GAS PHASE GLYCEROL DEHYDRATION TO ACROLEIN OVER SUPPORTED SILICOTUNGSTIC ACID CATALYST

AMIN TALEBIAN KIAKALAIEH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

OCTOBER 2015
TO MY BELOVED WIFE AND MOTHER
ACKNOWLEDGEMENT

First of all, I would like to thank Allah for giving me the strength, perseverance and intention to go through and complete my study.

I would like to express my sincere gratitude to my respected supervisor Prof. Dr. Nor Aishah Saidina Amin for her help, support, and guidance. I owe her a lot for what she taught me during these years. Without her valuable guidance this study could never have reached its completion.

Last but not least, I wish to express my deepest gratitude and love for my beloved family members especially my wife, mother, father and mother-in-law, and brother for their utmost support, patience and understanding throughout my PhD study.
ABSTRACT

Due to the various environmental concerns, a steep hike in fossil fuel price and an increasing demand of non-renewable fossil fuels consumption, the bio-based gas-phase dehydration of glycerol to acrolein has attracted much attention recently. Thus, the gas phase dehydration of glycerol to acrolein over two groups of supported silicotungstic acid on aluminum oxide (Al₂O₃) nanoparticle and zirconium dioxide catalyst is being investigated in this study. The catalysts were characterized by, X-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy and energy dispersive X-ray techniques, temperature programmed desorption, thermogravimetric analysis, and elemental analyzer. The characterization results revealed that Al₂O₃ nanoparticle loading increased thermal stability, pore diameter, and specific surface area of the synthesized catalysts. Optimization by response surface methodology revealed the highest acrolein selectivity of 88.5% at 97% glycerol conversion was obtained over 30HZ-20A catalyst with turnover frequency being 136 h⁻¹ in 3 h for glycerol feed concentration of 10.3 wt% and 0.5 g catalyst at 300 °C. Coke deposition has no significant effect on the catalyst activity due to the large catalyst pore diameter (> 27 nm). The prepared catalysts were highly active and selective for acrolein production even after 40 h without any needs for gas co-feeding or application of noble metals. In addition, the kinetic study results demonstrated that glycerol dehydration to acrolein followed first-order rate with the activation energy (Ea) of 27.5 kJ/mol and frequency factor (A) of 5.35×10⁵ s⁻¹. Finally, the theoretical and experimental approaches confirmed no internal mass transfer limitation in glycerol dehydration reaction with catalyst pellet sizes of dₚ= 2-4 and 5-7 µm due to effectiveness factor equal to 1 (η=1). Calculation of the overall effectiveness factor (Ω) also confirmed the absence of external diffusion in presence of catalysts with pellet size of dₚ< 7 µm.
ABSTRAK

Disebabkan oleh pelbagai kebimbangan terhadap alam sekitar, peningkatan mendadak harga bahan api fosil dan peningkatan permintaan penggunaan bahan api fosil tidak boleh diperbaharui, penyahhidratan fasa gas gliserol kepada akrolein berdasarkan bahan bio telah menarik perhatian ramai baru-baru ini. Oleh itu, penyahhidratan fasa gas gliserol kepada akrolein menggunakan dua kumpulan asid silikotungstik yang disokong oleh partikel nano aluminium oksida (Al₂O₃) dan pemangkin zirkonium dioksida telah dikaji dalam kajian ini. Pemangkin-pemangkin dicirikan dengan menggunakan teknik pembelauan sinar-X, spektroskopi inframerah transformasi Fourier, mikroskop elektron imbasan pemancaran medan dan sebaran tenaga sinar-X, penyaherapan suhu berprogram, analisis termogravimetrik, dan penganalisis unsur. Keputusan pencirian menunjukkan bahawa muatan partikel nano Al₂O₃ menunjukkan kestabilan terma, diameter liang, dan luas permukaan spesifik bagi pemangkin yang disintesis. Pengoptimuman oleh kaedah tindak balas permukaan menunjukkan kepilihan akrolein tertinggi iaitu 88.5% pada penukaran gliserol 97% telah diperoleh menggunakan pemangkin 30HZ-20A dengan frekuensi pusingan balik 136 h⁻¹ dalam tempoh 3 jam bagi kepekatan suapan gliserol 10.3 wt% dan pemangkin 0.5 g pada 300 °C. Pengenapan kok tidak mempunyai kesan signifikan terhadap aktiviti pemangkin disebabkan oleh diameter liang pemangkin yang besar (> 27 nm). Pemangkin yang disediakan adalah sangat aktif dan selektif bagi penghasilan akrolein walaupun setelah 40 jam tanpa sebarang keperluan untuk penyuapan bersama gas atau aplikasi logam adi. Di samping itu, keputusan kajian kinetik menunjukkan penyahhidratan gliserol kepada akrolein mengikut kadar tertib pertama dengan tenaga pengaktifan (Ea) 27.5 kJ/mol dan faktor kekerapan (A) 5.35×10⁵ s⁻¹. Akhir sekali, pendekatan teori dan eksperimen mengesahkan tiada pengehadan pemindahan jisim dalaman bagi tindak balas penyahhidratan gliserol dengan saiz pelet pemangkin dₚ= 2-4 dan 5-7 µm disebabkan oleh faktor keberkesanan adalah bersamaan dengan 1 (η=1). Pengiraan faktor keberkesanan keseluruhan () juga mengesahkan keterlambatan peresapan luaran dalam kehadiran pemangkin dengan saiz pelet dₚ< 7 µm.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>AKNOWLEDGMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of research
1.2 Problem statement
1.3 Research hypothesis
1.4 Research objectives
1.5 Research scopes

2 LITERATURE REVIEW

2.1 Value-added chemicals from glycerol
2.2 Acrolein synthesis methods
2.3 Petroleum-based acrolein production

2.3.1 Partial oxidation of propylene to acrolein

12
2.4 Bio-based acrolein production
 2.4.1 Gas phase dehydration of glycerol to acrolein
 2.4.1.1 Supported heteropoly acid catalysts
 2.4.1.2 Effect of acidity and pore structure on catalyst activity
 2.4.1.3 Supported zeolite catalysts
 2.4.1.4 Mixed metal oxides, phosphates, and pyrophosphates catalysts
 2.4.2 Liquid phase dehydration of glycerol to acrolein
 2.4.3 Catalyst deactivation and regeneration

2.5 Reaction mechanism

2.6 Kinetic parameters determination
 2.6.1 Theoretical background
 2.6.1.1 Reaction rate equation
 2.6.1.2 Expansion factor
 2.6.1.3 Molar ratio of solvent to glycerol
 2.6.1.4 Total concentration of glycerol
 2.6.1.5 Activation energy and frequency factor
 2.6.2 Previous kinetic studies

2.7 Process optimization by response surface methodology

2.8 Effect of mass transfer limitation on reaction rate
 2.8.1 Internal mass transfer limitation (Experimental approach)
 2.8.2 External mass transfer limitation (Experimental approach)
 2.8.3 Internal mass transfer limitation (Theoretical approach)
 2.8.4 Overall effectiveness factor

2.9 Summary

3 METHODOLOGY
 3.1 Research methodology
 3.2 Materials
 3.3 Catalyst preparation
 3.4 Catalyst characterization methods
3.5 Catalytic dehydration of glycerol to acrolein procedure 83
3.6 Experimental designs for glycerol dehydration to acrolein 85
3.7 Kinetic parameters determination 86
 3.7.1 Reaction rate equation (r_A) 86
 3.7.2 Activation energy (E_a) and frequency factor (A) 87
3.8 Mass transfer limitations 88
 3.8.1 Internal mass transfer limitation (External approach) 88
 3.8.2 External mass transfer limitation (External approach) 88
 3.8.3 Internal mass transfer limitation (Theoretical approach) 89
 3.8.4 Overall effectiveness factor (Theoretical approach) 90

4 RESULTS AND DISCUSSIONS 91
4.1 Introduction 91
4.2 Zirconium dioxide (ZrO_2) based catalysts evaluation 92
 4.2.1 Surface area and pore structure analysis 92
 4.2.2 Catalyst acidity 93
 4.2.3 Nature of acidity (Bronsted or Lewis) 96
 4.2.4 X-ray diffraction (XRD) 98
 4.2.5 FTIR spectroscopy 100
 4.2.6 Thermal stability 101
 4.2.7 Morphological analysis 103
 4.2.8 Zirconium based catalysts performance 106
4.3 Nano-sized aluminum dioxide (Al_2O_3) based catalysts evaluation 110
 4.3.1 Surface area and pore structure analysis 110
 4.3.2 Aluminum based catalyst acidity 111
 4.3.3 Nature of acidity 114
 4.3.4 Aluminum based catalysts X-ray diffraction 116
 4.3.5 FTIR spectroscopy 117
 4.3.6 Thermal stability of aluminum based catalysts 119
 4.3.7 Morphological analysis of aluminum based catalysts 121
 4.3.8 Aluminum based catalysts performance 123
4.4 Comparison between two of the best prepared catalysts (30HZ-20A and 20HA-10Z) 128
4.5 Long-term stability test of 30HZ-20A catalyst 130
4.6 Effect of the Keggin anion density on catalyst (30HZ-20A) performance 133
4.7 Turn over frequency (TOF) 134
4.8 Spent catalyst (30HZ-20A) evaluation 136
 4.8.1 Coke deposition on spent catalyst (30HZ-20A) 136
 4.8.2 Thermal stability of spent catalyst (30HZ-20A) 137
 4.8.3 Surface area and pore structure analysis of spent catalyst (30HZ-20A) 138
4.9 Reaction mechanism 139
4.10 Optimization by response surface methodology 142
 4.10.1 RSM modeling for glycerol dehydration to acrolein 142
 4.10.2 Effect of reaction parameter interactions on acrolein selectivity 145
 4.10.3 Optimization of process parameters over 30HZ-20A catalyst 147
4.11 Kinetic study 148
 4.11.1 Reaction rate equation (r_A) 148
 4.11.2 Reaction order (n) and reaction rate constant (k) 151
 4.11.3 Activation energy (E_a) and frequency factor (A) 153
4.12 Mass transfer limitation study 155
 4.12.1 Internal mass transfer limitation (Experimental approach) 155
 4.12.2 External mass transfer limitation (Experimental approach) 157
 4.12.3 Internal mass transfer limitation (Theoretical approach) 158
 4.12.4 Overall effectiveness factor (theoretical approach) 160
 4.12.5 Relationship between mass transfer and kinetic studies 161
4.13 Summary 162

5 CONCLUSIONS AND RECOMMENDATIONS 164
5.1 Conclusions 164
5.2 Recommendations 167
REFERENCES
Appendices A-B
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Various studies for petroleum-based acrolein production</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Various approaches for improvement of petroleum-based acrolein production</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Application of supported heteropoly acid catalysts in gas phase dehydration of glycerol to acrolein</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Application of supported zeolite catalysts in gas phase dehydration of glycerol to acrolein</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Application of metal oxide catalysts in gas phase dehydration of glycerol to acrolein</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Various studies in liquid phase dehydration of glycerol to acrolein</td>
<td>37</td>
</tr>
<tr>
<td>2.7</td>
<td>Correlation of acidity and carbon deposit in phosphate catalysts</td>
<td>40</td>
</tr>
<tr>
<td>2.8</td>
<td>Three main solutions to slowdown the catalyst deactivation</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>Effect of oxygen co-feeding on catalytic performance</td>
<td>41</td>
</tr>
<tr>
<td>2.10</td>
<td>Reaction rate constants of glycerol dehydration over Zinc sulfate</td>
<td>62</td>
</tr>
<tr>
<td>2.11</td>
<td>Reaction rate constants and activation energies with and without catalyst</td>
<td>63</td>
</tr>
<tr>
<td>2.12</td>
<td>Reaction rate constants for different temperatures</td>
<td>63</td>
</tr>
<tr>
<td>2.13</td>
<td>Reaction rate constants for each catalyst</td>
<td>64</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental level coded and range of independent parameters</td>
<td>86</td>
</tr>
<tr>
<td>4.1</td>
<td>Pure and supported catalyst surface area (S_{BET}), pore Volume (V_p), pore diameter (D_p), and pore area (A_p)</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>NH$_3$-TPD results (acidity) for pure and supported silicotungstic acid catalysts</td>
<td>95</td>
</tr>
</tbody>
</table>
4.3 Catalyst performance results over blanks and 10-40 wt% HSiW supported on zirconia catalysts 108
4.4 Catalyst performance results in glycerol dehydration to acrolein over 10-30 wt% nano sized Al2O3 supported on 30HZ catalyst 109
4.5 Aluminium based supported catalysts surface area (SBET)
Pore volume (VP), pore diameter (DP), and pore area (AP) 111
4.6 NH3-TPD acidity results of bulk and supported HSiW catalysts 113
4.7 Catalyst performance results over 10-40 wt% HSiW supported on nano-sized alumina catalysts 126
4.8 Catalytic performance of 20HA- (10-30 wt%)Z for the Dehydration of glycerol to acrolein 127
4.9 Comparison between 30HZ-20A and 20HA-10Z catalysts 128
4.10 Comparison of acrolein selectivities among this study and previous reported researches 130
4.11 TOF values at different reaction temperatures 135
4.12 Coke content over used catalysts surface 137
4.13 Fresh and spent 30HZ-20A catalysts surface area (SBET) pore volume (VP), pore diameter (DP), and pore area (AP) 139
4.14 The run numbers, experimental and RSM predicted results 143
4.15 Results of ANOVA test 144
4.16 RSM model validation results using 30HZ-20A catalyst 147
4.17 Reaction rate equations at different temperatures 149
4.18 Reaction order (n) and rate constant (k) at different temperatures 153
4.19 Results of theoretical evaluation on internal mass transfer limitation 159
4.20 Results of theoretical evaluation of overall mass transfer limitation 161
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Glycerol distributions by application</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Glycerol conversion methods for different value-added chemical production</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Possible chemicals that can be produce from acrolein</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>All possible acrolein synthesis methods</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanism of the formation of allyl intermediates (initial/rate-determining step of the partial oxidation of propylene)</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Heteropoly acids (HPAs) catalyst structure</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Mechanism of glycerol dehydration in the presence of solid acid catalyst</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>Dehydration of glycerol in the presence of oxygen</td>
<td>48</td>
</tr>
<tr>
<td>2.6</td>
<td>Reaction mechanism over (a) Bronsted acid and (b) Lewis acid catalyst</td>
<td>50</td>
</tr>
<tr>
<td>2.7</td>
<td>New proposed reaction mechanism for glycerol dehydration to acrolein over solid acid catalyst</td>
<td>52</td>
</tr>
<tr>
<td>2.8</td>
<td>Effect of temperature of glycerol conversion at 25 MPa pressure and 790 ppm catalyst concentration</td>
<td>61</td>
</tr>
<tr>
<td>2.9</td>
<td>Proposed reaction mechanism over WO₃/TiO₂ catalyst</td>
<td>64</td>
</tr>
<tr>
<td>2.10</td>
<td>Various steps in a heterogeneous catalytic reaction</td>
<td>68</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic diagram of internal mass transfer limitation</td>
<td>69</td>
</tr>
<tr>
<td>2.12</td>
<td>Schematic diagram of external mass transfer limitation</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>The methodology diagram of this research</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic diagram related to the 10-40HZ catalysts preparation</td>
<td>79</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram related to the second step of catalyst preparation (10-30 wt% Al nanoparticles loading on 30HZ sample)</td>
<td>80</td>
</tr>
</tbody>
</table>
3.4 Schematic diagram of reactor setup

4.1 FTIR spectra of pyridine adsorbed on (a) 30HZ-10A catalyst at 150 and 250 °C, (b) 30HZ-20A sample at 150, 250, and 300 °C, (c) 30HZ-30A sample at 150 and 250 °C, and (d) the overall comparison for pyridine adsorption for three prepared samples

4.2 XRD patterns of the pure and supported samples

4.3 FTIR spectrums of bulk HSiW, 30HZ, fresh 30HZ-20A and spent 30HZ-20A supported catalysts

4.4 TG-DTA plots for bulk (ZrO₂, Al₂O₃, and HSiW) and supported HSiW samples

4.5 FESEM images at three different resolutions of 100 μm, 20 μm, and 500 nm for (a-c) fresh 30HZ-20A, (d-f) used 30ZH-20A, and (g) EDX results for 30HZ-20A supported catalyst

4.6 (a-c) TEM micrographs related to active compounds particle size and distribution in the synthesized 30ZH-20A sample and (d) Nano Al₂O₃ size estimation by TEM

4.7 FTIR spectra of pyridine adsorbed at two different temperatures of 150 and 250 °C, (a) 20HA-10Z, (b) 20HA-20Z, (c) 20HA-30Z, and (d) the overall comparison for pyridine adsorption for three prepared samples

4.8 XRD patterns of the pure and supported catalysts

4.9 FTIR spectrums of bulk and supported HSiW catalysts

4.10 TG-DTA plots for bulk (HSiW, Al₂O₃, ZrO₂) and supported HSiW catalysts

4.11 FESEM images at three different resolutions for (a-c) fresh 20HA-10Z catalyst, (d-f) used 20HA-10Z catalyst, and (g) EDX results for fresh 20HA-10Z sample

4.12 TEM micrographs related to the fresh 20HA-10Z catalyst, (a-b) large meso-porous structure of 20HA-10Z sample and (a-c) show the active components particle size and distribution

4.13 (a) Glycerol conversion versus time and (b) Acrolein selectivity versus time for 30HZ-10A, 30HZ-20A, 30HZ-30A samples at 300 °C, 12 h reaction time 2 ml/h glycerol feed, and 20 ml/min carrier gas flow (c) Acrolein selectivity versus glycerol conversion only for the most stable and active sample (30HZ-20A), and (d) Overall selectivity versus conversion related to the 30HZ-20A sample. (e) Long-term stability investigation
4.14 Effect of Keggin-anion density on glycerol conversion and acrolein selectivity at 300 °C, 2 ml/h glycerol feed, and 20 ml/min carrier gas flow
4.15 TG-DTA plots for fresh and used 30HZ-20A catalysts
4.16 Proposed reaction pathways (mechanism) for gas phase dehydration of glycerol to acrolein over supported HSiW catalyst
4.17 RSM plot of predicted versus actual acrolein selectivity
4.18 Effect of reaction temperature and catalyst amount interaction on acrolein selectivity
4.19 Effect of glycerol feed concentration and reaction temperature interaction on acrolein selectivity
4.20 Dependency of glycerol conversion (X_A) with V_cat/F_A at different reaction temperatures. (a) 280 °C, (b) 300 °C, (c) 320 °C, and (d) 340 °C
4.21 Linear relationship between reaction rate (r_A) and ((1-X_A)/(1+δ_A.X_A+k)) at different reaction temperatures. (a) 280 °C, (b) 300 °C, (c) 320 °C, and (d) 340 °C
4.22 Arrhenius plot for overall glycerol dehydration reaction to acrolein
4.23 (a) Experimental method to evaluate the existence of internal diffusion and (b) various catalyst pellet sizes (d_p) based on FESEM estimation
4.24 Experimental approach to determine the existence of external diffusion
4.25 Effect of different catalyst pellet sizes (d_p) on obtained effectiveness factor
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmett-Teller</td>
</tr>
<tr>
<td>FID</td>
<td>Flame ionization detector</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GHSV</td>
<td>Gas-hourly-space-velocity</td>
</tr>
<tr>
<td>HPA</td>
<td>Heteropoly acid</td>
</tr>
<tr>
<td>HSiW</td>
<td>Silicotungstic acid</td>
</tr>
<tr>
<td>PBR</td>
<td>Packed bed reactor</td>
</tr>
<tr>
<td>Py-Ir</td>
<td>Pyridine infrared spectroscopy</td>
</tr>
<tr>
<td>TCD</td>
<td>Thermal conductivity detector</td>
</tr>
<tr>
<td>TOS</td>
<td>Time-on-stream</td>
</tr>
<tr>
<td>TPD</td>
<td>Temperature programmed oxidation</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>xHZ</td>
<td>x wt% of HSiW loading on ZrO₂</td>
</tr>
<tr>
<td>yHA</td>
<td>y wt% of HSiW loading on Al₂O₃</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_a</td>
<td>Activation Energy</td>
</tr>
<tr>
<td>X</td>
<td>Conversion</td>
</tr>
<tr>
<td>D, d</td>
<td>Diameter</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>θ</td>
<td>Diffraction Angle</td>
</tr>
<tr>
<td>δ</td>
<td>Expansion factor</td>
</tr>
<tr>
<td>η</td>
<td>Effectiveness Factor</td>
</tr>
<tr>
<td>D_{eff}</td>
<td>Effective Diffusivity</td>
</tr>
<tr>
<td>A</td>
<td>Frequency Factor</td>
</tr>
<tr>
<td>l</td>
<td>Length</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>k_C</td>
<td>Mass Transfer Coefficient</td>
</tr>
<tr>
<td>κ</td>
<td>Molar Ratio of Solvent to Glycerol</td>
</tr>
<tr>
<td></td>
<td>Overall Effectiveness Factor</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>ε</td>
<td>Pellet Porosity</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds Number</td>
</tr>
<tr>
<td>k</td>
<td>Reaction Rate Constant</td>
</tr>
<tr>
<td>S_C</td>
<td>Schmidt Number</td>
</tr>
<tr>
<td>Sh</td>
<td>Sherwood Number</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>ϕ_i</td>
<td>Thiele Modulus</td>
</tr>
<tr>
<td>τ</td>
<td>Tortuosity</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>λ</td>
<td>X-Ray Wavelength</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of publications</td>
<td>192</td>
</tr>
<tr>
<td>B</td>
<td>Examples for GC figures and calculations</td>
<td>193</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Relentless environmental concerns, steep hike in fossil fuel price, and increasing demand of non-renewable fossil fuel consumption have led to dramatic surge in the global search for alternative energy, particularly biodiesel (Sannita et al., 2012; Meher et al., 2013). Indeed, biodiesel significantly decreases engine emissions such as sulfur oxides (100%), un-burned hydrocarbons (68%), and polycyclic aromatic hydrocarbons (80-90%). Many parts of the world have devised plans to enhance their biodiesel production. Europe and USA, for instance, produced 7.8 and 2.3 million ton biodiesel in 2008, respectively and they planned to double their production by 2012 (Katryniok et al., 2010a). In addition, it is estimated that the global biodiesel market will increase significantly to 37 billion gallon by 2016 (Saxena et al., 2009).

The huge amount of biodiesel production worldwide directly affects glycerol availability, since 10% of the total transesterification process production is glycerol (Izquierdo et al., 2012). The surplus offers great opportunities for researchers to use glycerol as a bio-renewable source for value-added chemical production. According to recent studies, glycerol was acknowledged as one of the top 12 most important bio-based chemicals in the world (Werpy and Petersen, 2004) and it will become the major chemical for future bio-refineries. Indeed, the application of glycerol for the
production of more than 2000 products was reported recently (Garcia et al., 2014). Many researchers have demonstrated that glycerol, as the byproduct can decrease biodiesel (B100) production costs by half from 0.63 to 0.35 US $ per liter (Tyson et al., 2004; Claude, 1999). Nevertheless, glycerol can be produced through different processes such as (1) fatty acid production, (2) microbial fermentation, (3) soap manufacture, (4) biodiesel production and (5) propylene oxide synthesize. In addition, glycerol can be produce by the fermentation of sugars (glucose and fructose) and industrial conversion of lignocelluloses into ethanol (Gong et al., 2000; Rogers et al., 2005).

Glycerol purity is the key factor for its industrial application. Traditionally, industrial biodiesel plants using mineral acids (H2SO4, HCl) and alkali (NaOH, KOH) catalysts. Thus, the glycerol produced by conventional processes include other products such as methanol, water, residual catalyst, free fatty acids, un-reacted mono-, de-, and tri-glycerides, methyl ester and various organic and inorganic compounds (Matter Organic Non-Glycerol (MONG)) (Yori et al., 2007; Chiu et al., 2005). As a result, low quality glycerol requires some treatment, including the neutralization by phosphoric acid (H3PO4) or recycling in order to eliminate the excess methanol, catalyst and soap. The final glycerol with approximately 80 - 95% purity will be sold to the industrial refineries at low cost (Tyson et al., 2004; Werpy and Petersen, 2004). However, the purification processes are costly and uneconomical. Hence, some industries prefer to burn the low quality glycerol as waste material and use pure (>98.5%) glycerol instead of purified crude glycerol. As a result, more than 150,000 - 250,000 metric tons of crude glycerol was tragically burnt in 2006, wasting one of the most valuable organic raw materials (McCoy, 2006).

The current trend sees majority of researchers focused on the heterogeneous catalyst application for biodiesel production for higher quality biodiesel and glycerol production. Bournay et al., (2005) investigated biodiesel production in a continuous process by the zinc and aluminum (Zn-Al) mixed oxides as heterogeneous solid catalyst. They reported 98.3% and 98% purity for the final biodiesel and glycerol,
respectively. As a result, their catalytic process could eliminate all the costly treatment and purification processes for the direct application of the produced glycerol in pharmaceutical, cosmetics and food industries (Bournay et al., 2005). The industrial glycerol utilization for value-added chemicals attracted much attention, not only due to the surplus of glycerol available, but also because glycerol is bio-sustainable, non-toxic, and biodegradable. The multi-functional structure and physico-chemical characteristics of glycerol lead to various applications of glycerol in different reaction pathways (Chiu et al., 2005; Bournay et al., 2005; Wang et al., 2001; Chowdury and Fouky, 1993).

The applications of glycerol in our daily life are illustrated in Figure 1.1. Glycerol is being used for moisturizer, sweetener or food and drinks preservative. Since glycerol has a non-toxic nature it is also widely used in cosmetics and toiletries. Moreover, glycerol is also utilized in paper and printing industry for softening and reducing shrinkage during paper manufacturing. In the tobacco industry, glycerol is being used to prevent breaking and crumbling during cigarette processing while it also adds flavor to tobacco.

There are two possible categories for industrial (large scale) application of glycerol. The first is the utilization of glycerol for obtaining commodities such as hydrochlorination of glycerol for chlorohydrins, an important intermediate for epichloridrin production and dehydration of glycerol to acrolein followed by oxidation step for acrylic acid production.
Figure 1.1 Glycerol distributions by application
The other category is the production of oxygenated additives for fuels from glycerol such as: esters (triacetin) (Melero et al., 2007), ethers (glycerol isobuthyl ethers) (Behr and Obendorf, 2003; Jaecker-Voirol et al., 2008; Di Serio et al., 2010), ketals (Crotti et al., 2010), and acetals (Crotti et al., 2010; Silva et al., 2010). The etherification of glycerol for production of a mixture of di- and tri-butyl ethers of glycerin (h-GTBE) is the most promising reaction since it is a new additive for gasoline and h-GTBE improves the octane and decreases the pour point, cloud point and diesel viscosity. Figure 1.2 summarizes several materials that can be produced from glycerol by various processes.

The conventional method for acrolein production is a selective oxidation of propylene in the presence of complex BiMoO$_x$ based catalyst with approximately 85% acrolein selectivity at 95% propylene conversion (Keulks, et al., 1979). However, petrochemical exhaustion is foreseen in the near future. Therefore, the production of the most important industrial materials such as acrolein from sustainable and renewable resource is prevalent recently. The main obstacle for such an industrial application is the economical matters. According to the recent reports, the production of acrolein from glycerol can be commercialized if the glycerol price becomes less than 300 US $/t (Corma et al., 2008). The controlling factor is the application of the low cost crude glycerol that was only 100 US $/t in 2010 in contrast with refined glycerol which was 500-550 US $/t in the same year.
Figure 1.2 Glycerol conversion methods for different value-added chemicals production
Acrolein is highly toxic; therefore, it should be directly converted into other value added chemicals such as acrylic acid, which is used to produce sodium polyacrylate. The polyacrylate is a superabsorbent polymer (SAP) used in hygienic products such as diapers. This material can extremely absorb liquids (more than 500 times of its weight) (Horie et al., 2004). In 2010, it was estimated that SAP has an annual market of 1.9 million tones. The other acrolein application is in methionine production from 3-methylthio-propionaldehyde as an intermediate. The methionine improves animal growth rate and so it is widely used in meat production. In addition, methionine is a very important amino-acid that cannot be produced by living organisms. Due to its low production rate (only 500 kt/yr), large scale synthesis is desirable since the worldwide meat consumption will increase by 3 to 7% in the near future (Malveda et al., 2006). Figure 1.3 shows the all possible chemicals that can be produce from acrolein.

![Figure 1.3 Possible chemicals that can be produce from acrolein](Liu et al., 2012)
1.2 Problem Statement

The partial oxidation of propylene by multi component metal catalysts is the conventional methods for acrolein production. However, this method suffered from difficult control of selectivity and yield of products and propylene oxidation is a primary manufacturing method (Liu et al., 2012). In addition, propylene is non-renewable and expensive due to its highly dependent to the fossil fuel price. Thus, glycerol can be used as a bio-based source instead of petroleum-based process to decrease various environmental concerns and even production costs of acrolein.

The catalytic dehydration of glycerol to acrolein in the gas phase uses various catalysts such as supported heteropoly acids, zeolites, and mixed metal oxides, but still there is no catalyst with the long-term stability without severe deactivation and with the promise of industrialization (Haider et al., 2012). Moreover, the conventional liquid phase glycerol dehydration to acrolein mostly used homogeneous catalysts (H₂SO₄) at supercritical conditions. The application of some heterogeneous catalysts was reported recently, however, the mixture of powerful super acids and supercritical conditions is highly corrosive and can seriously damage the reactor vessels (Ott et al., 2006). Therefore, the application of the supported heteropoly acid catalysts at ambient pressure in a continuous system is studied in this research to increase the activity as well as long life stability of catalyst.

Catalyst deactivation as a result of coke formation is the most common drawback for all the tested catalyst in fixed bed reactors during glycerol dehydration to acrolein. Gas Co-feeding and application of noble metals are reported as conventional approaches for slowing down the deactivation rate of catalyst (Haider et al., 2012). However, recent studies demonstrated that catalyst characteristics (acidity and pore size) are the main factors which can seriously decrease the effect of coke formation on catalyst surface (Yun et al., 2014). Thus, the improvements of physicochemical characteristics of prepared catalysts are evaluated to increase the long life stability and activity of catalyst in this research.
The kinetic parameters of glycerol dehydration to acrolein are still unknown in the majority of cases and all the previous studies performed in the supercritical conditions (Watanabe et al., 2007; Ott et al., 2006; Qadariyah et al., 2011). The applications of gas-phase dehydration of glycerol to acrolein in the presence of heterogeneous catalysts (HPAs, zeolites, and mixed metal oxides) have been reported by a lot of researchers recently (Yadav et al., 2013; Danov et al., 2015; Dalil et al., 2015). Therefore, finding the kinetic parameters (reaction rate constant (k), activation energy (Ea) and frequency factor (A)) at ambient pressure in a continuous system is the key component for simulation and particularly economical industrialization of a bio-based acrolein production process.

Fully utilization of catalyst surface in a heterogeneous catalytic reaction depends on the mass transfer limitations inside the pore structure in the pellets (Baek et al., 2014). Based on our knowledge, there has been no study on internal and external mass transfer limitations in gas-phase glycerol dehydration to acrolein in a continuous system using heterogeneous catalysts. Therefore, dimensionless parameters known as the Thiele modules (ϕi), effectiveness factor (η), and overall effectiveness factor (Ω) determined to investigate the efficiency of catalyst utilization.

1.3 Research Hypothesis

1) Glycerol can be converted into acrolein during a dehydration process. Silicotungstic acid (HSiW) has been identified as the potential catalyst for this process due to its strong acidic sites (Bronsted) and high water tolerance abilities (Katryniok et al., 2012). Modification of HSiW with selected metal oxide (ZrO₂) may increase the activity of the catalyst, thus hypothetically, active acid sites that creat an acidic environment in the supported HSiW catalyst can increase glycerol conversion and acrolein selectivity by tuning the strong acidic sites to the medium acidic sites.
Supported HSiW on ZrO$_2$ catalyst should have low surface area because HSiW classified as non-porous materials and ZrO$_2$ also have a very small surface area. Thus, Al$_2$O$_3$ nanoparticles are added as the third component to the catalyst in order to increase the surface area and pore diameter of the final catalyst. Consequently, the long life stability of catalyst should be increased due to the presence of large pore diameter and pore volume. Yun et al. (2014) reported that large pore diameter is the main factor which can significantly decrease the effect of the coke deposition and catalyst deactivation process. Thus, the final catalyst does not need any types of regeneration methods such as hydrogen or oxygen cofeeding or noble metal application to enhance its long-term stability.

1.4 Research Objectives

1) To synthesize and characterize new supported silicotungstic acid catalysts using aluminum oxide nanoparticles and zirconium dioxide.

2) To optimize the reaction parameter values by response surface methodology (RSM).

3) To determine the kinetic parameters in gas phase dehydration of glycerol to acrolein.

4) To determine the internal and external diffusions inside the pore structures by theoretical and experimental approaches.

1.5 Research Scopes

The gas phase dehydration of glycerol to acrolein was investigated in a continuous tubular reactor using supported silicotungstic acid (HSiW) by zirconium
oxide (ZrO₂) and aluminum oxide (Al₂O₃) nanoparticles which were synthesized by incipient-wetness impregnation method.

The prepared catalysts are characterized by nitrogen adsorption-desorption (BET), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), Pyridine adsorption (Py-Ir), field-emission scanning electron microscopy and energy dispersive X-Ray techniques (FESEM-EDX), temperature programmed desorption (NH₃-TPD), thermogravimetric analysis (TGA), Transmission Electron Microscope (TEM), and elemental analyzer (EA) to evaluate their physicochemical characteristics.

The prepared samples were evaluated under different reaction temperatures (270 - 330 °C), catalyst loading (0.1 – 0.9 g), glycerol concentration (0.5 – 20 wt%), 2 ml/h flow rate of glycerol in the feed, and 1200 ml/h flow rate of carrier gas (N₂). Furthermore, the investigation of the reaction route, side products and the relationships between the properties of the catalysts and their performance in acrolein production represent the scope of this work. In addition, the response surface methodology (RSM) is used for the optimization and modeling of processes.

The initial reaction rate constant (k) is determined at four different reaction temperatures (280, 300, 320, and 340 °C) and for each reaction temperature a series of experiments were performed with various feed flow rates (2, 5, and 10 ml/h). The kinetic parameters such as activation energy (Ea), and frequency factor (A) are needed for process simulation and scale-up purposes for further investment on large scale (industrial) application and commercialization.

The existence of the internal and external diffusions was investigated at various catalyst pellet size (2 - 45 μm), catalytic bed volume (2 - 10 ml), and gas mass flow rate (2.55 - 25.2 g/h) by the theoretical and experimental approaches.
REFERENCES

Catalysts: Improvement of Selectivity and Stability by Doping with SiO$_2$. *Catalysis Communications*, 16(1), 170-174.

Mandaliya, D. D., Moharir, A. S., and Gudi, R. D. (2013). An Improved Green’s Function Method for Isothermal Effectiveness Factor Determination in One-
And Two-Dimensional Catalyst Geometries. Chemical Engineering Science, 91, 197-211.

Schering-Kahlbaum AG.

APPENDIX A

LIST OF PUBLICATIONS

A.1. Journal Papers

A.2. Conference