IDENTIFICATION OF COMMONLY USED MEDICINAL PLANTS IN KANGKAR PULAI AND THEIR THERAPEUTIC EVALUATION AS ANTI-DIABETIC

ALI ATA ZIDAN ALSARHAN

UNIVERSITI TEKNOLOGI MALAYSIA
IDENTIFICATION OF COMMONLY USED MEDICINAL PLANTS IN KANGKAR PULAI AND THEIR THERAPEUTIC EVALUATION AS ANTI-DIABETIC

ALI ATA ZIDAN ALSARHAN

A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioscience)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JULY 2015
Specially dedicated goes to:

My dear parents

My wife

My siblings

My friends

For their love, understanding and support through my endeavour
ACKNOWLEDGEMENT

First and foremost, my unlimited and sincere appreciation goes to ALLAH (SWT) for His endless mercies, blessings and guidance through my life, from birth till now and forever Alhamdullahi Robbi Alamin.

I would like to express my sincere gratitude to the Dean of Faculty Bioscience and Medical Engineering, Prof. Jasmy Bin Yunus, for the provision of laboratory and other facilities during my study. I would like to thank Universiti Teknologi Malaysia, the Research Management Center (RMC) and research grants (GUP Tier 1 05H07, FRGS 4F126) for providing me financial supports to publish my work. I wish to thank SPS for providing me IDF scholarship.

My sincere gratitude goes to my supervisor Dr. Naznin Sultana and my co-supervisor Dr. Lee Suan Chua for their continued guidance, support and encouragement to ensure this work in a success. I am grateful as well as to my co-supervisor, Assoc. Prof. Dr. Mohammed Rafiq bin Dato' Abdul Kadir. He was always available to provide encouragement, advice and good company. And also I would like to thank all the persons helped and encouraged me to complete my thesis, they are listed on the following: The Malaysian friends and students, they helped me during the interview with people at Kangkar Pulai area, Dr. Ahed Al-Khatib from Jordan University of Science and Technology for the guidance during the experimental studies at Jordan and the supervisor of animal house at Yarmouk University in Jordan. My earnest appreciation also goes to all my friends especially Omar Alshwyyatt and Nayef Al Khawaldeh, they supported me during my study life. To you all I say thank you so much.
ABSTRACT

Medicinal plants have been used as traditional medicines for treatment of diseases such as diabetes mellitus. However, scientific information to support the claims of herbal medicine practitioners based on Use Value (UV) and Informant Consensus Factor (ICF) is largely unexplored. The aim of this study is to screen common medicinal plants and to evaluate their traditional use through an ethnopharmacological survey at Kangkar Pulai, Johor, Malaysia. Data were collected from the community through open interviews, determining the relative importance of the species surveyed and calculating the UV and ICF in relation to the medicinal plant uses. A total of 38 plant species belongs to 28 families were documented. Based on the results of ethnopharmacological survey, Orthosiphon stamineus Benth and Momordica charantia L recorded the highest Use Values (0.32 and 0.24) to treat diabetes. The results of antioxidant tests revealed that the total phenolic content (TPC) of O. stamineus is 71.70 ± 0.85 mg (GAE)/g and total flavonoid content (TFC) is 44.71 ± 0.75 mg (CE)/g. Further study was carried out to examine the effects of oral administration of O. stamineus extract in the treatment of diabetes in normal and alloxan-induced diabetic rats. Forty rats were divided into four groups of 10 each. Group A (control) consisted of normal rats receiving 2 mL (10 mL/kg bwt) of normal saline on daily basis, whereas group B consisted of diabetic rats treated with 1 mL (120 mg/kg bwt) of O. stamineus extract. Group C consisted of diabetic rats treated with 1 mL (150 mg/kg bwt) of Metformin. Group D consisted of untreated diabetic rats acted as negative control. Group B, C and D were injected intraperitoneally with alloxan (150 mg/kg bwt). Diabetic group B rats treated with O. stamineus extract showed significantly (p <0.05) low blood glucose level compared to group D (untreated diabetic rats). Similarly diabetic group B rats consumed significantly lower daily food and water intake at significant level p <0.05 compared to group D (untreated diabetic rats). Diabetic group B rats treated with O. stamineus extract showed significantly higher body weight at significant level p <0.05 compared to group D (untreated diabetic rats). Diabetic group B rats treated with O. stamineus extract showed lower serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and higher high-density lipoprotein cholesterol (HDL-C) at significant value (p < 0.05) compared with group D (untreated diabetic rats). A significant decrease of total protein, albumin and creatinine was observed in the plasma of group B rats after being treated with O. stamineus extract compared with group D. Additionally, immunohistochemistry results showed that the levels of heat shock protein 70 (HSP70) and inducible nitric oxide synthase (iNOS) of group B diabetic rats were brought back to near normal range after being treated with O. stamineus extract at significant value (p < 0.05) compared with group D (untreated diabetic rats). In conclusion, O. stamineus extract exhibited antidiabetic activity in alloxan-induced diabetic rats. Thus, the present findings also support the potential use of O. stamineus extract as a remedy for hyperglycemia.
ABSTRAK

Tumbuhan perubatan telah digunakan sebagai ubat-ubatan tradisional untuk merawat penyakit seperti diabetes mellitus. Walau bagaimanapun, maklumat saintifik berdasarkan Nilai Gunaan (UV) dan Persetujuan Pemberi Maklumat (ICF) bagi menyokong dakwaan penggunaan tumbuhan perubatan masih belum diterokai. Tujuan kajian ini adalah untuk meninjau tumbuhan perubatan biasa dan untuk menilai penggunaan tradisional mereka melalui selidik ethnomedical di Kangkar Pulai, Johor, Malaysia. Data-data telah didapati dari masyarakat melalui temuduga secara langsung, menentukan perbezaan kepentingan spesies yang ditanam dan mengira Faktor Persetujuan Pemberi Maklumat (ICF) dan Nilai Gunaan (UV) berhubung penggunaan tumbuhan perubatan. Sebanyak 38 spesies tumbuhan yang dimiliki oleh 28 keluarga telah didokumenkan. Berdasarkan hasil kajian ethnomedical, Orthosiphon stamineus Benth dan Momordica charantia L mencatatkan nilai penggunaan yang tertinggi sebagai rawatan penyakit diabetes dengan nilai penggunaan, 0.32 dan 0.24, masing-masing. Keputusan ujian antioksidan menunjukkan ekstrak O. stamineus mengandungi jumlah kandungan fenol (TPC) 71.70 ± 0.85 mg (GAE) / g dan jumlah kandungan flavonoid (TFC) 44.71 ± 0.75 mg (CE)/g. Kajian lanjut telah dijalankan untuk mengkaji kesan pengambilan ekstrak O. Stamineus melalui mulut terhadap penyakit diabetes pada tikus normal dan diabetes yang disuntik dengan alloxan. Empat puluh ekor tikus telah diibahagi kepada empat kumpulan dengan 10 ekor bagi setiap kumpulan. Kumpulan A terdiri daripada tikus-tikus normal yang menerima 2 mL (10 ml/kg bwt) larutan garam biasa (kawalan) pada setiap hari, manakala kumpulan B terdiri daripada tikus-tikus diabetes yang dirawat dengan 1 mL (120 mg/ kg bwt) ekstrak O. stamineus. Kumpulan C pula terdiri daripada tikus-tikus diabetes yang dirawat dengan 1 mL (150 mg/kg bwt) Metformin. Manakala kumpulan D terdiri daripada tikus-tikus diabetes yang tidak dirawat bertindak sebagai kumpulan kawalan negatif. Kumpulan B, C dan D telah disuntik intraperitoneally dengan Alloxan (150 mg / kg bwt). Tikus-tikus diabetes kumpulan B yang dirawat dengan ekstrak O. stamineus menunjukkan dengan ketara (p <0.05) tahap glukosa darah yang lebih rendah berbanding dengan kumpulan D (tikus-tikus diabetes yang tidak dirawat). Demikian juga tikus-tikus kumpulan B menunjukkan dengan ketara (p <0.05), pengambilan makanan harian dan air yang lebih rendah berbanding dengan kumpulan D (tikus diabetes yang tidak dirawat). Mereka (kumpulan B) juga menunjukkan dengan ketara (p <0.05) berat badan yang lebih tinggi, lebih rendah jumlah kolesterol, trigliserida, kolesterol lipoprotin ketumpatan rendah dan lebih tinggi kolesterol lipoprotin ketumpatan tinggi dalam serum berbanding dengan kumpulan D (tikus diabetes tidak dirawat). Penurunan yang ketara didapati bagi jumlah protein, albumin dan kreatinin dalam plasma tikus-tikus kumpulan B selepas rawatan dengan ekstrak O. stamineus. Selain itu, keputusan immunohistokimia menunjukkan tahap protein kejutan 70 (HSP70) dan inducible nitrik oksida sintase (iNOS) telah dikembalikan kepada julat hampir biasa selepas rawatan dengan ekstrak O. stamineus dalam Kumpulan B pada nilai signifikan (p <0.05) berbanding dengan kumpulan D (tikus-tikus diabetes yang tidak dirawat). Kesimpulannya, ekstrak O. stamineus menunjukkan aktiviti anti-diabetes pada tikus-tikus diabetes yang disuntik Alloxan. Maka oleh kerana itu, penemuan ini juga menyokong potensi penggunaan ekstrak O. stamineus sebagai ubat untuk hiperkolesterolemia.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xix</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Background of Research 1
1.2 Problem Statements 5
1.3 Objectives of the Study 7
1.4 Scope of the Study 7

2 LITERATURE REVIEW 9
2.1 Introduction 9
2.2 Medicinal Plants 9
2.2.1 Medicinal Plants in Malaysia 11
2.3 Medicinal Plants and Diabetes 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Diabetes Mellitus</td>
<td>19</td>
</tr>
<tr>
<td>2.3.2 Classification of Diabetes Mellitus</td>
<td>20</td>
</tr>
<tr>
<td>2.3.3 Diabetes Diagnosis</td>
<td>25</td>
</tr>
<tr>
<td>2.3.4 Complication of Diabetes Mellitus</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Insulin Resistance</td>
<td>27</td>
</tr>
<tr>
<td>2.4.1 Insulin Resistance and Oxidative Stress</td>
<td>29</td>
</tr>
<tr>
<td>2.5 Mechanisms of Oxidative Stress</td>
<td>31</td>
</tr>
<tr>
<td>2.5.1 Role of Oxidative Stress in Diabetic Complications</td>
<td>34</td>
</tr>
<tr>
<td>2.6 Role of Liver on Diabetes Mellitus</td>
<td>36</td>
</tr>
<tr>
<td>2.7 Antioxidants</td>
<td>38</td>
</tr>
<tr>
<td>2.7.1 Antioxidants and Diabetes Mellitus</td>
<td>42</td>
</tr>
<tr>
<td>2.8 Role of Biomarkers iNOS and Hsp70 for Diabetes Prediction</td>
<td>46</td>
</tr>
<tr>
<td>2.9 Alloxan-Induced Diabetes</td>
<td>50</td>
</tr>
<tr>
<td>2.10 Orthosiphon stamineus Benth (Lamiaceae)</td>
<td>52</td>
</tr>
<tr>
<td>3 RESEARCH METHODOLOGY</td>
<td>55</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>55</td>
</tr>
<tr>
<td>3.2 Study Area</td>
<td>56</td>
</tr>
<tr>
<td>3.2.1 Interviews and Collection of Plants</td>
<td>57</td>
</tr>
<tr>
<td>3.2.2 Data Analysis</td>
<td>60</td>
</tr>
<tr>
<td>3.2.2.1 Use Value (UV)</td>
<td>60</td>
</tr>
<tr>
<td>3.2.2.2 Informant Consensus factor (ICF)</td>
<td>60</td>
</tr>
<tr>
<td>3.3 Plant Collection</td>
<td>61</td>
</tr>
<tr>
<td>3.4 Preparation of Plant Extracts</td>
<td>62</td>
</tr>
<tr>
<td>3.4.1 Chemical Materials</td>
<td>63</td>
</tr>
<tr>
<td>3.4.2 Analysis of Antioxidant Properties</td>
<td>63</td>
</tr>
<tr>
<td>3.4.2.1 Determination of Total Phenolic Compounds</td>
<td>63</td>
</tr>
<tr>
<td>3.4.2.2 Determination of Total Flavonoid Compounds</td>
<td>64</td>
</tr>
</tbody>
</table>
3.4.2.3 Scavenging Effects of Plants Extracts on DPPH Radicals

3.5 Animal Studies
3.5.1 Alloxan-Induced Hyperglycemia
3.5.2 Experimental Design

3.6 Biological Investigations
3.6.1 Collection of Blood
3.6.2 Glucose Level Determination
3.6.3 Serum Cholesterol Determination
3.6.4 Serum Triglyceride Determination
3.6.5 Determination of Serum Urea and Uric Acid
3.6.6 Determination of Serum Creatinine and Albumin
3.6.7 Total Protein Determination

3.7 Tissue Preparations
3.7.1 Immunohistochemistry using HSP70 and iNOS Antibodies
3.7.2 Analysis of Tissues Images

3.8 Statistical Analysis

4 RESULTS AND DISCUSSION
4.1 Ethnopharmacological Survey
4.1.1 Parts of Plants used as Medicines
4.1.2 Using Medicinal Plant as a Remedy

4.2 Antioxidant Properties of the Selected Herb
4.2.1 Total Phenolic and Total Flavonoid Content

4.3 Biological Investigation
4.3.1 Effect of Orthosiphon stamineus Benth Extract on Body Weight in Alloxan-Induced Diabetic Rats.
4.3.2 Effect of Oral Administration Aqueous of *Orthosiphon stamineus* Benth Extract on Water Intake and Food Intake 102

4.3.3 Effects of *Orthosiphon stamineus* Benth on Blood Glucose Level 103

4.3.4 Effect of *Orthosiphon stamineus* Benth Extract on serum insulin and Glucagon Level 104

4.3.5 Effect of *Orthosiphon stamineus* Benth Extract on Serum Lipid Profiles 109

4.3.6 Effect of Extract *Orthosiphon stamineus* Benth on Total Proteins, Albumins, Uric Acid and Creatinine Levels in Diabetic Rats 110

4.3.7 The Effects of Extract *Orthosiphon stamineus* Benth on Hematological Parameters 114

4.3.8 Immunohistochemistry Studies 117

4.3.8.1 Expressions of HSP70 and iNOS in the Rat Liver 118

4.3.8.2 Expressions of HSP70 and iNOS in the Rats Pancreas 124

5 CONCLUSION AND RECOMMENDATIONS 130

5.1 Recommendations 131

REFERENCES 133

APPENDICES A-J 165-174
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A list of common medicinal plants used in traditional Malaysian medicine systems</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Common Medicinal Plants in Malaysia used for the treatment of diabetes</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>Plant used to treat different human diseases in Kangkar Pulai area</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Informants consensus factor value of different types of illnesses</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean values of serum insulin and glucagon in diabetic rats</td>
<td>105</td>
</tr>
<tr>
<td>4.4</td>
<td>Means values of hematological parameters in diabetic rats induced by Alloxan.</td>
<td>115</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Type 1 Diabetes.</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Type 2 Diabetes.</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Insulin Resistance</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Oxidative Stress</td>
<td>32</td>
</tr>
<tr>
<td>2.5</td>
<td>Orthosiphon stamineus Benth</td>
<td>53</td>
</tr>
<tr>
<td>3.1</td>
<td>Research methodology overview</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Location of Kangkar Pulai in Malaysia</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>An interview with a participant who uses medicinal plants</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>An interview with a participant in a farm</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>Preparations and Extraction of Plants. (a) Dried plant; (b) boiled plant extracts; (c) freeze-drying of filtrates; (d) freeze-dried plant extracts</td>
<td>62</td>
</tr>
<tr>
<td>3.6</td>
<td>Extracts of Orthosiphon stamineus Benth (A) and Momordica charantia L. (B) with Folin–Ciocalteau reagent</td>
<td>64</td>
</tr>
<tr>
<td>3.7</td>
<td>Extracts of Orthosiphon stamineus Benth (A) and Momordica charantia L. (B)</td>
<td>65</td>
</tr>
<tr>
<td>3.8</td>
<td>Extracts of Orthosiphon stamineus Benth (A) and Momordica charantia L. (B).</td>
<td>66</td>
</tr>
<tr>
<td>3.9</td>
<td>Intraperitoneal injection of alloxan into the rats</td>
<td>68</td>
</tr>
<tr>
<td>3.10</td>
<td>Groups of rats under standard conditions in the laboratory</td>
<td>69</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Oral administration of plant extract by inserting a gavage needle into a rat</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Oral administration of metformin by inserting a gavage needle into a rat</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>Determination of glucose level using the Glucolab auto-coding device</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Parts of plants used as medicines</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Informant Consensus Factor (ICF) categorized by medicinal use for corporal ailments</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Standard Curve of Gallic Acid</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Standard curve of catechin</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Total phenolic and total flavonoid content of the selected plants</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Free radical scavenging activity (DPPH) of the investigated extracts</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Effects of oral administration of aqueous extract of O. stamineus on body weight in diabetic rats induced by Alloxan</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of aqueous extract of O. stamineus and Metformin on water intake (ml/day) in diabetic and non-diabetic rats</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of aqueous extract of O. stamineus on food intake (g/day) in diabetic rats for four weeks</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of the aqueous extract of O. stamineus on blood glucose levels in diabetic rats</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of aqueous extract of Orthosiphon stamineus Benth on the lipids profiles in diabetic rats induced by Alloxan</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of aqueous extract of Orthosiphon stamineus Benth on total proteins, albumin, uric acid and creatinine</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>HSP70 expression level in hepatic tissues among the study groups</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Immunohistochemical detection of heat shock protein (Hsp) 70 in the liver tissues of rats</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>iNOS expression level in hepatic tissues among the study groups</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Immunohistochemical detection of iNOS in the liver tissues of rats. Normal rats</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>HSP70 expression level in pancreas tissues among the study groups</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>iNOS expression level in pancreas tissues among the study groups</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Immunohistochemical detection of iNOS in the pancreas tissues of rats</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AGEs</td>
<td>Advanced glycosylation end products</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>AlCl₃</td>
<td>Aluminium chloride</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>CAE</td>
<td>catechin equivalents</td>
</tr>
<tr>
<td>cNOS</td>
<td>Constitutive NOS, including eNOS and nNOS</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3’- diaminobenzidine</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle's Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPPH</td>
<td>1,1-Diphenyl-2-picrylhydrazyl</td>
</tr>
<tr>
<td>DPX</td>
<td>Dextrune plasterizar xylene</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EMEM</td>
<td>Eagle’s Minimum Essential Medium</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial NOS</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic Acid Equivalents</td>
</tr>
<tr>
<td>GLUT2</td>
<td>glucose transporter 2</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HSPs</td>
<td>Heat shock proteins</td>
</tr>
<tr>
<td>I</td>
<td>Type one</td>
</tr>
<tr>
<td>ICF/Fic</td>
<td>informant consensus factor</td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulin-dependent diabetes mellitus</td>
</tr>
<tr>
<td>IGT</td>
<td>impaired glucose tolerance</td>
</tr>
</tbody>
</table>
II - Type two
IKK-β - inhibitory protein κB kinase β
iNOS - inducible Nitric Oxide Synthase
IPNI - International Plant Names Index
IR - Insulin receptor
IRS - insulin receptor substrate
LDL - Low-density lipoprotein
LMIC - Lower middle income countries
MafA - musculoaponeurotic fibrosarcoma protein A
MAPK - mitogen-activated protein kinase
MODY - maturity-onset diabetes in youth
mRNA - Messenger RNA
MTT - methyl tetrazolium
N - number of informants
Na₂CO₃ - Sodium carbonate
NaNO₂ - Sodium nitrite
NaOH - Sodium hydroxide
NEFAs - non-esterifies fatty acids
NFkB - Nuclear transcription factor κB
NF-kB - nuclear factor-κB
NIDDM - Non-insulin-dependent diabetes mellitus
nm - Nanometers
nNOS - Neuronal NOS
NO - Nitric oxide
Nt - number of taxa used
Nur - number of use reports per each category
O₂ - superoxide anoin
OGTT - oral glucose tolerance test
PCV - Packed cell volume
PDX-1 - Pancreatic and duodenal homeobox 1
PI3K - phosphotidylinositol-3-OH kinase
PKB - Akt/ protein kinase B
PKC - Protein kinase C
R - Reagent
RBC - red blood cell
ROS - Reactive oxygen species
STZ - Streptozotocin
T2DM - Type 2 Diabetes Mellitus
TG - Triglyceride
U - number of uses per species
UCP-2 - uncoupling protein-2
UN - United Nations
UNESCO - United Nations Educational, Scientific and Cultural Organization
US$ - United States dollar
USA - United States of America
UV - Use value
UV light - Ultraviolet
V - Volume
VLDL - Very-low-density lipoprotein
W - Weight
WBC - white blood cell
WHO - World Health Organization
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Gram</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>Dl</td>
<td>Deciliter</td>
</tr>
<tr>
<td>Ml</td>
<td>Milliliters</td>
</tr>
<tr>
<td>µL</td>
<td>Microliters</td>
</tr>
<tr>
<td>M</td>
<td>Molarity</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>°C</td>
<td>Celsius</td>
</tr>
<tr>
<td>°F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>Mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>Ng</td>
<td>Nanograms</td>
</tr>
<tr>
<td>Pg</td>
<td>Pictogram</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Publications</td>
<td>165</td>
</tr>
<tr>
<td>B</td>
<td>Research Questions</td>
<td>166</td>
</tr>
<tr>
<td>C</td>
<td>Animal Ethics Approval</td>
<td>167</td>
</tr>
<tr>
<td>D</td>
<td>Preparation of Samples to Administration Orally</td>
<td>168</td>
</tr>
<tr>
<td>E</td>
<td>Inducing Diabetes Mellitus</td>
<td>169</td>
</tr>
<tr>
<td>F</td>
<td>Oral Administration</td>
<td>170</td>
</tr>
<tr>
<td>G</td>
<td>Measurement of Glucose Levels</td>
<td>171</td>
</tr>
<tr>
<td>H</td>
<td>Recording of Data</td>
<td>172</td>
</tr>
<tr>
<td>I</td>
<td>Experimental Animal Wister Rats before (A) Dissection and (B) After Dissection</td>
<td>173</td>
</tr>
<tr>
<td>J</td>
<td>Dr. Ahed Jumah Al-khatib CV</td>
<td>174</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

In the last few decades, there have been many studies on ethno-medicine (Krippner, 2003; Williams, 2006). Ethno-medicine is the study of traditional medical practice. It is related to the cultural interpretation of health, diseases, and illnesses. It basically addresses matters concerning healthcare seeking and healing processes and practices (Krippner, 2003; Williams, 2006). Ethno-medicine is a highly complicated multi-disciplinary system that explores the use of plants, spirituality, and the natural environment, which has been the main source of treatment and healing for many people over the years (Lowe et al., 2001).

With the emergence of the discipline, research in the field of ethno-medicine has significantly contributed towards a better understanding of traditional subsistence, as well as medical knowledge and practice. A vast amount of literature on ethno-medicine has been motivated by the increasing awareness about the consequences of forced displacement and acculturation of the local people, the recognition of indigenous health practices and concepts to maintain ethnic identity, and the search for new medical cures and technologies (Williams, 2006).
The World Health Organization, (2003) reported that ethno-medicine has sustained its popularity in the developing world and its use is fast gaining roots in the developed world as well. The traditional herbal preparations of China accounts for 30–50% of the total consumption of medicines (WHO, 2003). In African countries, such as Ghana, Nigeria, Zambia, and Mali, herbal medicine is used to treat 60% of the children affected with malaria. In London, San Francisco, and South Africa, 70% of people suffering from HIV/AIDS are also reported to use herbal medicines at a cost of more than US$60 billion (WHO, 2003).

The World Health Organization has defined traditional medicine as the body of knowledge and practices used to recognize, prevent, and/or reduce some physical, mental, or social diseases that may rely on past experience and observation handed down from one generation to another in either verbal or written form (WHO, 1999a). In developing countries, complementary traditional medicines are often used. According to estimates by the World Health Organization, almost 80% of people living in rural areas in many countries are looked after by traditional medical practitioners. Another approximation is that about half of industrialized countries reportedly use traditional medicines regularly. Modern pharmaceutical agents, including many plant-derived therapeutic agents, are also supported by traditional herbal plants (Alzweiri et al., 2011; Alsarhan et al., 2012).

Over the years, people have used different materials from nature to improve their health and to treat their diseases. For this purpose, various substances were derived from animals, plants, and mineral resources in areas where people lived, as well as from very remote places (Ghorbani et al., 2006). Nature has been the main source of medicinal agents for thousands of years. A large number of natural drugs have been isolated from natural sources to treat various diseases by keeping in mind the use of traditional medicine. This type of plant-based traditional medicine continues to play an important role in the practice of healthcare. About 80% of the world population uses conventional medicine prepared from various traditional medicinal plants as their primary healthcare (Ghorbani et al., 2006).
Throughout the years, traditional medicines have been proven to be an invaluable source and guidance for screening of drugs. Many important and famous modern drugs, such as digitoxin, reserpine, tubocurarine, ephedrine, ergometrine, atropine, vinblastine, and aspirin, were discovered on the basis of traditional folk medicine (Anyinam, 1995). In many parts of the world, medicinal herbs are considered an important element of the medical system of the indigenous people, and these resources are also an essential part of the traditional knowledge of the culture (Ghorbani et al., 2006).

Although reports have revealed improvements in the quality of life and life prolongation in diabetic patients after using traditional medicines, the biological activity of such medicines has not been documented (Bailey and Day, 1989). In general, with regard to traditional medicines in Asian countries, many herbal medicines are put together to make a multi-herbal formula to enhance its function (Bailey and Day, 1989).

Herbal medicines are still popular despite the abundance of modern medicine for cultural and historical reasons. Information is also available about the uses of herbal plants for the treatment of different diseases all over the world. However, there is a need to further investigate, correlate, and document these plants (Alzweiri et al., 2011; Alsarhan et al., 2012).

Diabetes belongs to a group of metabolic diseases having high blood sugar (glucose) levels, which are the result of defects in insulin secretion or action, or even both. Insufficient action of insulin results in increased blood-glucose concentration. The most common metabolic disorder (hyperglycemia) in the world is diabetes mellitus (Tierney et al., 2002).

In the progress of diabetes, numerous pathogenic events are involved, ranging from autoimmune damage of β-cells in the pancreas resulting in insulin insufficiency
to abnormalities that results in resistance to the insulin action (Alberti and Zimmet, 1998; American Diabetes Association, 2013).

The cause for defects in carbohydrate, lipid, and protein metabolism in diabetes is incomplete action of insulin on the specific tissues. The reason for deficient insulin action is inadequate insulin excretion or diminishing tissue responses to insulin action at one or more points in the complicated paths of hormone activity. Deficiency of insulin production and defects in insulin activity frequently exist in the same patient, and it is often indistinct which anomaly, if either alone, is the main reason for the hyperglycemia (Gavin et al., 1997; American Diabetes Association, 2013).

Hyperglycemia symptoms include polyuria, polydipsia, weight loss, polyphagia and blurred vision. Weakness of growth and exposure to certain infections may induce chronic hyperglycemia. The life-threatening and acute after-effects of uncontrolled diabetes is hyperglycemia with ketoacidosis or non-ketotic hyperosmolar disease (Gavin et al., 1997; American Diabetes Association, 2013).

The complications of diabetes include retinopathy or vision loss, and nephropathy. This leads to renal insufficiency and peripheral neuropathy with the risk of foot sores, amputations, and Charcot joints. Autonomic neuropathy causes gastrointestinal, genitourinary, and cardiovascular diseases, and even sexual dysfunction. Those patients with diabetes complications have increased prevalence of peripheral arterial and cardiovascular diseases. As well as this, diabetes patients have hypertension and abnormalities of lipoprotein metabolism (American Diabetes Association, 2013).

Insulin is a hormone that helps glucose enter the cells in the body to provide energy. Symptoms that appear in patients are frequent urination, lethargy, excessive thirst, and loss of appetite. Diabetes can be treated with dietary changes, timely
medication, and, in some cases, by administering insulin injections on a daily basis. This depends on the type and severity of the problem (Bhikha and Glynn, 2013).

Type 1 diabetes is normally treated by using insulin, doing exercise, and through maintaining a diabetic diet. Type 2 diabetes is initially treated by weight loss measures, maintaining a diabetic regimen, and exercise. When these measures do not reduce the problem of raised blood sugars, then oral medications are used. In the case of failure of oral medication, insulin medications are considered. Natural herbs are also traditionally used to treat type 2 diabetes mellitus (Thomas et al., 2004).

Diabetes can be treated through diet, exercise, oral hypoglycemic agents, and insulin. Today, a synthetic drug is available and is considered as an anti-diabetic agent, but it is expensive and produces serious side effects. In addition to the currently available therapeutic options, numerous herbal medicines are mentioned for treating diabetes mellitus. Generally, medicinal plants are advantageous due to the lack of side effects (Ayodhya et al., 2010; Elavarasi et al., 2013).

1.2 Problem Statements

Medicinal plants continue to play an important role in the treatment of diabetes, particularly in developing countries where most people have limited resources and do not have access to modern treatment. The increase in demand in industrially developed countries to use alternative approaches to treat diabetes, such as plant-based medicines, is also due to the side effects associated with the use of insulin and oral hypoglycemic agents (Anumsima, 2011).
Testing of the biological activity of medicinal plants for the treatment of diabetes mellitus based on ethnopharmacological studies may be hindered by inaccurate information collected from indigenous people regarding the use of medicinal plants, the weak points in these studies that might be overcome in the design of studies and interpretation of data. In Malaysia, there are about 12,000 kinds of flowering plants, of which about 1300 have been documented as medicinal plants, and only about 100 have been extensively studied for their medicinal effect (Anumsima, 2011).

Even with the several medicinal plants documented by ethnopharmacological studies for the treatment of diabetes, there are weak points in the determination of the use value for each plant and the informant consensus factor, because the use value explains the number of medicinal plants that have highest use value for the treatment of diabetes mellitus. Additionally, this knowledge is required to prove the validity of the claimed medicinal uses as recommended by traditional healers for the treatment of diseases, including diabetes. In order to overcome this situation, systematic research is needed to identify inexpensive, harmless, and effective anti-diabetic drugs.

Many studies have been conducted based on traditional knowledge and phytochemical analysis, but the combination of ethnopharmacological study and animal research is more reliable. Keeping in view the importance of using medicinal plants for the treatment of diabetes, this study aimed to identify and document the major medicinal plants being used by people in the Kangkar Pulai area, Johor, Malaysia, for treating human diseases. This study investigated the informant consensus factor and the use value of the plants in Kangkar Pulai area for treating diabetes and other diseases. Moreover, this ethno-medicine survey used certain equations to determine the types of medicinal plants and diseases that are treated by these plants. This study used specific biomarkers (HSP70 and iONS) to evaluate the effect of selected plants on the treatment of diabetic rats induced by alloxan.
1.3 Objectives of the Study

The main objective of this study was to investigate the anti-diabetic properties of one of the Malaysian herbs based on the ethnopharmacological survey combined with an animal model study. The objectives can be sub-classified as follows:

1. To determine the use value and informant consensus factor of traditional medicinal plants used for the treatment of diabetes based on an ethnopharmacological survey in Kangkar Pulai, Johor, Malaysia.

2. To determine the total phenol and flavonoid content, as well as the antioxidant activity, of selected medicinal plants.

3. To investigate the anti-diabetic properties of selected medicinal plant in a rat model of type 1 diabetes.

1.4 Scope of the Study

The following scopes of the study were identified:

1.4.1 To determine the informant consensus factor and use value of local herbs, particularly for diabetic treatment based on open interviews of 25 volunteers in Kangkar Pulai, Johor, Malaysia.

1.4.2 To determine the total phenol and flavonoid content, as well as the DPPH values of phytochemicals in selected anti-diabetic plants based on spectrophotometric method.
1.4.3 To evaluate the anti-diabetic properties of selected anti-diabetic plant based on glucose level, food intake, water intake, hematological parameters, and immunohistological analysis of the pancreas and liver of Alloxan-induced diabetic rats.
REFERENCES

Almdal, T., Scharling, H., Jensen, J. S. and Vestergaard, H. (2004). The Independent Effect of Type 2 Diabetes Mellitus on Ischemic Heart Disease, Stroke, and Death: A Population-Based Study of 13 000 Men and Women With 20 Years of Follow-Up. *Archives of Internal Medicine, 164*(13), 1422.

Bruce, C. R., Carey, A. L., Hawley, J. A. and Febbraio, M. A. (2003). Intramuscular Heat Shock Protein 72 and Heme Oxygenase-1 mRNA are Reduced in Patients With Type 2 Diabetes Evidence That Insulin Resistance Is
Associated With a Disturbed Antioxidant Defense Mechanism. *Diabetes*, 52(9), 2338-2345.

Che Nor Din, N. (2010). *Use of Complementary and Alternative Medicine among Cancer Patients at Local Hospital in Malaysia*. Universiti Teknologi Mara, Malaysia.

Dool, C. J. (2009). Pharmacologic Inhibition of Insulin Receptor Tyrosine Kinase Activity Has Antineoplastic Effects Similar to Alloxan-induced Insulin Deficiency with Less Acute Metabolic Toxicity.

Nna, V. U., Oka, V. O., Aluko, E. O., & Helen, O. T. (2013). Comparative Effects of Aqueous Leaf Extract of Viscum album (Mistletoe) and Aloe vera gel in the

Youn, M. Y.(2012). The Effect of Intake of Whole Grain or Whole Grain Components on Type 2 Diabetes in Rats. 3498551 Ph.D., University of Minnesota, United States

