PERFORMANCE OF UNPAVED LATERITE ROAD TREATED WITH CHEMICAL ADDITIVES AND WASTE TIRE

SAYYED YAGHOUB ZOLFEGHARI FAR

UNIVERSITI TEKNOLOGI MALAYSIA
PERFORMANCE OF UNPAVED LATERITE ROAD TREATED WITH CHEMICAL ADDITIVES AND WASTE TIRE

SAYYED YAGHOUB ZOLFEGHARI FAR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2015
To my beloved parents, brothers, sisters, all my past and present teachers, and the almighty who courage and compassion have taught me humility.
ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisors Prof. Dr. Khairul Anuar Kassim, Prof. Dr. Mohd Rosli Hainin, and Dr. Amin Eisazadeh of the faculty of civil engineering UTM and Assoc. Prof. Dr. Anuar Ahmad from faculty of geoinformation and real estate for their support, kindness and tolerance throughout this research. Thanks are also extended to all the supporting laboratory technical staff at UTM, especially geotechnics laboratory, highway laboratory and Ibnu Sina Institute.

I owe my largest debt to my family and words are not enough to thank my parents, especially my father Haj Sayyed Javad Zolfegharifar who had left us in deep sorrow, for his love and support over the years. I also would like to thank my mother Hajiyeh Sayyedeh Maryam Avazzadeh for her support, endurance and patience.

Also, I would like to thank the anonymous reviewers for their valuable suggestions and comments, which shaped my work and reach the current destination. Special thanks to all my friends who have been helping me and stood my side during the hard days of my life.

Last but not least, I would like to praise the almighty ALLAH for giving me the strength to face different challenges in life.
ABSTRACT

Lateritic unpaved roads are widely spread in Malaysian territory. These red-yellow lateritic layers normally have poor engineering properties such as large settlements, low shear strength and bearing capacity. Major difficulties may arise during the construction of a lateritic layer which are deterioration and diffusion of dust on the road surface, and also durability problems associated with cyclic loading repetition. Waste tires are encountered all over the world in increasing numbers. Shredded scrap tires and crumbs-soil mixtures are currently used in a wide range of civil engineering structures like lightweight fills for slopes, retaining walls, embankments etc. This thesis presents and discusses the condition of lateritic soil stabilized by using the shredded tires, tire crumbs and traditional active additive materials such as cement and lime for unpaved road application. Experimental tests such as X-ray diffraction (XRD), scanning electron microscope (SEM), california bearing ratio (CBR), consolidated undrained (CU) triaxial, permeability, and highway accelerated loading instrument (HALI) tests were carried out to evaluate the microstructures, elements, durability and geotechnical strength properties of tropical laterite soils. These tests were conducted to determine the influence of stabilizers on the surface of the lateritic soil layers in terms of loading cycles, and short term behaviour. The quick undrained triaxial and CBR tests were carried out on samples at different curing times to establish the optimum mix design. The strength parameters were determined from CU triaxial tests on unsoaked samples. The HALI test was used to study the strength, durability and deformation after determination of the best formulation for each stabilizer in combination with laterite soils under accelerated trafficking load, simultaneously. The close range Photogrammetry technique was also used to capture images of deformed untreated and treated surface. The camera data were analysed using software known as Australis, and Surfer 10 were used to evaluate the performance of unpaved road stabilization with traditional active additives and waste tires. After eliciting of results and data and use of the comparison curves, the behaviour of stabilized soil with different combination were determined. The highest and lowest permeability were STc (soil and tire crumbs) and SC (soil and cement) at 14 days, respectively. The highest CBR values occurred for SC on unsoaked condition in 14 days. The HALI test shows that the highest reduction in settlement was exhibited by SL (soil-6%lime) after 14 days curing. Also, the experimental results show that 6% of lime/cement and 6% of shredded tires/tires crumbs changed the soil strength, durability, and permeability properties of the lateritic soil for unpaved road applications. The results indicate that the shredded scrap tire and crumbs mixed with active additive had reduced the settlement significantly and also had increased the strength. The analysis of data by close range Photogrammetry technique shows a close approximation to the data obtained from LVDT’s equipment (less than 4.5% variance). The numerical simulation results carried out using ABAQUS 6.11 show a noticeable similarity to the results obtained by full scale HALI model and it is recommended using ABAQUS to simulate the unpaved road behaviour under cyclic loading to save time and cost.
ABSTRAK

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xxiii
LIST OF APPENDICES xxviii

1 INTRODUCTION 1
1.1 Background of the Study 1
1.2 Statement of the Problems 3
1.3 Objectives of the Study 6
1.4 Importance of Local Unpaved Roads 7
1.5 Scope of and Limitation the Study 7
1.6 Significance of the Study 8
1.7 Thesis Organization 9

2 LITERATURE REVIEW 11
2.1 Introduction 11
2.2 Laterite Residual Soils in Tropical Area 15
 2.2.1 Chemical Composition and Mineralogy of
 Laterite Residual Soil 18

2.2.2 Residual Soil Physical Properties 21
2.2.3 Geotechnical Properties of Laterite Soils 23
 2.2.3.1 Density 24
 2.2.3.2 Compressibility 25
 2.2.3.3 Permeability 25
 2.2.3.4 Shear Strength 28
2.3 Clay Characteristics 34
 2.3.1 Clay Minerals 34
 2.3.1.1 Kaolinite 37
 2.3.1.2 Montmorilinite 37
 2.3.1.3 Illite 40
 2.3.2 Clays from Tropical Regions 40
 2.3.3 Clay-Water Interaction 42
2.4 Soil Stabilization With Active Additive and Polymer 45
 2.4.1 Lime Stabilization 50
 2.4.2 Cement Stabilization 54
 2.4.3 Stabilization Using Polymers 60
 2.4.3.1 Scrap Waste Tire 61
 2.4.4 Stabilization Using a Proprietary Cementitious Stabilizer 69
 2.4.5 Soil Sample Storage and Preparation 69
 2.4.6 Laboratory Sample Production and Extraction 70
2.5 Type of Traffic Loading Test on Stabilized Unpaved Road 74
 2.5.1 Static Loading Test 74
 2.5.2 Actual Pavements Traffic Test 77
 2.5.3 Accelerated Pavement Loading Test 78
 2.5.3.1 Axle and Wheel Loads 79
 2.5.3.2 Tyre Pressures 81
 2.5.3.3 Accelerated Repetitions 81
 2.5.3.4 Calibration of Full-Scale Accelerated Pavement Testing Data Using Long-Term Pavement Performance Data 81
2.5.4 Existing Accelerated Pavement Loading Test
 2.5.4.1 Dynamic Loading Test
 2.5.4.2 RUB-Strap
 2.5.4.3 Heavy Vehicle Simulator
 2.5.4.4 Newcastle University Rolling Load Facility
 2.5.4.5 Accelerated Pavement Test Facility
 2.5.4.6 Model Mobile Load Simulator
 2.5.4.7 Accelerated Pavement Testing of Unpaved Road Model
 2.5.4.8 Highway Accelerated Loading Instrument

2.5.5 Using the Photogrammetry Close Range Technique

2.6 Numerical Analysis Modelling

2.7 Summery

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research Design and Procedure

3.3 Material Specification
 3.3.1 Tropical Laterite Residual Soil Characterization
 3.3.2 The Lime, Cement and Scrap Tire as Stabilizers
 3.3.3 Water Quality

3.4 Laboratory Full-Scale Mix Design Preparation
 3.4.1 Lime and Cement Content
 3.4.2 Compaction Characteristics
 3.4.3 Sample Preparation

3.5 Sample Characterization
 3.5.1 Micro-Structural Characterization
 3.5.1.1 X-ray Diffraction
3.5.1.2 Field Emission Scanning Electron Microscopy & X-ray Spectrometry

3.6 Chemical Properties Analysis
3.6.1 Cation Exchange Capacity
3.6.2 PH Measurement

3.7 Strength and Durability Properties Analysis
3.7.1 Standard Proctor Compaction Test
3.7.2 Unconfined Compressive Strength
3.7.3 California Bearing Ratio Test
3.7.4 Permeability Test
3.7.5 Shear Strength Test (CU Triaxial Compression Test)
 3.7.5.1 Saturation Triaxial Condition
 3.7.5.2 Triaxial Consolidation
 3.7.5.3 Consolidated-Undrained Triaxial Compression

3.8 HALI Test and Instrument Design
3.8.1 Highway Accelerated Loading Instrument (HALI)
3.8.2 Calibration of HALI
 3.8.2.1 Loading Applied to Wheel
 3.8.2.2 Speed of Mobile Carriage
 3.8.2.3 Tyre Pressure
3.8.3 HALI Performance Monitoring
 3.8.3.1 Construction of Test Pavement
 3.8.3.2 Procedures of Accelerated Trafficking Test
 3.8.3.3 Rut Depth and Permanent Deformation Measurement
 3.8.3.4 Using Photogrammetry Technique to Measure Deformation

3.9 Numerical Model
4 RESULTS AND DISCUSSION 178

4.1 Introduction 178

4.2 Material Properties 180

4.2.1 Chemical and Mineralogical Investigations 183

4.2.2 Supplementary Tests 185

4.2.2.1 Compaction Test Results 185

4.2.2.2 Undrained Compression Strength (UCS) Test Results 192

4.2.2.3 The Effect of California Bearing Ratio (CBR) Test in Stabilized Soil 195

4.2.2.4 The Effect of Permeability in Untreated and Treated Laterite Soil 201

4.2.2.5 The Triaxial Test Results 203

4.3 HALI Results 205

4.3.1 The Density, Permeability and Moisture Content Material Control 205

4.3.2 The Effect of Additive Materials on the Settlement under Cyclic Loading 208

4.3.3 The Effect of the Cycling Loading on the Settlement Based on the Various Additive Materials 221

4.3.4 Cross Sectional (Transverse) Deformations Of The HALI Material Under Cyclic Loading Based on the Various Additive Materials 223

4.3.5 Cross Sectional Deformations of the Unpaved Road Under Cyclic Loading Based on the Various Cyclic Loading 233
4.3.6 Longitude Sectional Deformations of The Unpaved Road Under Cyclic Loading Based on the Various Additive Materials 237

4.3.7 Longitude Sectional Deformations of the Unpaved Road Under Cyclic Loading Based on the Various Cyclic Loading 241

4.3.8 Two-Dimensional and Three-Dimensional View of Deformed Simulated Full Scale Unpaved Road 242

4.4 Comparison Between Photogrammetry Technique and LVDT’s Equipment Results 248

4.5 Numerical Modelling 250

4.5.1 Compression Between Experimental and Finite Element Settlement Rut Results For Various Cyclic Loading 255

4.5.2 Comparison Between the Measured and Predicted Settlements 257

4.5.3 Treated Soil Settlement Improvement (%) After Various Cycles Loading 260

4.5.4 Validation of Numerical Models 262

4.6 Summery 262

5 CONCLUSIONS AND RECOMMENDATIONS 267

5.1 Introduction 267

5.1 Conclusions 267

5.2 Recommendations 270

REFERENCES 272

Appendices A-I 283-316
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The physical and chemical properties of the natural laterite clay (Eisazadeh, 2010)</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Amount of major elements (%) of some residual soils in Malaysia</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical composition of the eastern nigerian laterite soils (Nnadi, 1988)</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Physical properties of residual soils from various places in Malaysia</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Percentages of soil components based on particle size in some area of Malaysia</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Physical properties of laterite soils in Eastern Nigeria (Nnadi, 1988)</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Engineering properties of some granite residual soils in the Peninsular of Malaysia</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>In-situ and compacted permeability of some tropical laterite soils (Nnadi, 1988)</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Values of physical indices of granitic residual soils from various places in the peninsular of Malaysia</td>
<td>28</td>
</tr>
<tr>
<td>2.10</td>
<td>Shear strength parameters of compacted laterite soils (Ogunsanwo, 1989)</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>Representative values of technical properties of tire shreds (Edeskär, 2004)</td>
<td>64</td>
</tr>
<tr>
<td>2.12</td>
<td>Values of permeability of tire shreds (Edeskär, 2004)</td>
<td>65</td>
</tr>
<tr>
<td>2.13</td>
<td>Result from triaxial testing of five different tire products without protruding steel cord (Edeskär, 2004)</td>
<td>66</td>
</tr>
<tr>
<td>2.14</td>
<td>Shear strength of different size tire shreds (Reddy & Marella, 2001)</td>
<td>68</td>
</tr>
</tbody>
</table>
2.15a
Association matrix of test procedures for preparing and curing test specimen using cement, lime and polymer stabilizers (Geiman, 2005). Part 1

2.15b
Association matrix of test procedures for preparing and curing test specimen using cement, lime and polymer stabilizers (Geiman, 2005). Part 2

2.16
Typical maximum single axle loads (Shackel, 1994)

2.17
Standard axle loads (Shackel, 1994)

2.18
Summary of finite element analysis

3.1
The number of tests performed according to test types

3.2
The mix design of research activities

3.3
Elemental composition of soil samples using XRF

3.4
The geotechnical properties of the natural residual soil samples

3.5
Chemicals values content and pH of Skudai granite residual soil

3.6
Amount of major elements (%) in Skudai residual soil

3.7
The physical and chemical composition of the hydrated lime

3.8
The physical, mechanical and chemical properties of cement

3.9
Chemical components of shredded and crumbs scrap tire

3.10
Correlation chart for estimating soil properties (modified from Koerner, 1994)

3.11
The categories of permeability values

3.12
Typical permeability coefficients for different soils

3.13
HALI samples characterisations

3.14
The varied of Cu and E of empirical formulations in weak subgrade soil

3.15
Correlation equations to calculate the compression Index, Cc (Widodo and Ibrahim, 2012)

4.1
Values of physical indices of granitic residual soils from various places in the Peninsular of Malaysia

4.2
Percentages of soil components based on particle size
<p>| 4.3 | Engineering properties of some granite residual soils in the Peninsular of Malaysia | 182 |
| 4.4 | Values of chloride, sulphate, carbonate, organic contents and pH of some granite residual soils in the Peninsular of Malaysia | 182 |
| 4.5 | Amount of major elements (%) in some granitic residual soils | 183 |
| 4.6 | The result of soil solution pH tests in addition of lime and cement | 184 |
| 4.7 | Compositions of sample mixtures by percentage of sample dry weight | 198 |
| 4.8 | The CBR test result of unsoaked and soaked sample with curing age | 199 |
| 4.9 | The consolidated undrained triaxial results (CU) at 14 curing days | 203 |
| 4.10 | Density and moisture content of treated and untreated soil for HALI and standard laboratory compaction test | 207 |
| 4.11 | Permeability of treated and untreated soil for HALI and laboratory compaction test | 208 |
| 4.12 | The ratio of settlement deferential to number of loading cycles deferential | 239 |
| 4.13 | Material engineering and geotechnical properties | 253 |</p>
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Typical weathering profiles of residual soils (Rahardjo et al., 2004)</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Influence of water content on shear strength at constant density (Nnadi, 1988)</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>Effects of water contents on soaked samples at constant density (Nnadi, 1988)</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Influence of microstructure on shear strength and volume change characteristics (Nnadi, 1988)</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic sheet arrangements of aluminium octahedral, silica tetrahedral and synthesis pattern of clay minerals (Mitchell and Soga, 2005)</td>
<td>36</td>
</tr>
<tr>
<td>2.6</td>
<td>Structure and morphology of kaolinite (McBride, 1994)</td>
<td>38</td>
</tr>
<tr>
<td>2.7</td>
<td>Structure and morphology of montmorilinite (McBride, 1994)</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Structure and morphology of illite (McBride, 1994)</td>
<td>41</td>
</tr>
<tr>
<td>2.9</td>
<td>Some possible mechanisms of water adsorption by clay surfaces: (a) hydrogen bonding, (b) ion hydration, (c) attraction by osmosis, and (d) dipole attraction (Mitchell and Soga, 2005)</td>
<td>43</td>
</tr>
<tr>
<td>2.10</td>
<td>Distribution of ions adjacent to a clay surface according to the concept of the diffuse double layer (Mitchell and Soga, 2005)</td>
<td>44</td>
</tr>
<tr>
<td>2.11</td>
<td>Textural modifications due to the changes in the thickness of diffuse double layer (Little, 1995)</td>
<td>44</td>
</tr>
<tr>
<td>2.12</td>
<td>Texas department of transportation selection of optimum lime content (Chou, 1987)</td>
<td>53</td>
</tr>
<tr>
<td>2.13</td>
<td>Effect of modification on grain size distribution content immediately after laterite mixing (Osula, 1996)</td>
<td>57</td>
</tr>
<tr>
<td>2.14</td>
<td>Variation of OMC and MDD with lime and cement content immediately after laterite mixing (Osula, 1996)</td>
<td>57</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.15</td>
<td>Variation of LL, PL and PI with modifier content immediately after mixing (Osula, 1996)</td>
<td>58</td>
</tr>
<tr>
<td>2.16</td>
<td>Variation of MDD with elapsed time after mixing (Osula, 1996)</td>
<td>59</td>
</tr>
<tr>
<td>2.17</td>
<td>Variation of OMC with elapsed time after mixing (Osula, 1996)</td>
<td>59</td>
</tr>
<tr>
<td>2.18</td>
<td>The plate load test setup (Panda and Ghosh, 2002)</td>
<td>75</td>
</tr>
<tr>
<td>2.19</td>
<td>Layout of CPB units in test panels (Emery and Lazar, 2003)</td>
<td>76</td>
</tr>
<tr>
<td>2.20</td>
<td>Schematic diagram of compression test rig (Emery and Lazar, 2003)</td>
<td>77</td>
</tr>
<tr>
<td>2.21</td>
<td>The typical distributions of truck axle loads (CMAA, 1997b)</td>
<td>80</td>
</tr>
<tr>
<td>2.22</td>
<td>The rutting profile (VdM Steyn et al., 2012)</td>
<td>82</td>
</tr>
<tr>
<td>2.23</td>
<td>The average deflections on LTPP section</td>
<td>83</td>
</tr>
<tr>
<td>2.24</td>
<td>The Stiffness trends at different depths (VdM Steyn et al., 2012)</td>
<td>84</td>
</tr>
<tr>
<td>2.25</td>
<td>The rut correlation example (VdM Steyn et al., 2012)</td>
<td>84</td>
</tr>
<tr>
<td>2.26</td>
<td>Laboratory setup showing the testing apparatus and the CPB laid in the herringbone pattern (Vanderlaan, 1994)</td>
<td>86</td>
</tr>
<tr>
<td>2.27</td>
<td>Schematic of the RUB-StraP (Koch, 1999)</td>
<td>87</td>
</tr>
<tr>
<td>2.28</td>
<td>Full scales drawing of test bed with designation of point of origin and dimensions (Koch, 1999)</td>
<td>87</td>
</tr>
<tr>
<td>2.29</td>
<td>Some possible mechanisms of water adsorption by clay The accelerated pavement test facility (Ryntathiang et al., 2005)</td>
<td>90</td>
</tr>
<tr>
<td>2.30</td>
<td>The Accelerated pavements testing of unpaved road model (Yang et al., 2012)</td>
<td>93</td>
</tr>
<tr>
<td>2.31</td>
<td>The accelerated pavement test of unpaved road design (Yang et al., 2012) (Nnadi, 1988)</td>
<td>93</td>
</tr>
<tr>
<td>2.32</td>
<td>The highway accelerated loading instruments</td>
<td>94</td>
</tr>
<tr>
<td>2.33</td>
<td>Measurement of pavement model deformation using the dial gauges (Chai, 2008)</td>
<td>96</td>
</tr>
<tr>
<td>2.34</td>
<td>The 3-D model of concrete block pavement on the HALI full scale prototype (Saleh, 2011)</td>
<td>97</td>
</tr>
<tr>
<td>2.35</td>
<td>The comparison of concrete block pavement using different percent of cement on the HALI full scale prototype (Saleh, 2011)</td>
<td>97</td>
</tr>
</tbody>
</table>
2.36 The deformation of concrete block pavement by using 6% cement on the HALI full scale prototype (Saleh, 2011) 98
2.37 The HALI machine scheme with different grade of slope (Saleh, 2011) 98
2.38 The spraying scheme for pavement (Saleh, 2011) 99
2.39 Schematic diagram the experimental and photogrammetric set-up (Heng et al., 2010) 100
2.40 Foundation under loadings and the profile for the displacement under stress (Vesic, 1973) 101
2.41 The photogrammetry targets in the pavement surface on the HALI test (Saleh, 2011) 102
2.42 Fixing the cameras on HALI (Saleh, 2011) 102
2.43 The Positioning of cameras and taking the photographs from both sides of each part of sample (Saleh, 2011) 103
2.44 The 3-D Model of the pavement deformation from surfer 8 software (Saleh, 2011) 103
3.1 The research flow chart 110
3.2 The soil sample and its location in Malaysia 116
3.3 Micrographss showing kaolinitic and halloysitic flakes using FESEM 117
3.4 The scrap tire crumbs 123
3.5 The shredded waste tire 124
3.6 The compaction analysis equipment 126
3.7 Prepared samples for various laboratory testing 128
3.8 Diffraction from crystal planes according to Bragg’s Law (Mitchelland Soga, 2005) 130
3.9 X-ray Diffractometer 131
3.10 Field emission scanning electron microscope 133
3.11 The pH measurement equipment 135
3.12 (a) Cylinder mold stand and special hammer dimensions for compaction, (b) cylinder mold stand (left) and special hammer (right) 137
3.13 The triaxial loading frame, ADU, and the processing unit 138
3.14 The Universiti Teknologi Malaysia CBR equipment 142
3.15 The highway accelerated loading instrument (HALI) 149
3.16 The unpaved road designed by HALI instrument 151
3.17 Load cell and data logger 152
3.18 The general layout of axisymmetric subgrade model
3.19 Relationship between contact pressure and tire pressure
3.20 Dimension of tire contact area
3.21 The performance neoprene cover by plastic sheet on HALI test bed
3.22 The equipment to mixing, compact samples and to measure deformation
3.23 The specimens’ placement in the HALI box
3.24 The preparation the first samples layer
3.25 The preparation the second sample layer
3.26 The samples compaction process
3.27 Five soil stabilization samples with different composition of lime, cement and waste tire crumbs as stabilizers
3.28 Six soil stabilization samples with different composition
3.29 Marking the samples after compacted and cured
3.30 The schematics of acquisition equipment on highway accelerated loading machine
3.31 The HALI sample preparation and grid marking
3.32 The performance close range photogrammetry after HALI test
3.33 Fixing the cameras
3.34 Positioning of cameras
3.35 Taking the photographs from one side
3.36 Taking the photographs from both sides of each part of sample in HALI
3.37 The photogrammetry data collection process and data analysis
3.38 The general layout of axisymmetric subgrade model
3.39 Drucker-Prager elasto-plastic relationship and the direction of plastic strains
3.40 Possible reinforcement functions unpaved road: (a) lateral restraint, (b) bearing capacity increase, and (c) wheel path rut
4.1 The XRD of untreated and treated soil samples
4.2 The effect of compaction on unsterilized soil and stabilized with lime
4.3 The effect of compaction on unsterilized soil and stabilized with cement
4.4 The effect of compaction on unsterilized soil and stabilized with shredded and crumbs scrap tires
4.5 The UTM unconfined compression strength (UCS) test instrument
4.6 The effect of UCS test on natural laterite soil
4.7 The unconfined compression strength (UCS) failure values of unsoaked lime stabilized natural soil
4.8 The unconfined compression strength (UCS) failure values of unsoaked cement stabilized soil
4.9 The effect of UCS on unsoaked lime stabilized laterite soil
4.10 Field emission scanning electron microscope
4.11 The california bearing ratio (CBR) test
4.12 The CBR test result of unsoaked and soaked sample with curing age, (a) 14 days, (b) 7 days, (c) swell
4.13 The falling head permeability test
4.14 The falling head permeability test result of samples at different curing periods
4.15 The falling head permeability test result of samples at different curing periods
4.16 The consolidated undrained triaxial results (CU) at 14 curing days (a) cohesion, (b) internal friction angle
4.17 Sand cone and permeability tests sampling
4.18 Comparison of cyclic loading- settlement curves between untreated and treated soil by tire crumbs
4.19 Cyclic load-settlement curve for untreated soil
4.20 Comparison of cyclic loading- settlement curves between untreated and treated soil by tire crumbs
4.21 Comparison of cyclic loading- settlement curves between untreated and treated soil by tire crumbs
4.22 Comparison of cyclic loading- Settlement curves between untreated and treated soil by cement
4.23 Comparison of cyclic loading- settlement curves between untreated and treated soil by cement and tire crumbs
4.24 Comparison of cyclic loading- settlement curves between untreated and treated soil by cement and shredded tire
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.25</td>
<td>Comparison of cyclic loading-settlement curves between untreated and treated soil by lime</td>
<td>217</td>
</tr>
<tr>
<td>4.26</td>
<td>Comparison of cyclic loading-settlement curves between untreated soil and treated soil with lime and tire crumbs</td>
<td>218</td>
</tr>
<tr>
<td>4.27</td>
<td>Comparison of cyclic loading-settlement curves between untreated and treated soil by lime and shredded tire</td>
<td>219</td>
</tr>
<tr>
<td>4.28</td>
<td>Comparison of cyclic loading-settlement curves between untreated and treated soil</td>
<td>220</td>
</tr>
<tr>
<td>4.29</td>
<td>The compression of settlement improvement (%) in treated soil by various additives</td>
<td>221</td>
</tr>
<tr>
<td>4.30</td>
<td>Accumulated average settlement depth of untreated and treated HALI material up to 400 load repetitions</td>
<td>222</td>
</tr>
<tr>
<td>4.31</td>
<td>Accumulated average settlement rut depth of S up to 400 load repetitions</td>
<td>224</td>
</tr>
<tr>
<td>4.32</td>
<td>Accumulated average settlement rut depth of STc up to 400 load repetitions</td>
<td>225</td>
</tr>
<tr>
<td>4.33</td>
<td>Accumulated average settlement rut depth of STm up to 400 load repetitions</td>
<td>226</td>
</tr>
<tr>
<td>4.34</td>
<td>Accumulated average settlement rut depth SC up to 400 load repetitions</td>
<td>227</td>
</tr>
<tr>
<td>4.35</td>
<td>Accumulated average settlement rut depth of SCTc up to 400 load repetitions</td>
<td>228</td>
</tr>
<tr>
<td>4.36</td>
<td>Accumulated average settlement rut depth of SCTm up to 400 load repetitions</td>
<td>229</td>
</tr>
<tr>
<td>4.37</td>
<td>Accumulated average settlement rut depth SL up to 400 load repetitions</td>
<td>230</td>
</tr>
<tr>
<td>4.38</td>
<td>Accumulated average settlement rut depth SLTc up to 400 load repetitions</td>
<td>231</td>
</tr>
<tr>
<td>4.39</td>
<td>Accumulated average settlement rut depth SLTm up to 400 load repetitions</td>
<td>232</td>
</tr>
<tr>
<td>4.40</td>
<td>Transvers sections for various HALI material settlement after 10 cyclic load</td>
<td>234</td>
</tr>
<tr>
<td>4.41</td>
<td>Transvers sections for various HALI material settlement after 100 cyclic load</td>
<td>235</td>
</tr>
<tr>
<td>4.42</td>
<td>Transvers sections for various HALI material settlement after 200 cyclic load</td>
<td>236</td>
</tr>
<tr>
<td>4.43</td>
<td>Transvers sections for various HALI material settlement after 400 cyclic load</td>
<td>237</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.44</td>
<td>Average of accumulate Longitude sectional deformations of the unpaved road under cyclic loading based on the various cyclic loading</td>
<td></td>
</tr>
<tr>
<td>4.45</td>
<td>The ratio trend of settlement deferential to numbers of loading cycles deferential</td>
<td></td>
</tr>
<tr>
<td>4.46</td>
<td>Average of accumulate longitude sectional deformations of the unpaved road under cyclic loading based on the various cyclic loading</td>
<td></td>
</tr>
<tr>
<td>4.47</td>
<td>Comparison of cyclic loading-settlement curves between untreated and treated soil</td>
<td></td>
</tr>
<tr>
<td>4.48</td>
<td>3D view of settlement rut path after various load repetitions for model 1</td>
<td></td>
</tr>
<tr>
<td>4.49</td>
<td>2D view of settlement rut path after various load repetitions for full-scale model1</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>3D view of settlement rut path after various load repetitions for model 2</td>
<td></td>
</tr>
<tr>
<td>4.51</td>
<td>2D view of settlement rut path after various load repetitions for full-scale model 2</td>
<td></td>
</tr>
<tr>
<td>4.52</td>
<td>Comparison of settlement measured by LVDT's equipment and photogrammetry technique under 100 load cycles</td>
<td></td>
</tr>
<tr>
<td>4.53</td>
<td>Percentage of settlement differences measured by LVDT's equipment and photogrammetry technique under 100 load cycles</td>
<td></td>
</tr>
<tr>
<td>4.54</td>
<td>3D view of model1 parts in finite element modelling</td>
<td></td>
</tr>
<tr>
<td>4.55</td>
<td>3D view of boundary condition of model1 in finite element modelling</td>
<td></td>
</tr>
<tr>
<td>4.56</td>
<td>3D view of model1 meshing in finite element modelling</td>
<td></td>
</tr>
<tr>
<td>4.57</td>
<td>3D view of model1 in finite element modelling</td>
<td></td>
</tr>
<tr>
<td>4.58</td>
<td>3D view of finite element result contours for model1 (a) settlement (b) stress (c)</td>
<td></td>
</tr>
<tr>
<td>4.59</td>
<td>The comparison between variation of experimental and finite element settlements results under 10, 100, 200 and 400 cyclic loading repetition</td>
<td></td>
</tr>
<tr>
<td>4.60a</td>
<td>Prediction of SC settlement using FE analysis for different cycles</td>
<td></td>
</tr>
<tr>
<td>4.60b</td>
<td>Prediction of SC settlement using FE analysis for different cycles</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic absorption spectrophotometer</td>
</tr>
<tr>
<td>ADU</td>
<td>Data acquisition unit</td>
</tr>
<tr>
<td>AEC</td>
<td>Anion exchange capacity</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>Aluminum cation</td>
</tr>
<tr>
<td>Al(OH)$_3$</td>
<td>Aluminum hydroxide</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>Aluminium Oxide</td>
</tr>
<tr>
<td>APH</td>
<td>Aluminate phosphate hydrate</td>
</tr>
<tr>
<td>AlPO$_4$</td>
<td>Aluminum phosphate</td>
</tr>
<tr>
<td>ASTM</td>
<td>American society of testing material</td>
</tr>
<tr>
<td>AT</td>
<td>Acid treated</td>
</tr>
<tr>
<td>Ba</td>
<td>Barium</td>
</tr>
<tr>
<td>Ba$^{2+}$</td>
<td>Barium cation</td>
</tr>
<tr>
<td>BaCl$_2$</td>
<td>Barium Chloride</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer emmett and teller</td>
</tr>
<tr>
<td>BS</td>
<td>British standard</td>
</tr>
<tr>
<td>c</td>
<td>Constant</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>Calcium cation</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>CAH</td>
<td>Calcium aluminate hydrate</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium oxide</td>
</tr>
<tr>
<td>Ca(OH)$_2$</td>
<td>Calcium hydroxide</td>
</tr>
<tr>
<td>CASH</td>
<td>Calcium aluminate silicate hydrate</td>
</tr>
<tr>
<td>CaSO$_4$</td>
<td>Calcium sulphate</td>
</tr>
</tbody>
</table>
CEC - Cation exchange capacity
Cl - Chloride
CSH - Calcium silicate hydrate
Cs - Concentration adsorbed on soil surfaces
Ce - Concentration in water
CO₂ - Carbon dioxide
cps - Counts per second
Cu - Copper
d - Distance of interplanar spacing as function of θ
D - Dielectric constant of medium
DTA - Differential thermal analysis
DTG - Derivative thermal gravimetric
e - Electronic charge
EDAX - Energy dispersive x-ray analysis
EE - Equilibrium extraction
F - Fluoride
Fe - Iron
Fe²⁺ - Iron (II) cation
Fe³⁺ - Iron (III) cation
Fe₂O₃ - Ferric Oxide
FESEM - Field emission scanning electron microscopy
FTIR - Fourier transform infrared
GB - Green Bentonite
H - Hydrogen
H⁺ - Hydrogen cation
HCL - Hydrochoric acid
H₂O - Water
H₃PO₄ - Phosphoric acid
H₃PO₃ - Phosphorous acid
HPO₃²⁻ - Phosphonate ion
ICL - Initial consumption of lime
ICP - Inductively coupled plasma
K - Potassium
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁺</td>
<td>Potassium cation</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium bromide</td>
</tr>
<tr>
<td>k<sub>des</sub></td>
<td>Desorption rate</td>
</tr>
<tr>
<td>k<sub>ads</sub></td>
<td>Adsorption rate</td>
</tr>
<tr>
<td>LC</td>
<td>Laterite Clay</td>
</tr>
<tr>
<td>LL</td>
<td>Liquid limit</td>
</tr>
<tr>
<td>LOI</td>
<td>Loss on ignition</td>
</tr>
<tr>
<td>LT</td>
<td>Lime treated</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear variable displacement transducer</td>
</tr>
<tr>
<td>MAS</td>
<td>Magic angle spinning</td>
</tr>
<tr>
<td>MDD</td>
<td>Maximum dry density</td>
</tr>
<tr>
<td>mEq</td>
<td>milliequivalents</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium oxide</td>
</tr>
<tr>
<td>MM</td>
<td>Mercury microporosimetry</td>
</tr>
<tr>
<td>M</td>
<td>Months</td>
</tr>
<tr>
<td>n</td>
<td>Order of diffraction</td>
</tr>
<tr>
<td>n₀</td>
<td>Electrolyte concentration</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Sodium cation</td>
</tr>
<tr>
<td>Na₂O</td>
<td>Sodium oxide</td>
</tr>
<tr>
<td>NH₄</td>
<td>Ammonium ion</td>
</tr>
<tr>
<td>Nm</td>
<td>Number of molecules</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NO₃</td>
<td>Nitrate</td>
</tr>
<tr>
<td>O</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OC</td>
<td>Organic content</td>
</tr>
<tr>
<td>(OH)</td>
<td>Hydroxide ion</td>
</tr>
<tr>
<td>OMC</td>
<td>Optimum moisture content</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorous</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>PI</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PL</td>
<td>Plastic limit</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>Phosphorus oxide</td>
</tr>
<tr>
<td>PO$_4^{3-}$</td>
<td>Phosphate ion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PS</td>
<td>Pink Soil</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>S</td>
<td>Soil</td>
</tr>
<tr>
<td>SC</td>
<td>Treated soil with cement</td>
</tr>
<tr>
<td>SCTc</td>
<td>Treated soil with cement and tire crumbs</td>
</tr>
<tr>
<td>SCTm</td>
<td>Treated soil with cement and shredded tire</td>
</tr>
<tr>
<td>sec</td>
<td>Seconds</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Silica</td>
</tr>
<tr>
<td>SL</td>
<td>Treated soil with lime</td>
</tr>
<tr>
<td>SLTc</td>
<td>Treated soil with lime and tire crumbs</td>
</tr>
<tr>
<td>SLTm</td>
<td>Treated soil with lime and shredded tire</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>Sulfate</td>
</tr>
<tr>
<td>SSA</td>
<td>Specific surface area</td>
</tr>
<tr>
<td>Su</td>
<td>Sulfur</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>STc</td>
<td>Treated soil with tire crumbs</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TG</td>
<td>Thermal gravimetric</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal gravimetric analysis</td>
</tr>
<tr>
<td>STm</td>
<td>Treated soil with shredded tire</td>
</tr>
<tr>
<td>UCS</td>
<td>Unconfined compressive strength</td>
</tr>
<tr>
<td>UT</td>
<td>Untreated</td>
</tr>
<tr>
<td>ν</td>
<td>Volume of gas adsorbed per unit weight of clay at a pressure</td>
</tr>
<tr>
<td>νm</td>
<td>Volume of gas adsorbed for monolayer coverage</td>
</tr>
<tr>
<td>WK</td>
<td>White Kaolin</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
<tr>
<td>1/k</td>
<td>The effective thickness of the diffuse layer</td>
</tr>
<tr>
<td>ν</td>
<td>Cation valence</td>
</tr>
<tr>
<td>ε₀</td>
<td>Permittivity of vacuum</td>
</tr>
<tr>
<td>ε</td>
<td>Strain</td>
</tr>
<tr>
<td>μ</td>
<td>Micro</td>
</tr>
<tr>
<td>λ</td>
<td>Wave-length</td>
</tr>
<tr>
<td>θ</td>
<td>Critical angle of incidence of the x-ray beam on the crystal plane</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BSCS sub-group classification of soils on the basis of grading and plasticity chart (BS 5930:1999)</td>
<td>283</td>
</tr>
<tr>
<td>B</td>
<td>The typical of XRD test results</td>
<td>284</td>
</tr>
<tr>
<td>C</td>
<td>The typical micrographs showing kaolinitic and halloysitic flakes for untreated residual laterite soil using FESEM.</td>
<td>285</td>
</tr>
<tr>
<td>D</td>
<td>The triaxial test analysis results of samples</td>
<td>286</td>
</tr>
<tr>
<td>E</td>
<td>The EDAX analysis of residual laterite soil</td>
<td>291</td>
</tr>
<tr>
<td>F</td>
<td>The calibration of PH meter</td>
<td>298</td>
</tr>
<tr>
<td>G</td>
<td>Deformation of simulated full scale treated and untreated unpaved road under HALI model 1</td>
<td>299</td>
</tr>
<tr>
<td>H</td>
<td>Deformation of simulated full scale treated and untreated unpaved road under HALI model 2</td>
<td>307</td>
</tr>
<tr>
<td>I</td>
<td>Deformation results of simulated full scale treated and untreated unpaved road under HALI model measured by photogrammetry technique</td>
<td>315</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Roads have a very important role in the progress and promotion of a country. Transportation and public services can be done based on the availability and performance of the roads. Therefore, maintenance and quality of them is a key for every country. The roads are classified to be paved and unpaved based on their pavement characteristics. Unpaved roads and low-type paved roads are usually used for the low volume traffic. They serve as access roads and play a very important role in the rural economy, resource industries (forest, mining, and energy), and the transportation for military purposes. Furthermore, the rural and forest roads are basic elements in the economic progress and also for the social promote procedures of health, income, facilitate future development, technology transfer, and education potential of the communities of remote areas. Based on the fast growing development of Malaysia, it is essential to establish low cost remote access roads to gain the natural or less populated areas. These roads are built to provide faster and better access to local villages or uninhabited areas from main roads or major cities. In most cases the unpaved roads have to be constructed on a soft foundation soils where large deformations can occur this increases the maintenance cost and lead to interruption of traffic service.

In Malaysia, a large amount of the residential tropical unpaved roads are built on the lateritic soil (Newill and Dowling, 1969). Eisazadeh et al. (2010) reported that the
tropical lateratic soils with high moisture contents are one of the most available soils in Malaysia. A number of difficulties has always limited the use of lateritic soil as a good subgrade during the construction such as their workability, field compaction, and strength.

The wheel tires are composed of rubber and synthetic polymer materials. They have low unit weight, and other unique properties such as high permeability, insulating, tensile strength, flexibility, and high friction resistance. The mechanical properties of whole tires remain even after its ordinary life as a car wheel element has expired. Reusing the waste whole tire is known as a good solution for saving the environment by preventing burning and stockpiling of old tires. The use of waste tire crumbs stabilizer material reduces the sand mining which helps to achieve a more sustainable construction. In most countries including Malaysia, scrap tires are used for various purposes such as facing elements of backfills and retaining walls. Huat et al. (2008) stated that the application of waste tires crumbs for reinforcement requires a good understanding of both the physical and mechanical strength properties. In addition, the durability of the tires is a key issue. Currently, there is little information and not even suitable testing standard or guideline to test the tensile strength of scrap tire for such applications.

Ingles and Metcalf (1972) stated that the soil stabilization is a chemical, thermal, and mechanical process in which some of undesirable properties of soil can be overcome. In real engineering practice, the main properties of soils that may require improvement are strength, permeability, and durability. One of the most widely recognized form of stabilization methods is the compaction technique, which can improve the mechanical stability of soil. However, the compaction method alone is often insufficient to improve the behaviour of fine-grained soils.

The stabilization of clayey soils by incorporation of calcium based stabilizers such as lime is widely used throughout the world. In this method, the combination of high pH grouts will provide natural pozzolans in order to have sufficient pozzolanic reactions. However, in some cases involving soils with high sulfate contents, treatment with conventional calcium-rich additives has led to excessive swelling and heaving
In addition, the improper use of chemical stabilizers may led to loss of millions of dollars (Wiggins et al., 1978).

Huat et al. (2008) studied on the required additive types and quantities, the magnitude of strength improvement and the relative strength improvement by unconfined compressive strength (UCS). Gow et al. (1961) performed California Bearing Ratio (CBR) tests to compact the treated soil sample in both soaked and unsoaked conditions in order to demonstrate the effectiveness of stabilizer. The highway accelerated loading instrument (HALI) was recently developed for the assessment of concrete block and asphalt pavement deformed during their lifetime in Technology University of Malaysia (UTM). It was designed to ensure that a full-scale life cycle assessment of the paving materials could be achieved. The examination of a pavement’s durability is permitted since the design guidelines allow the evaluation of different base and surface materials.

Hence, there is a need to initiate a study to improve knowledge on stabilization techniques. An available solution for the stated problems is to improve the construction materials such as using active additives and/or waste polymer as the natural soil stabilizer for unpaved roads. The main aim of this study is to perform and improve the geotechnical and serviceability condition of unpaved roads by treated with proper mixtures of cement, lime, and waste tire crumbs. This experimental research was evaluated the durability and geotechnical strength properties of tropical laterite soils. The behaviour of treated laterite specimens were assessed to determine their impact on the improvement of unpaved roads constructed on the tropical climate. The study also focused on determination of soil rate durability, strength achievement, protection against weather conditions, and also providing long term sustainability.
1.2 Statement of the Problems

The response of geotechnical engineers to the growth in developmental projects, the difficulty in understanding soil conditions and the failures associated with tropical soils, and the need to address these failures and the related problems in the tropics, has led to the apparent increase in research on the tropical soil types and their engineering properties. The importance of laterite tropical soils cannot be more emphasized as they are being used as construction and engineering material for roads and airfield sub-bases and sub-grades in the tropics. In many regions, it is the dominant soil type. The research on the laterite soil significantly increased (Gogo-Abite, 2005). There is a strong intention for geotechnical engineers to adopt soil classification, testing methods, and preparing recommendations for temperate regions in order to classify the laterite soils in the tropical conditions. The reported testing methods presented for the temperate region soil classification often failed to predict the field performance of lateritic soils accurately. This is because the index tests are not usually reproducible for the lateritic soils (Tuncer and Lohnes, 1977). In addition, the environment in which the soil is located influences largely the development of soil texture, structure, and mineralogy (Gidigasu and Kuma, 1987; Nnadi, 1987; Skempton, 1953).

Tropical lateritic clays with high moisture contents is one of the most common soils in Malaysia particularly in Malaysian peninsular along the west coast at Johor and Malacca. The laterite deposits are formed under the tropical weathering conditions where precipitation is relatively high, and there is a good drainage to ensure leaching of cations and iron from acidic granitic rocks. The use of laterite soil, however, as subgrade are limited by a number of difficulties in construction such as their workability, field compaction, and insufficient strength.

During the past few decades, due to the fast growing economy, there has been an increasing demand in road transportations. This has forced governments to build more roads and interstate highways. On the other hand, the presence of weak clay deposits at various sites and the need for their replacement with a superior material has imposed great costs on the construction projects. In such problematic soils, chemical stabilization techniques have proven to be very effective (Eisazadeh et al., 2010). Van
Herreweghe et al. (2002) reported that laterites are defined broadly as a group of soils that have undergone advanced weathering, with the leaching out of silica and a resultant increase in iron and alumina content. Most of the laterites, when plotted on the Casagrande plasticity chart, are close to the A-Line. Also, they tend to have high maximum dry density and low optimum moisture content. The engineering properties of laterites such as liquid limit and shear strength vary with depth (Van Herreweghe et al., 2002).

The rural and/or forest roads are important elements in the economic progress of every country. It will help to promote procedures for health, income, facilitate future development, technology transfer, and education potential of the communities. Based on the fast growing development of Malaysia, it is essential to establish remote access roads on the natural or less populated areas. Almost all of the remote access roads are built to provide faster and better access to local villages or uninhabited areas from main roads or major cities. However, problems may arise during the construction of unpaved roads. Some of the major weakness of unpaved road are deterioration of the road surface, diffusion of dust on the road, and serviceability problems of these roads during the wet and dry seasons. The mentioned weakness become a source of problem even for a low traffic flow road and their maintenances and repairs is very costly.

An available solution for the stated problems is to improve the construction materials. The used construction materials through the construction of the unpaved roads could be stabilized by using various stabilization techniques. The supplies of lime and polymer in the mix form of hydrated lime and different types of polymers are relatively high in Malaysia. These mix forms can make lime and some polymers economically viable option for the treatment of tropical soils. However, due to an extensive variability in the amount of impurities dictated by extreme weathering conditions, for instance the high amounts of iron and aluminium oxides present in the laterite clays, the success of lime treatment technique has been rather conflicting. Furthermore, the acidic nature of tropical soils has raised doubts about the efficiency of soil-lime reactions in a low pH environment and hence the long term improvement (Kassim and Chern, 2004).
The implementation of lime, cement, shredded tire and waste polymers crumb as a soil stabilizer in an actual field project requires standard laboratory test on untreated and treated samples. The mentioned laboratory tests should be prepared under controlled conditions where it can be used to predict its potential effectiveness in modifying the engineering properties of tropical soils. This research study is focused on the unpaved roads constructed on the laterites in Skudai, Johor, Malaysia. It is related to pavement performances including design, construction specifications, maintenance procedures, and pavement management techniques. These items were reviewed in an effort to identify causes for early pavement deterioration in order to hopefully reduce the further maintenance costs. Substantial geotechnical testing were also performed to correlate the observed paving distress to existing unpaved road conditions.

1.3 **Objectives of the Study**

The aim of this research is to performance of unpaved laterite roads treated with chemical additives and waste tyre to ensure that the long-term geotechnical properties of treated material are sufficient to provide the structural capacity required over their design life’s span particularly in Malaysia. The objectives of this research are:

1) To determine guideline for the basic geotechnical properties and physicochemical behaviour of stabilized lateritic soil with waste tire crumbs, lime and cement used in unpaved roads applications.

2) To estimate the optimum amount of stabilizer for the laterite soils to provide the necessary strength and geotechnical properties when it is used for unpaved roads.

3) To evaluate the structural performance and physicochemical behaviours of the treated laterite soils subjected to full-scale highway accelerated loading instruments (HALI) test at different loading cycles.
4) To carry out numerical simulations of the performance of the treated unpaved laterite road and compare with the results of laboratory tests using HALI.

5) To use close range photogrammetry technique as an easy and fast new method of surface measurement for unpaved roads.

1.4 Importance of Local Unpaved Roads

Unpaved roads are common in Malaysia across the rural and plantation areas. A familiar sight in rural communities, unpaved roads offers a sense of timelessness, helping residents connect with the days of cart paths and carriage roads. The unpaved roads often narrow and bordered by stone walls and mature shade trees. It is also often following an alignment parallel to streams and brooks. It will offer a scenic escape from the realities of concrete and pavement. The preservation of unpaved roads is important to the character of the landscape. Aside from their value as a scenic and often historic resource, unpaved roads have several advantage comparing to the paved roads such as; (i) lower construction costs, (ii) it requires less equipment and skilled operators, and (iii) it generate lower speeds than their paved counterparts. Yet, like paved roadways, dirt and gravel roads require regular maintenance to keep them passable and safe. Well-maintained dirt and gravel roads can serve traffic appropriately. Thereby, they are considered as a legitimate road surfacing option, not just something a community grudgingly maintains while it waits for paving.

1.5 Scope and limitation of the Study

The scopes of this research are:

- Tropical natural laterite soils collected from two different locations in Johor, Malaysia.
- The hydrated lime, cement, waste tire crumbs used as the stabilizers.
• Strength and geotechnical tests that they are performed with Unconfined Compression Strength (UCS), California Bearing Ratio (CBR) and HALI tests.
• The research also investigated the chemical and mineral composition of stabilized soils.
• Soils cured at 14 days under control room temperature of 27±2°C.
• Preliminary tests that carried out were: natural water content, particle size distribution, Atterberg limits, moisture-density relationship using standard Proctor effort, organic content, sulfate content, and mineralogy of the soil.
• The UTM geotechnics, highway, mechanic laboratories and Ibnu Sina institute were used further experimental investigation.

1.6 Significance of the Study

The unpaved roads constructed on the laterite soils are usually facing with many problems such as swelling, shrinkage, cracking, and may even be subject to waterlogged condition. Therefore, it is important to develop appropriate techniques to construct and/or repair old roads using chemical stabilizers. In this study, lime and cement were used as traditional stabilizer and the shredded and crumbs of scrap tire were introduced as a very low cost waste material that can be used to improve the strength and geotechnical properties of the laterite soils. Current study is also an effort to find the best active additive materials in order to reduce the construction cost of the new unpaved roads and their maintenances in the humid tropical climate. Comparison were finally made to find the most suitable combination of active additive and waste tire crumbs as stabilizer that could effectively improve the strength stabilized lateritic soil.

As stated earlier, the unpaved roads have the advantage of lower construction costs than paved roads, it require less equipment and skilled operators, and generate lower speeds than their paved counterparts. Yet, like paved roadways, dirt and gravel roads require regular maintenance to keep them passable and safe. Well-maintained dirt and gravel roads can serve traffic very satisfactorily, and should be considered as a
legitimate road surfacing option, not just something a community grudgingly maintains while it waits for paving.

1.7 Thesis Organization

This thesis aims to investigate the structural performance of stabilized unpaved road using chemical active additives mixed with mechanically scrap polymer materials. This is to ensure that the long-term durability of stabilized material is sufficient to provide the structural capacity required over the design life on different weather conditions encountered in Johor Malaysia.

In Chapter 1, a generally brief background on the role of physicochemical stabilization in soil improvement and the necessity to understand the mechanisms associated with this process is presented. The research philosophy divided into five main sections namely; ‘problem statement’, ‘objectives of study’, ‘scope of study’, ‘importance of local unpaved roads’, and ‘significance of the study’.

In Chapter 2, the fundamentals of laterite soil mineralogy are presented. This was essential as it helps to better understand and elucidate the sophisticated soil-physicochemical reactions. Different physicochemical stabilization techniques were reviewed, thereafter, followed by the hypothesized mechanisms suggested on the formation of reaction products. In addition, there is outline for the laboratory strength and geotechnical tests, full scale modelling techniques and methodologies employed in the previous studies. Finally, based on the current scientific knowledge on the soil stabilization a suitable research framework was obtained.

Chapter 3 provides a comprehensive description on the research methodology and laboratory experiments exercised for this research. It describes the physicochemical and geotechnical analysis, the basic data collection, and the conducted methods for this research. In addition, the microstructure analysis of untreated and treated soils are also explained in this chapter. The laboratory experiments that was performed to
determine the geotechnical and strength properties of the soil was according to the British Standard Institute. Furthermore, the characterization study of the stabilized soil using various spectroscopic and microscopic techniques were carried out based on the available standards and published papers. Moreover, it is stated that the numerical simulations were carried out based on the performance of the treated unpaved laterite road and compare with the results of laboratory tests using HALI and using close range photogrammetry technique as an easy and fast new method of surface measurement for unpaved roads.

Then, the obtained results from these tests are presented and discussed in detail in Chapter 4. Finally, Chapter 5 concludes the outcome of this study and highlights areas where further research can be carried out.
REFERENCES

Huang, W.-C. (2007). *Numerical modeling and probabilistic analysis of subgrade improvement using geosynthetic reinforcement.* Purdue University.

Transportation Research Record: Journal of the Transportation Research Board, 1757(1), 50-57.

GeoCongress 2006@ Geotechnical Engineering in the Information Technology Age, 1-6.

