</td>
</tr>
<tr>
<td>G1</td>
<td>Carbon dioxide equilibrium adsorption and model data fittings for Na-SAPO-34</td>
<td>202</td>
</tr>
<tr>
<td>G2</td>
<td>Carbon dioxide equilibrium adsorption and model data fittings for 1st stage K⁺</td>
<td>205</td>
</tr>
<tr>
<td>G3</td>
<td>Carbon dioxide equilibrium adsorption and model data fittings for 2nd stage K⁺</td>
<td>208</td>
</tr>
<tr>
<td>G4</td>
<td>Carbon dioxide equilibrium adsorption and model data</td>
<td></td>
</tr>
</tbody>
</table>
fittings for 1st stage Li$^+$

G5 Carbon dioxide equilibrium adsorption and model data
 fittings for 2nd stage Li$^+$ 214

G6 Methane experimental and model data fittings on all the prepared materials 217

H PUBLICATIONS 222
CHAPTER 1

INTRODUCTION

1.1 Research Background

Global warming is one of the main challenges faced by the world today. For the past few decades, a steady rise in global temperatures due to the increase in the concentration of greenhouse gases such as carbon dioxide (CO\textsubscript{2}), nitrous oxide (N\textsubscript{2}O), and sulphur hexafluoride (SF\textsubscript{6}) in the atmosphere has been observed. Among the greenhouse gases, CO\textsubscript{2} has been identified as a largest contributor to the greenhouse effect. The burning of fossil fuel for energy accounts for about 80% of global energy consumption and is by far the major contributor to greenhouse gas emission. Furthermore, Global energy demand shows a 1.6 % average annual growth over the period 2010-2020 (Komiyama et al., 2005). This has therefore prompted the need for an efficient greenhouse gas mitigation method.

Petroleum hydrocarbon is the main source of fuel today and is widely used in the industry and for transportation in automobile. Natural gas which comprises mainly of methane (CH\textsubscript{4}) is one of the most important hydrocarbon gases and is used for power in electricity generation and in vehicles as an automotive fuel. In its pure form, natural gas is clean burning and emits the least amount of harmful chemicals into the environment. The past decades has witnessed a marked increase in the production of natural gas and it is projected to be the fastest growing fossil fuel globally in the next two decades at 2.1% p.a. (Ruehl and Giljum, 2011). This is partly due to sharp increase in petroleum prices and the stringent environmental policies and regulations. The
increase in the demand for natural gas has prompted for alternative, more efficient and environmentally friendly means for its production.

In addition to methane, the natural gas from gas well is composed of a very complex mixture of different components such as carbon dioxide, sulphur, water, nitrogen, mercury, hydrocarbons (light, heavy and aromatic) and other impurities. Carbon dioxide removal from natural gas is of significant importance and must be removed to avoid formation of solids in cryogenic units and corrosion in steel pipes, and to avoid reduction in the heating value of natural gas. The average proportion in gas wells is between 0.5-10 vol % and can be as high as 70 vol % in some wells. Thus, the removal of CO\textsubscript{2} from crude natural gas during processing can be regarded as a key technology for the protection of the environment.

Adsorption is a unit operation used in the chemical, petrochemical and environmental industries mainly in applications involving bulk separation and purification of gases or the removal of trace impurities from gaseous mixture. It has become one of the most preferred gas separation technology and has attracted a lot of research interest especially in areas related to the environment.

Absorption using aqueous solutions of alkanolamine is among the most widely used methods for CO\textsubscript{2} removal from natural gas streams during processing (Rinker et al., 2000). This method is only economically viable on a very large scale of operation. However, offshore gas fields require smaller and compact separation units that are also economical. Membrane separation (Baker, 2002; Komiyama, et al., 2005), and cryogenic distillation (Baker and Lokhandwala, 2008) are among the technologies that have been explored in recent times. In spite the efficiency of these processes, their major drawbacks include the large amount of energy required for regeneration, equipment corrosion, solvent degradation in the presence of oxygen, high power requirement for refrigeration and membrane fouling. In view of the limitations of the conventional methods, separation of gases based on cyclic adsorption process such as pressure/vacuum swing adsorption (P/VSA) and temperature swing adsorption (TSA) using porous solid adsorbent materials is being proposed as an energy efficient
alternative mainly due to the lower energy requirement and operating costs and their applicability over a relatively wide temperature and pressures range of operation.

Aluminosilicate zeolites still remain the most widely used microporous adsorbent for important industrial applications. The continuous research into the design and synthesis of zeolites has resulted in the discovery of the aluminophosphate (ALPO) and silicoaluminophosphate (SAPOs) in the early 1980’s. Their ability to reversibly take up molecules from liquid and gas phase is the basis for application in gas separation and purification. Silicoaluminophosphate (SAPOn) molecular sieves were discovered by the incorporation of Si into the framework of aluminophosphates (AlPO-n) molecular sieve (Deroche et al., 2008). Phosphorus has been most successfully substituted by silicon. The direct replacement of isolated phosphorous atom by silicon results in a negatively charged framework. These charges are counter-balanced by exchangeable cations and, upon calcinations, an acid site (Bronsted acid sites). This can take the form of a bridging hydroxyl between aluminium and silicon atoms and are therefore similar in structure with those found in aluminosilicate zeolite but differ in acid properties. Similar to zeolites, the SAPOs are formed by channels and cavities of molecular dimensions. In fact, the same building units proposed in the formation of zeolites can be used to describe the SAPO frameworks. These materials have been reported to be exceptionally efficient in catalytic and adsorptive process (Claude and Martens, 2000; Dahl and Kolboe, 1994, 1996; Denayer et al., 2004; Martens et al., 1990)

1.2 Problem Statement

Absorption separation using liquid amine is one of the most widely used methods for CO₂ removal from natural gas, but it is only attractive economically on a very large scale operation. Thus, making this process only viable for very large gas processing fields. Consequently, new approaches have been proposed to overcome the limitations of the currently used liquid amine scrubbing technology which, in addition to its corrosive nature, consumes large amounts of energy during solvent regeneration.
Inspired by this technology, solid-supported amine adsorbents for CO₂ adsorption were developed, these materials are yet to be commercialized however, due to the energy penalty during regeneration resulting from strong chemical bonds formed from the reaction of amine with CO₂.

The adsorption property of zeolitic materials for any separation is very much dependent on the physiochemical properties of the surface. In spite of the success in sorbent design, there is still need for novel adsorbents that can be tailored with specific attributes to meet specific applications. In adsorption based separation process, the choice of the adsorbent is among the most crucial consideration. In literature, more attention was made mainly on ion exchange with the well-known aluminosilicate zeolites (Mace et al., 2013; Sethia et al., 2014; Walton et al., 2006; Xu et al., 2008). Although Na-SAPO-34 has shown great promise with regard to CO₂ adsorption and separation, it has not been fully utilized in gas separation application due to the lack of detailed characterization of its structure. Further structural studies are important in order to have more knowledge of the physiochemical properties of this material because the performance of any adsorption separation process is directly dependent upon the quality of the adsorbent. It is also vital to establish a relationship between the surface properties of SAPOs as adsorbents and their adsorption capacities.

Na-SAPO-34 is a sorbent with the chabazite (CHA) topology. The extra framework cations in Na-SAPO-34 can provide effective functionalization and affects its performance. A number of studies have been conducted on the effect of larger sized monovalent (Ag⁺), divalent (Ca²⁺, Mg²⁺, Sr²⁺) and trivalent (Ti³⁺, and Ce³⁺) ion exchanged Na-SAPO-34 zeolite for selective adsorption of nitrogen, methane and carbon dioxide (Arevalo-Hidalgo et al., 2010; Rivera-Ramos and Hernández-Maldonado, 2007) at different temperatures. Adsorption capacity of the monovalent and divalent cation exchanged sorbents were found to increase after ion exchange only at 273K, while that of the trivalent cations decreased at all temperature. Similarly, the isoteric heat of adsorption indicated that the Sr⁺ ion exchanged sorbent had stronger interaction with CO₂ than the other sorbents including the unmodified one.
This research is conducted to study cation ability to access the framework of Na-SAPO-34 zeolite during ion exchange that may result in wider free volume, at the same time, produce higher electric field gradients which promote stronger interaction with the quadruple moment of CO₂. Potassium cation has been neglected due to its large size that can result in pore blockage. At present, no record has been found in literature dealing with CO₂ and CH₄ equilibrium adsorption on lithium and potassium ion exchange in Na-SAPO-34.

1.3 Aim and Objectives

The aim of this research is to synthesize some novel ion exchanged silicoaluminophosphate (Na-SAPO-34) zeolites using alkali metal cations via a two-step ion exchange procedure. The specific objectives include:

1. To synthesize and characterize Na-SAPO-34 zeolite and its modified samples.
2. To study the effect of ion exchange with K⁺ and Li⁺ on the adsorption properties of CO₂ at 273, 298, and 323 K and CH₄ at 298 K, at pressures up to 101.3 KPa.
3. To evaluate the potential of the prepared materials for the separation of CO₂ from its mixtures with CH₄.

1.4 Scope of Research

The scope of this research is based on the following:

1. Hydrothermal synthesis of Na-SAPO-34 zeolite and the subsequent ion exchange using Li and K cations
Structural and physiochemical Characterization of prepared materials using XRD, FESEM, FTIR, N\textsubscript{2} adsorption, ICP-OES, TGA and DSC and

Determining the potential of the synthesized materials for carbon dioxide adsorption at 273, 298 and 323 K, as well as the potential of the prepared materials for carbon dioxide separation from its mixture with methane at room temperature.

Ion exchanged was carried out in a two-step procedure using lithium and potassium cations. Characterization of the prepared materials was carried out using X-ray diffraction (XRD) analysis to determine the crystallinity of the prepared materials. Field Emission Scanning Electron Microscopy (FESEM) analysis to observe/visualize the topographical details and/or changes on the surface. Fourier Transform Spectroscopy (FTIR) analysis to identify the attachment of functional groups on the samples and their effect after ion exchange. N\textsubscript{2} adsorption studies was performed to determine the textural properties of the prepared materials before and after ion exchange. Elemental composition was determined using Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-EOS) technique, which provides a detailed concentration of elements present relative to a standard reference. The composition of each element was given as weight percentage of the solid weight. Thermal stability of the prepared materials were studied using Thermo-Gravimetric Analysis (TGA) to monitor the changes in weight of the sample as a function of temperature in a controlled atmosphere. Differential Scanning Calorimetry (DSC) analysis was used to study the glass transition temperature, which measures the endothermic and exothermic heat flow of the prepared materials as a function of temperature/time. Adsorption isotherms and adsorption capacity were measure volumetrically and compared between the parent Na-SAPO-34 material and the ion exchanged samples.
1.5 Significance of Research

The continuous need to use natural gas in its pure form makes it paramount to investigate efficient and realistic means of separating it from other impurities. The development of technologies and/or materials that are capable of aiding this purification is very important. Cation exchange of microporous adsorbent materials can significantly improve their CO\textsubscript{2} adsorption and selectivity.

The current study was carried out to investigate the use ion exchange as a means to modify the surface properties of Na-SAPO-34 zeolite using lithium and potassium as exchangeable cations and to further investigate the prepared materials for CO\textsubscript{2} adsorption and separation from its mixtures with CH\textsubscript{4}. These sorbents provided some improvement in CO\textsubscript{2} adsorption at different temperatures as well as good selectivity from CO\textsubscript{2}/CH\textsubscript{4}, and could be applied in removing CO\textsubscript{2} from natural gas. The current study has never been carried out to date and thus represents the novelty of this research study.

1.6 Limitation

Although a lot of efforts has been put towards achieving the aim of this research, some factors have been unavoidably absent due to the limiting factors that may exist. Firstly, this study was conducted to investigate the prepared materials for the separation CO\textsubscript{2} from its mixtures with CH\textsubscript{4} at 298 K as such, the performance of the material in terms of separation were not investigated at other temperatures. Secondly, this research is limited to the thermodynamic studies and therefore, the kinetic studies was not included. Finally, structural characterization has been limited to the XRD, FTIR, FESEM, TGA, DSC and N\textsubscript{2} adsorption at 77 K. Although other novel and powerful characterization methods are required to better elucidate the structure of the materials, the lack of availability of the equipment has limited the characterization to the ones mentioned herein.
1.7 Report Outline

This report comprises five chapters. Chapter 1 introduces carbon dioxide and its effect on the environment, problems encountered in the industry due to the presence of CO$_2$ in natural gas stream and the underlining objectives to solve the problems. Chapter 2 contains a critical review on the aspects related to the field of research study. This includes natural gas and natural gas processing techniques, adsorption and gas separation techniques, membrane separation, adsorption isotherms and mechanism, microporous and mesoporous materials. The research methodology, comprising research materials, experimental procedures such as synthesis, ion exchange and detailed characterization and CO$_2$ sorption study are discussed in chapter 3. Results and discussion on the research findings is contained in chapter 4. Finally, chapter 5 contains the conclusions and recommendation for future work.

1.8 Summary

Adsorption has become a key separation tool in the chemical industry. Separation by adsorption is of great importance in industrial separation process and has witnessed tremendous growth in the past decades in areas such as air separation, hydrogen purification, carbon dioxide recovery and natural gas purification. Similarly, a lot of progress have been made in adsorbent design and process cycle development. The SAPO-34 zeolite have shown remarkable adsorption properties due to its unique channels and cavities which can be explored in applications involving adsorption and catalysis. The physiochemical properties of this material is very important during gas adsorption. Ion exchange is one of the promising methods used to modify the surface of zeolite materials in order to improve the adsorption characteristics without damaging the framework structure. An understanding of the physical and chemical structure of material after ion exchange is important in the design of novel adsorbents for use in adsorption process. Similarly, knowledge of the nature of adsorption and desorption phenomena is important in determining the mechanism of gas adsorption on the material and in identifying other valuable applications.

Simulated Flue Gas and Ambient Air using Mesoporous Silica Grafted Amines. *Journal of the American Chemical Society.*

Diffraction Study. *Journal of the American Chemical Society*. 122(8), 1700-1708.

