RENEWABLE LEVULINIC ACID PRODUCTION CATALYZED BY IRON MODIFIED HY ZEOLITE AND FUNCTIONALIZED IONIC LIQUID

NUR AAINAA SYAHIRAH BINTI RAMLI

UNIVERSITI TEKNOLOGI MALAYSIA
RENEWABLE LEVULINIC ACID PRODUCTION CATALYZED BY IRON MODIFIED HY ZEOLITE AND FUNCTIONALIZED IONIC LIQUID

NUR AAINAA SYAHIRAH BINTI RAMLI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JULY 2015
Verily, with every hardship comes ease (Holy Qur'an 94:6)
ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratitude firstly to Allah S.W.T for His blessings and guidance. Alhamdulillah this long journey has come to an end, where I have gained a lot of experience that are useful to me, not only from conducting research and experiments, but also other tasks that I have performed and accomplished throughout my stay here, directly or indirectly.

First and foremost, my sincere and gratefulness goes to my supervisor, Prof. Dr. Nor Aishah Saidina Amin for her priceless guidance and suggestions in supervising my research. Besides, she taught me lots in preparing international journal papers. In the future, this knowledge will be very useful for me especially when I involve in the academic world. Aside from that, I would like to extend my warmest thanks to Chemical Reaction Engineering Group (CREG, UTM) members for their support and valuable inputs regarding the research. Special thanks for those who have helped me in the experimental works. To Prof. Dr. Taufiq Yun Hin (UPM), Prof. Dr. Salasiah Endud (UTM), Mr Ismail, Mr. Latfi, and Mrs. Zainab, thank you very much for assisting me in the analysis of products and characterization of catalysts.

I also wish to express my gratitude and utmost appreciation to my beloved parents, my father Mr. Ramli Mohd Ali and my mom Mrs. Saripah Marwan for being with me through this journey. Last but not least, I would also like to gratefully acknowledge the financial support in the form of MyPhD scholarship by the Ministry of Education (MOE).
Levulinic acid is a versatile platform chemical that can be derived from biomass as an alternative to fossil fuel resources. In this study, a series of heterogeneous iron modified HY zeolites (Fe/HY zeolite): 5% Fe/HY, 10% Fe/HY, 15% Fe/HY, and homogeneous functionalized ionic liquids (FIL): 1-butyl-3-methylimidazolium tetrachloroferrate ([BMIM][FeCl₄]), 1-sulfonic acid-3-methylimidazolium chloride ([SMIM][Cl]), 1-sulfonic acid-3-methylimidazolium tetrachloroferrate ([SMIM][FeCl₄]), were synthesized, characterized, and tested as a catalyst for glucose conversion to levulinic acid. The properties of Fe/HY zeolite were characterized using x-ray diffraction (XRD), field emission scanning electron microscopy - energy dispersive x-ray (FESEM-EDX), x-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), nitrogen (N₂) physisorption, thermal gravimetric analysis (TGA), temperature programmed desorption of ammonia (NH₃-TPD), and pyridine-FTIR. The synthesized FIL were characterized using carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis and carbon-13 and proton nuclear magnetic resonance (¹³C and ¹H NMR). The acidic properties of FIL were examined using pyridine-FTIR, Hammett function, and acid-base titration. Experimental results indicated that the selective Fe/HY zeolite and FIL for levulinic acid production from glucose were 10% Fe/HY and [SMIM][FeCl₄], with 62% yield at 180 °C for 3 h, and 68% yield at 150 °C for 4 h, respectively. For Fe/HY zeolite, catalyst with large surface area, high concentration of acid sites and appropriate ratio of Brønsted to Lewis acids seemed suitable for levulinic acid production. It was also discovered FIL which contained both Brønsted and Lewis acid sites, offered a good catalytic performance. Optimization of levulinic acid yield from glucose and oil palm fronds (OPF) were conducted using the response surface methodology (RSM). At optimum conditions, 61.8% and 19.6% of levulinic acid yields were attained from glucose and OPF, respectively, over 10% Fe/HY zeolite. Meanwhile, by using [SMIM][FeCl₄] 69.2% and 24.8% of levulinic acid yields were produced from glucose and OPF, respectively. Both catalysts can be reused without significant loss of catalytic activity. Kinetic studies of glucose conversion to levulinic acid were performed using both 10% Fe/HY zeolite and [SMIM][FeCl₄]. The kinetic parameters obtained were lower and comparable with previous catalysts employed in glucose conversion to levulinic acid. This study demonstrated the potential of proposed catalysts to be used in a biorefinery for processing renewable feedstocks at mild process conditions.
Asid levulinik adalah bahan kimia asas serb pada guna yang dapat dihasilkan daripada biojisim sebagai alternatif kepada sumber bahan api fosil. Dalam kajian ini, satu siri zeolit HY terubahsuai ferum heterogen (zeolit Fe/HY): 5% Fe/HY, 10% Fe/HY, 15% Fe/HY, dan cecair ionik kumpulan fungsian homogen (FIL): 1-butil-3-metilimidazolium tetrakloroferat ([BMIM][FeCl₄]), 1-asid sulfonik-3-metilimidazolium klorida, ([SMIM][Cl]), 1-asid sulfonik-3-metilimidazolium tetrakloroferat ([SMIM][FeCl₄]), disintesis, dicirikan, dan diuji sebagai pemangkin untuk penukaran glukosa kepada asid levulinik. Pencirian sifat-sifat zeolit Fe/HY dilakukan menggunakan pembelauan sinar-x (XRD), mikroskopi elektron pengimbas pancaran medan - sebaran sinar-x (FESEM-EDX), pendarfluor sinar-x (XRF), spektroskopi inframerah transformasi Fourier (FTIR), penjeraapan fizik nitrogen (N₂), analisis gravimetri terma (TGA), penyahjerapan berprogram suhu ammonia (NH₃-TPD), dan FTIR-piridina. FIL yang telah disintesis dicirikan menggunakan analisis unsur karbon, hidrogen, nitrogen, dan sulfur (CHNS) dan resonans magnet nukleus karbon-13 dan proton (¹³C dan ¹H NMR). Sifat berasid bagi FIL dikaji menggunakan FTIR-piridina, fungsi Hammett, dan pentitratian asid-bes. Keputusan eksperimen menunjukkan bahawa zeolit Fe/HY dan FIL yang selektif bagi penghasilan asid levulinik daripada glukosa adalah 10% Fe/HY dan [SMIM][FeCl₄], masing-masing dengan hasil sebanyak 62% pada suhu 180 °C selama 3 j, dan hasil sebanyak 65% pada 150 °C selama 4 j. Untuk zeolit Fe/HY, pemangkin dengan luas permukaan yang besar, kepekatan yang tinggi bagi tapak asid dan nisbah yang sesuai untuk asid Lewis hingga Brønsted tampak sesuai untuk penghasilan asid levulinik. Kajian juga menemukan FIL yang mengandungi kedua-dua tapak asid Lewis dan Brønsted memberikan prestasi pemangkin yang baik. Pengoptimuman hasil asid levulinik daripada glukosa dan pelepah sawit (OPF) telah dilakukan menggunakan kaedah gerak alas permukaan (RSM). Pada keadaan optimum, hasil asid levulinik sebanyak 61.8% dan 19.6% masing-masing telah dicapai daripada glukosa dan OPF, menggunakan 10% zeolit Fe/HY. Sementara itu, dengan menggunakan [SMIM][FeCl₄], sebanyak 64.2% dan 24.3% asid levulinik masing-masing telah dihasilkan daripada glukosa dan OPF. Kedua-dua pemangkin dapat digunakan semula tanpa kehilangan aktiviti katalitik yang signifikan. Kajian kinetik penukaran glukosa kepada asid levulinik telah dilakukan menggunakan kedua-dua 10% zeolit Fe/HY dan [SMIM][FeCl₄]. Parameter kinetik yang diperoleh adalah lebih rendah dan setanding dengan pemangkin sebelumnya yang digunakan dalam penukaran glukosa kepada asid levulinik. Kajian ini menunjukkan potensi pemangkin yang dicadangkan sesuai digunakan dalam loji biopenapisan minyak untuk memproses stok suapan boleh diperbaharu pada keadaan proses yang sederhana.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxvii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background 1

1.2 Problem Statement 5

1.3 Research Hypotheses 9

1.4 Research Objectives 10

1.5 Scopes of Research 11

1.6 Research Significance 12

1.7 Thesis Outline 13
LITERATURE REVIEW

2.1 Lignocellulosic Biomass Feedstock
 2.1.1 Fractionation of Lignocellulosic Biomass Feedstock
 2.1.2 Oil Palm Fronds

2.2 Levulinic Acid
 2.2.1 Levulinic Acid Production
 2.2.2 Levulinic Acid Applications and Derivatives
 2.2.3 Mechanism and Scheme for Levulinic Acid Production
 2.2.4 Homogeneous Acid Catalysis
 2.2.5 Heterogeneous Acid Catalysis

2.3 Modified Zeolite
 2.3.1 Zeolite and Modified Zeolite
 2.3.2 Zeolite for Levulinic Acid Production

2.4 Functionalized Ionic Liquid Catalyst
 2.4.1 Ionic Liquid and Functionalized Ionic Liquid
 2.4.2 Ionic Liquid for Biomass Processing
 2.4.3 Ionic Liquid for Levulinic Acid Production

2.5 Factors Influencing the Levulinic Acid Production

2.6 Characterizations of Catalyst

2.7 Optimization by Response Surface Methodology

2.8 Kinetic Study of Glucose Conversion to Levulinic Acid

2.9 Summary of the Chapter

RESEARCH METHODOLOGY

3.1 Overall Research Methodology

3.2 Materials

3.3 Fe/HY Zeolite Catalyst
3.3.1 Catalyst Preparation 89
3.3.2 Catalyst Characterizations 90
3.4 Functionalized Ionic Liquid Catalyst 93
 3.4.1 Catalyst Preparation 93
 3.4.2 Catalyst Characterization 96
3.5 Characterization of Oil Palm Fronds 98
3.6 Catalytic Runs 99
 3.6.1 Fe/HY Zeolite Catalyst 99
 3.6.2 Functionalized Ionic Liquid Catalyst 100
3.7 Optimization of Levulinic Acid Production from Glucose and Oil Palm Fronds Conversions 101
 3.7.1 Design of Experiments 101
 3.7.2 Data Analysis and Optimization 104
3.8 Kinetic Study of Glucose Conversion to Levulinic Acid 106
3.9 Product Analysis 109

4 LEVULINIC ACID PRODUCTION OVER IRON MODIFIED HY ZEOLITE CATALYST 112
4.1 Introduction 112
4.2 Catalyst Preparation 113
4.3 Catalyst Characterizations 114
 4.3.1 X-Ray Diffraction (XRD) 114
 4.3.2 Field Emission Scanning Electron Microscopy - Electron Dispersive X-ray (FESEM-EDX) and X-ray Fluorescence (XRF) 117
 4.3.3 Nitrogen (N\textsubscript{2}) Physisorption 119
 4.3.4 Fourier Transform Infrared Spectroscopy (FTIR) 122
 4.3.5 Thermal Gravimetric Analysis (TGA) 123
4.3.6 Temperature Programmed Desorption of Ammonia (NH$_3$-TPD) 125
4.3.7 Pyridine Adsorption 128

4.4 Glucose Conversion to Levulinic Acid 129
4.4.1 Catalyst Screening and Performance 129
4.4.2 Optimization of Levulinic Acid Production from Glucose Conversion 150

4.5 Oil Palm Fronds Conversion to Levulinic Acid 160
4.5.1 Oil Palm Fronds Characterization 160
4.5.2 Catalyst Testing 162
4.5.3 Optimization of Levulinic Acid Production from Oil Palm Fronds Conversion 167

4.6 Summary of the Chapter 177

5 LEVULINIC ACID PRODUCTION OVER FUNCTIONALIZED IONIC LIQUID CATALYST 179

5.1 Introduction 179
5.2 Catalyst Preparation 180
5.3 Catalyst Characterization 182
5.3.1 CHNS Elemental Analysis 182
5.3.2 1H and 13C Nuclear Magnetic Resonance (NMR) 182
5.3.3 Pyridine FTIR 183
5.3.4 Hammett (H_o) Acidity Function 184
5.3.5 Acid Base Titration 184

5.4 Glucose Conversion to Levulinic Acid 184
5.4.1 Catalyst Screening and Performance 184
5.4.2 Optimization of Levulinic Acid Production from Glucose Conversion 198
5.5 Oil Palm Fronds Conversion to Levulinic Acid

5.5.1 Catalyst Testing

5.5.2 Optimization of Levulinic Acid Production from Oil Palm Fronds Conversion

5.6 Summary of the Chapter

6 KINETIC STUDY OF GLUCOSE CONVERSION TO LEVULINIC ACID

6.1 Introduction

6.2 Fe/HY zeolite

6.2.1 Effect of External and Internal Diffusions

6.2.2 Effect of Reaction Temperature

6.2.3 Kinetic Study

6.3 Functionalized Ionic Liquid

6.3.1 Effect of Reaction Temperature

6.3.2 Kinetic Study

6.4 Comparison with Previous Kinetic Models

6.5 Summary of the Chapter

7 CONCLUSION

7.1 Conclusions

7.2 Recommendations

REFERENCES

Appendices A - H
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Composition of selected lignocellulosic biomass feedstock (Rackemann and Doherty, 2011).</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Source of lignocellulosic biomass waste in Malaysia (Goh et al., 2010).</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical compositions of oil palm parts (wt%) (Shibata et al., 2008).</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Properties of levulinic acid (Timokhin et al., 1999).</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Properties of 5-HMF (Mukherjee et al., 2015).</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Homogenous acid catalysis for the production of levulinic acid and the intermediate compound; 5-HMF.</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>Heterogeneous acid catalysis for the production of levulinic acid and the intermediate compound; 5-HMF.</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>The use of zeolites for catalytic production of levulinic acid and the intermediate product; 5-HMF.</td>
<td>45</td>
</tr>
<tr>
<td>2.9</td>
<td>The use of ionic liquids for catalytic production of levulinic acid and the intermediate product; 5-HMF.</td>
<td>55</td>
</tr>
<tr>
<td>2.10</td>
<td>Kinetic study of glucose conversion to levulinic acid.</td>
<td>74</td>
</tr>
<tr>
<td>2.11</td>
<td>Kinetic study of fructose conversion to levulinic acid.</td>
<td>76</td>
</tr>
<tr>
<td>2.12</td>
<td>Kinetic study of cellulose/lignocellulosic biomass conversion to levulinic acid.</td>
<td>77</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.13</td>
<td>Kinetic study of 5-HMF conversion to levulinic acid.</td>
<td>78</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental range and factor level of process variables tested for glucose conversion using the selected Fe/HY zeolite catalyst.</td>
<td>102</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental range and factor level of process variables tested for glucose conversion using the selected FIL catalyst.</td>
<td>102</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental range and factor level of process variables tested for OPF conversion using the selected Fe/HY zeolite catalyst.</td>
<td>103</td>
</tr>
<tr>
<td>3.4</td>
<td>Experimental range and factor level of process variables tested for OPF conversion using the selected FIL catalyst.</td>
<td>103</td>
</tr>
<tr>
<td>3.5</td>
<td>Experimental design of four parameters based on Box-Behnken design.</td>
<td>103</td>
</tr>
<tr>
<td>4.1</td>
<td>Composition of elements present in HY and Fe/HY zeolite catalysts from EDX.</td>
<td>117</td>
</tr>
<tr>
<td>4.2</td>
<td>Composition of elements present in HY and Fe/HY zeolite catalysts from XRF.</td>
<td>117</td>
</tr>
<tr>
<td>4.3</td>
<td>Surface area and porosity of HY zeolite and Fe/HY zeolite catalysts.</td>
<td>121</td>
</tr>
<tr>
<td>4.4</td>
<td>Acidity of HY zeolite and Fe/HY zeolite catalysts.</td>
<td>127</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of different catalysts for glucose conversion to levulinic acid.</td>
<td>141</td>
</tr>
<tr>
<td>4.6</td>
<td>Reusability of 10% Fe/HY zeolite for glucose conversion to levulinic acid.</td>
<td>147</td>
</tr>
<tr>
<td>4.7</td>
<td>Experimental data set and corresponding experimental and predicted levulinic acid yields from glucose using 10% Fe/HY zeolite catalyst.</td>
<td>150</td>
</tr>
<tr>
<td>4.8</td>
<td>Analysis of variance (ANOVA) for quadratic model of levulinic acid yield from glucose using 10% Fe/HY zeolite catalyst.</td>
<td>152</td>
</tr>
</tbody>
</table>
4.9 OPF compositions from TGA and LAP methods.
4.10 Levulinic acid production using various lignocellulosic biomass feedstocks and catalysts.
4.11 Experimental data set and corresponding experimental and predicted levulinic acid yields from OPF using 10% Fe/HY zeolite catalyst.
4.12 Analysis of variance (ANOVA) for quadratic model of levulinic acid yield from OPF using 10% Fe/HY zeolite catalyst.

5.1 Comparison of different ionic liquids as catalyst for glucose conversion reaction.
5.2 Experimental data set and corresponding experimental and predicted levulinic acid yield from glucose using [SMIM][FeCl₄] catalyst.
5.3 Analysis of variance (ANOVA) for quadratic model of levulinic acid yield from glucose using [SMIM][FeCl₄] catalyst.
5.4 Levulinic acid production using various lignocellulosic biomass feedstocks and catalysts.
5.5 Experimental data set and corresponding experimental and predicted levulinic acid yields from OPF using [SMIM][FeCl₄] catalyst.
5.6 Analysis of variance (ANOVA) for quadratic model of levulinic acid yield from OPF using [SMIM][FeCl₄] catalyst.

6.1 Kinetic parameters of glucose conversion using 10% Fe/HY zeolite catalyst.
6.2 Kinetic parameters of glucose conversion using [SMIM][FeCl₄] catalyst.
6.3 Kinetic study of glucose conversion to levulinic acid.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>World consumption of fossil resources 1990–2040 (Girisuta, 2007).</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Top building block chemicals derived from biomass feedstock (Werpy et al., 2004).</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Potential uses of levulinic acid (Rackemann and Doherty, 2011).</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Reaction scheme for the conversion of lignocellulosic biomass to levulinic acid (Girisuta, 2007).</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Conversion of biomass derived feedstock for production of various biofuels and chemicals (Alonso et al., 2010).</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Location and arrangement of cellulose, hemicellulose, and lignin in lignocellulosic biomass (Murphy and McCarthy, 2005).</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>A cellulose chain (A) and hydrogen bonds present in cellulose (B) (Olivier-Bourbigou et al., 2010).</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Various parts of oil palm.</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Levulinic acid structure.</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>5-HMF structure.</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Simplified schematic stage of a biomass refinery concept (Girisuta, 2007).</td>
<td>23</td>
</tr>
</tbody>
</table>
2.8 Levulinic acid production routes; petrochemical refinery and biomass refinery. Adapted from Lucia et al. (2006). 24
2.9 Chemical conversion of cellulose to levulinic acid in the Biofine process (Hayes et al., 2008). 25
2.10 Levulinic acid derivatives (Girisuta, 2007). 26
2.11 5-HMF derivatives (Gallezot, 2012). 28
2.12 Simplified reaction pathway of glucose conversion to levulinic acid. 29
2.13 Proposed mechanism of fructose conversion to 5-HMF (Caratzoulas and Vlachos, 2011). 30
2.14 Proposed mechanism for conversion of 5-HMF to levulinic acid (Girisuta, 2007; Horvat et al., 1985). 31
2.15 Reaction scheme of lignocellulosic biomass conversion to levulinic acid (Rackemann and Doherty, 2011). 32
2.16 Decomposition of cellulose to glucose. 33
2.17 Basic zeolite structure. 42
2.18 Commonly used anions and cations in ionic liquids. 50
2.19 General steps for ionic liquid-catalyst recycle process for biomass derived carbohydrate conversion to 5-HMF and levulinic acid. Adapted from Chinnappan et al., 2014; Tao et al., 2011b; and Tao et al., 2014. 58
2.20 Comparison of molecular dimensions of typical feedstock and product involved in levulinic acid production (Kruger et al., 2012). 63
2.21 Flow chart of RSM study. Adapted from Wan Omar and Saidina Amin (2011). 69
2.22 Reaction scheme for kinetic models of levulinic acid production. 71
2.23 General overview of research. 80
3.1 Overall research methodology (Part 1 – 4). 82
3.2 Research methodology - Part 1a. 83
3.3 Research methodology - Part 1b. 84
3.4 Research methodology - Part 2. 85
3.5 Research methodology - Part 3. 86
3.6 Research methodology - Part 4. 87
3.7 OPF. 88
3.8 Materials involved in the preparation of Fe/HY zeolite catalyst; HY zeolite (a), solution of HY zeolite and FeCl$_3$ mixture (b). 90
3.9 Materials involved in the preparation of [BMIM][FeCl$_4$]; [BMIM][Cl] (a), mixture of [BMIM][Cl] and FeCl$_3$.6H$_2$O (b). 94
3.10 Materials involved in the preparation of [SMIM][Cl]; mixture of 1-methylimidazole and CH$_2$Cl$_2$ (a), after addition of SO$_3$.HCl, and layers formed before decantation of CH$_2$Cl$_2$. 95
3.11 Materials involved in the preparation of ([SMIM][FeCl$_4$]); [SMIM][Cl] (a), mixture of [SMIM][Cl] and FeCl$_3$.6H$_2$O (b). 95
3.12 Experimental setup for Fe/HY zeolite catalytic testing. 99
3.13 Experimental setup for catalytic testing of FIL. 100
3.14 Reaction scheme for glucose conversion to levulinic acid. 107
4.1 Fe/HY zeolite catalysts; 5% Fe/HY zeolite (a), 10% Fe/HY zeolite (b), and 15% Fe/HY zeolite (c). 114
4.2 XRD patterns of HY zeolite and Fe/HY zeolite catalysts (* - peaks assigned to FAU structure, ↓ - peak assigned to Fe$_2$O$_3$). 115
4.3 FESEM images of HY zeolite and Fe/HY zeolite catalysts at 3,500× and 5,000× magnifications. 118
4.4 N$_2$ adsorption-desorption isotherm of HY zeolite and Fe/HY zeolite catalysts. 120
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>FTIR spectra of HY zeolite and Fe/HY zeolite catalysts.</td>
</tr>
<tr>
<td>4.6</td>
<td>TGA (a) and DTG (b) curves of HY zeolite and Fe/HY zeolite catalysts.</td>
</tr>
<tr>
<td>4.7</td>
<td>NH$_3$-TPD profiles of HY zeolite and Fe/HY zeolite catalysts.</td>
</tr>
<tr>
<td>4.8</td>
<td>FTIR spectra of pyridine adsorbed on HY zeolite and Fe/HY zeolite catalysts.</td>
</tr>
<tr>
<td>4.9</td>
<td>Product yields versus reaction temperature for 5% Fe/HY zeolite (a), 10% Fe/HY zeolite (b), and 15% Fe/HY zeolite (c) catalysts (1 g glucose, 1 g Fe/HY zeolite catalyst, 50 mL water, 3 h).</td>
</tr>
<tr>
<td>4.10</td>
<td>Glucose conversion and levulinic acid selectivity versus reaction temperature for 5% Fe/HY zeolite (a), 10% Fe/HY zeolite (b), and 15% Fe/HY zeolite (c) catalysts (1 g glucose, 1 g Fe/HY zeolite catalyst, 50 mL water, 3 h).</td>
</tr>
<tr>
<td>4.11</td>
<td>Levulinic acid yield distribution with number of acid sites (a) and ratio of Brønsted to Lewis acid sites (b) for HY zeolite and Fe/HY zeolite catalysts (1 g glucose, 1 g zeolite catalyst, 50 mL water, 3 h, 180 °C).</td>
</tr>
<tr>
<td>4.12</td>
<td>Levulinic acid yield versus hierarchical factor (a), and relative microporosity versus relative mesoporosity (b) (1 g glucose, 1 g zeolite catalyst, 50 mL water, 3 h, 180 °C).</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of reaction time (a) and catalyst loading (b) on glucose conversion, levulinic acid yield, and levulinic acid selectivity using 10% Fe/HY zeolite catalyst.</td>
</tr>
<tr>
<td>4.14</td>
<td>Effect of glucose to water ratio on levulinic acid yield using 10% Fe/HY zeolite catalyst (1:1 of glucose:10% Fe/HY zeolite, 50 mL water, 3 h, 170 °C).</td>
</tr>
<tr>
<td>4.15</td>
<td>Proposed reaction mechanism of levulinic acid production from glucose over Fe/HY zeolite catalyst. Adapted from Utami and Amin, 2013; Zhao et al., 2007;</td>
</tr>
</tbody>
</table>
Proposed reaction mechanism of glucose conversion to levulinic acid over Fe/HY zeolite catalysts. (1) Glucose isomerizes to fructose, (2) monosaccharide to 1,2-enediol, (3) 1,2-enediol dehydrates to 5-HMF and (4) 5-HMF rehydrates to levulinic acid and formic acid. Adapted from Agirrezabal-Telleria et al., 2014; Jow et al., 1987; Lourvanij and Rorrer, 1993; Kruger et al., 2012.

Reusability of 10% Fe/HY zeolite for glucose conversion.

Fresh (a) and regenerated (b) 10% Fe/HY zeolite catalysts.

XRD patterns (a), FTIR spectra (b), and FESEM images (c) of fresh and regenerated 10% Fe/HY zeolite catalyst.

Parity plot of levulinic acid yield from glucose conversion using 10% Fe/HY zeolite catalyst.

Pareto chart of levulinic acid yield from glucose conversion using 10% Fe/HY zeolite catalyst.

Response fitted surface area plots of levulinic acid yield versus reaction temperature and reaction time.

Response fitted surface area plots of levulinic acid yield versus reaction temperature and glucose loading.

Response fitted surface area plots of levulinic acid yield versus reaction temperature and 10% Fe/HY zeolite loading.

Response fitted surface area plots of levulinic acid yield versus reaction time and glucose loading.

Response fitted surface area plots of levulinic acid yield versus reaction time and 10% Fe/HY zeolite loading.

Response fitted surface area plots of levulinic acid yield versus glucose loading and 10% Fe/HY zeolite loading.
4.28 TGA curve of OPF. 161
4.29 Effect of reaction time on levulinic acid yield from OPF conversion using 10% Fe/HY zeolite catalyst. 163
4.30 Reusability of 10% Fe/HY zeolite catalyst for levulinic acid production from OPF conversion. 164
4.31 Parity plot of levulinic acid yield from OPF conversion using 10% Fe/HY zeolite catalyst. 170
4.32 Pareto chart of levulinic acid yield from OPF conversion using 10% Fe/HY zeolite catalyst. 171
4.33 Response fitted surface area plots of levulinic acid yield versus reaction temperature and reaction time. 173
4.34 Response fitted surface area plots of levulinic acid yield versus reaction temperature and 10% Fe/HY zeolite loading. 174
4.35 Response fitted surface area plots of levulinic acid yield versus reaction temperature and OPF loading. 174
4.36 Response fitted surface area plots of levulinic acid yield versus reaction time and 10% Fe/HY zeolite loading. 175
4.37 Response fitted surface area plots of levulinic acid yield versus reaction time and OPF loading. 175
4.38 Response fitted surface area plots of levulinic acid yield versus OPF loading and 10% Fe/HY zeolite loading. 176
5.1 The prepared FIL catalysts; [BMIM][FeCl₄] (a), [SMIM][Cl] (b), and [SMIM][FeCl₄] (c). 180
5.2 The addition of ions involved in the preparation of [BMIM][FeCl₄] (a), [SMIM][Cl] (b), and [SMIM][FeCl₄] (c). 181
5.3 Pyridine-FTIR spectra of FIL catalysts. 183
5.4 Effect of reaction temperature and time on glucose conversion using [BMIM][FeCl₄] (a), [SMIM][Cl] (b), and [SMIM][FeCl₄] (c) as catalysts. ■170 °C, ▲150 °C,
5.5 Effect of reaction temperature and time on 5-HMF (a) and levulinic acid (b) yield using [BMIM][FeCl$_4$] as catalyst ■ 170 °C, ▲ 150 °C, ● 130 °C, × 110 °C (0.1 g glucose, 10 g FIL catalyst, 10 mL water).

5.6 Effect of reaction temperature and time on 5-HMF (b) and levulinic acid (b) yield using [SMIM][Cl] as catalyst ■ 170 °C, ▲ 150 °C, ● 130 °C, × 110 °C (0.1 g glucose, 10 g FIL catalyst, 10 mL water).

5.7 Effect of reaction temperature and time on 5-HMF (a) and levulinic acid (b) yield using [SMIM][FeCl$_4$] as catalyst ■ 170 °C, ▲ 150 °C, ● 130 °C, × 110 °C (0.1 g glucose, 10 g FIL catalyst, 10 mL water).

5.8 Effect of glucose loading on glucose conversion and 5-HMF and levulinic acid yield using [SMIM][FeCl$_4$] as catalyst (10 g FIL catalyst, 10 mL water, 150 °C, 4 h).

5.9 Effect of catalyst loading (a) and ratio of water to catalyst loading (b) on glucose conversion and 5-HMF and levulinic acid yield using [SMIM][FeCl$_4$] as catalyst (10 mL water, 150 °C, 4 h (a), 5 g FIL catalyst, 150 °C, 4 h (b)).

5.10 Reusability of [SMIM][FeCl$_4$] for glucose conversion reaction.

5.11 Fresh (a), and regenerated (b) [SMIM][FeCl$_4$] catalysts.

5.12 Parity plot of levulinic acid yield from glucose using [SMIM][FeCl$_4$] catalyst.

5.13 Pareto chart of levulinic acid yield from glucose using [SMIM][FeCl$_4$] catalyst.

5.14 Response fitted surface area plots of levulinic acid yield versus reaction temperature and reaction time.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15</td>
<td>Response fitted surface area plots of levulinic acid yield versus reaction temperature and glucose loading.</td>
</tr>
<tr>
<td>5.16</td>
<td>Response fitted surface area plots of levulinic acid yield versus reaction temperature and [SMIM][FeCl₄] loading.</td>
</tr>
<tr>
<td>5.17</td>
<td>Response fitted surface area plots of levulinic acid yield versus reaction time and [SMIM][FeCl₄] loading.</td>
</tr>
<tr>
<td>5.18</td>
<td>Response fitted surface area plots of levulinic acid yield versus reaction time and glucose loading.</td>
</tr>
<tr>
<td>5.19</td>
<td>Response fitted surface area plots of levulinic acid yield versus glucose loading and [SMIM][FeCl₄] loading.</td>
</tr>
<tr>
<td>5.20</td>
<td>Reusability of [SMIM][FeCl₄] catalyst for levulinic acid production from OPF.</td>
</tr>
<tr>
<td>5.21</td>
<td>Proposed reaction scheme of levulinic acid production using [SMIM][FeCl₄] as catalyst.</td>
</tr>
<tr>
<td>5.22</td>
<td>Parity plot of levulinic acid yield from OPF using [SMIM][FeCl₄] catalyst.</td>
</tr>
<tr>
<td>5.23</td>
<td>Pareto chart of levulinic acid yield from OPF using [SMIM][FeCl₄] catalyst.</td>
</tr>
<tr>
<td>5.24</td>
<td>Response fitted surface area plots of levulinic acid yield versus reaction temperature and reaction time.</td>
</tr>
<tr>
<td>5.25</td>
<td>Response fitted surface area plots of levulinic acid yield versus reaction temperature and OPF loading.</td>
</tr>
<tr>
<td>5.26</td>
<td>Response fitted surface area plots of levulinic acid yield versus reaction temperature and [SMIM][FeCl₄] loading.</td>
</tr>
<tr>
<td>5.27</td>
<td>Response fitted surface area plots of levulinic acid yield versus reaction time and [SMIM][FeCl₄] loading.</td>
</tr>
<tr>
<td>5.28</td>
<td>Response fitted surface area plots of levulinic acid yield versus reaction time and OPF loading.</td>
</tr>
<tr>
<td>5.29</td>
<td>Response fitted surface area plots of levulinic acid yield versus OPF loading and [SMIM][FeCl₄] loading.</td>
</tr>
<tr>
<td>6.1</td>
<td>Reaction scheme for glucose conversion to levulinic acid.</td>
</tr>
</tbody>
</table>
6.2 Effect of (a) agitation speed; ■ 0 rpm, ● 50 rpm, ▲ 100
rpm, □ 200 rpm, ○ 300 rpm, and (b) 10% Fe/HY zeolite
particle sizes; (● 0.18 mm, ▲ 0.21 mm, □ 0.25 mm, ○
0.30 mm) on glucose conversion.

6.3 Glucose decomposition using 10% Fe/HY zeolite - effect
of reaction temperature ■ 120 °C, ▲ 140 °C, ● 160 °C, *
180 °C, ○ 200 °C.

6.4 5-HMF decomposition using 10% Fe/HY zeolite - effect
of reaction temperature on 5-HMF conversion and LA
yield. ■ 120 °C, ▲ 140 °C, ● 160 °C, * 180 °C, ○ 200
°C.

6.5 Typical concentration profile of glucose decomposition
using 10% Fe/HY zeolite at 180 °C. ▲ Glucose, ● 5-
HMF, □ LA.

6.6 -ln(1-X) versus time for (a) glucose conversion and (b) 5-
HMF conversion using 10% Fe/HY zeolite. ■ 120 °C, ▲
140 °C, ● 160 °C, * 180 °C, ○ 200 °C.

6.7 Arrhenius plots of ln k versus 1/T using 10% Fe/HY
zeolite.

6.8 Glucose decomposition using [SMIM][FeCl₄] - effect of
reaction temperature. ■ 110 °C, ▲ 130 °C, ● 150 °C, *
170 °C.

6.9 5-HMF decomposition using [SMIM][FeCl₄] - effect of
reaction temperature. ■ 110 °C, ▲ 130 °C, ● 150 °C, *
170 °C.

6.10 Typical concentration profile of glucose decomposition
using [SMIM][FeCl₄] at 170 °C. ▲ Glucose, ● 5-HMF, □
levulinic acid.

6.11 -ln(1-X) versus time for glucose conversion and 5-HMF
conversion using [SMIM][FeCl₄]. ■ 110 °C, ▲ 130 °C, ●
150 °C, * 170 °C.

6.12 Arrhenius plots of ln k versus 1/T using [SMIM][FeCl₄].
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HMF</td>
<td>5-hydroxymethyl furfural</td>
</tr>
<tr>
<td>[BMIM][Cl]</td>
<td>1-butyl-3-methyl imidazolium chloride</td>
</tr>
<tr>
<td>[BMIM][FeCl₄]</td>
<td>1-butyl-3-methyl tetrachloroferrate</td>
</tr>
<tr>
<td>[SMIM][Cl]</td>
<td>1-sulfonic acid-3-methyl imidazolium chloride</td>
</tr>
<tr>
<td>[SMIM][FeCl₄]</td>
<td>1-sulfonicacid-3-methylimidazolium tetrachloroferrate</td>
</tr>
<tr>
<td>AlCl₃</td>
<td>Aluminium (III) chloride</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer Emmett Teller</td>
</tr>
<tr>
<td>BJH</td>
<td>Barrett Joyner Halenda</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>CrCl₂</td>
<td>Chromium (II) chloride</td>
</tr>
<tr>
<td>CrCl₃</td>
<td>Chromium (III) chloride</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethyl formamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNS</td>
<td>3,5-dinitrosalicylic acid</td>
</tr>
<tr>
<td>FeCl₂</td>
<td>Iron (II) chloride</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>Iron (III) chloride</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Iron (III) oxide</td>
</tr>
<tr>
<td>FIL</td>
<td>Functionalized ionic liquid</td>
</tr>
<tr>
<td>GVL</td>
<td>γ-valerolactone</td>
</tr>
<tr>
<td>HF</td>
<td>Hierarchical factor</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HY</td>
<td>Faujasite type zeolite</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>H$_2$SO$_4$</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HBr</td>
<td>Hydrobromic acid</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium bromide</td>
</tr>
<tr>
<td>LAP</td>
<td>Laboratory analytical procedure</td>
</tr>
<tr>
<td>MIBK</td>
<td>Methyl isobutyl ketone</td>
</tr>
<tr>
<td>MnCl$_2$</td>
<td>Manganese (II) chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NH$_3$-TPD</td>
<td>Temperature programmed desorption of ammonia</td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>Ammonium chloride</td>
</tr>
<tr>
<td>OPF</td>
<td>Oil palm fronds</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>Si</td>
<td>Silica</td>
</tr>
<tr>
<td>SnCl$_4$</td>
<td>Tin (IV) chloride</td>
</tr>
<tr>
<td>SO$_3$H</td>
<td>Sulfonic acid</td>
</tr>
<tr>
<td>SO$_3$HCl</td>
<td>Chloro sulfonic acid</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal gravimetric analysis</td>
</tr>
<tr>
<td>TOF</td>
<td>Turnover frequency</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit/Definition</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>A</td>
<td>Pre-exponential factor</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>Ea</td>
<td>Activation energy</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>H_o</td>
<td>Hammett acidity function</td>
</tr>
<tr>
<td>J</td>
<td>Joules</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>k</td>
<td>Reaction rate constant</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>mL</td>
<td>Mililiter</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of publications</td>
<td>282</td>
</tr>
<tr>
<td>B</td>
<td>LAP procedure</td>
<td>284</td>
</tr>
<tr>
<td>C</td>
<td>Fe/HY zeolite characterization</td>
<td>288</td>
</tr>
<tr>
<td>D</td>
<td>Functionalized ionic liquid characterization</td>
<td>290</td>
</tr>
<tr>
<td>E</td>
<td>Calibration curve</td>
<td>294</td>
</tr>
<tr>
<td>F</td>
<td>Preliminary testing using HY zeolite</td>
<td>296</td>
</tr>
<tr>
<td>G</td>
<td>Response surface methodology</td>
<td>297</td>
</tr>
<tr>
<td>H</td>
<td>Kinetic study</td>
<td>298</td>
</tr>
</tbody>
</table>
REFERENCES

levulinic acid in a concentrated aqueous solution of betaine hydrochloride. \textit{RSC Advances}, 4(55), 28836-28841.

