HEART MURMUR DETECTION AND ANALYSIS USING MULTIPROINT AUSCULTATION SYSTEM

KAMARULAFIZAM BIN ISMAIL

UNIVERSITI TEKNOLOGI MALAYSIA
HEART MURMUR DETECTION AND ANALYSIS USING MULTIPOINT AUSCULTATION SYSTEM

KAMARULAFIZAM BIN ISMAIL

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Biomedical Engineering)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

AUGUST 2015
Dedicated to my beloved wife Azlin Abd Jamil, my beloved children, Dania Sofea, Danny Iskandar, Daniel Akashah and Diana Maisara, and my beloved father, mother, brothers, sisters & friends.
ACKNOWLEDGEMENT

First of all, I wish to thank heartedly my supervisor Professor Ir. Dr. Sheikh Hussain Bin Shaikh Salleh. He is the one who introduced me to the field of biomedical signal processing research. It is his endless guidance of technical knowledge and methods of conducting research that built my foundation on heart sound analysis field. His moral and financial support survives me throughout my PhD study. His attitude and enthusiasm in conducting research and his consistent vision to make the research an important asset for the country and the next generation always inspire me.

Secondly, I am thankful to the Director for Centre for Biomedical Engineering, Prof. Dato’ Ir Dr Alias Mohd Nor for his continuous encouragement and support. And to all of my research colleagues at the Center of Biomedical Engineering (CBE), namely Dr Ting Chee Ming, Ahmad Kamarul Ariff, Arief Ruhullah, and others. Thank you very much for your generosity to share the resource and knowledge with me. Special thanks to CBE for providing the resource and conducive environment to conduct my research.

Finally, I wish to thank my family and friends for their support. I am especially grateful for my parents for all their sacrifices in upbringing me. The encouragement and support for me in pursuing my research career are appreciated sincerely. I would like to thank my wife Azlin, she always by my side, comfort me when I am discouraged, take care of me when I am busy, and share my happiness when I delighted.
ABSTRACT

The study of phonocardiogram (PCG) in diagnosing valvular heart disease has gathered increasing attention over the past few years. Heart sound auscultation is performed at the primary care center by physician and the results are subjected to the skills and hearing ability. This has caused unnecessary referral and send home subject with potential heart disease. This issue has led to the establishment of standardized and computerized system to analyze the heart sound. This thesis investigates the optimal approach in establishing a reliable system to acquire and process heart sound to differentiate between normal and abnormal pattern. Previous studies are based on the analysis using heart sound that is recorded from single stethoscope which provides limited information regarding the heart disease. In this study, the recording based on four stethoscopes is used to record sound from four different valves with optimized analog instrumentation design. Beamforming algorithm is utilized to localize the actual source of the disease sound from all of the four recorded sound by focusing with respect to the angle of arrival of the desired disease signature. It is then followed by the implementation of Time Frequency (TF) algorithm with optimal Extended Modified B-Distribution (EMBD) kernel to suppress noises, analyze and represent the features. The experiments were conducted utilizing PCG signal that was recorded from real subject from Hospital Sultanah Aminah Johor Bahru. Each subject was screened by an echocardiogram machine. The disease was confirmed by cardiologist before the PCG recording procedure was performed. The result shows significant improvement in the quality of information that is preserved in the beamformed signal. The suggested framework is able to improve the heart murmur detection rate up to 95%. In conclusion, the localization of the exact location of the diseased sound has helped to improve the disease detection accuracy based on multi-point heart sound diagnostic system.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction
1.2 The Organization of the Thesis
1.3 Problem Background
1.4 Problem Statement
1.5 Objectives
1.6 Scope
1.7 The Contribution of the Study
LITERATURE REVIEW

2.1 Introduction

2.2 Cardiac Auscultation Proficiency Trends

2.3 Principles of Cardiac Auscultation

2.4 Auscultory Sites

2.5 The Cardiac Cycle- Sound and Murmurs

2.6 Clinically Important Cardiac events

- **2.6.1** Early Systolic Ejection Click
- **2.6.2** Mid Systolic Click
- **2.6.3** Opening Snap
- **2.6.4** Third Heart Sound (S3)
- **2.6.5** Fourth Heart Sound (S4)
- **2.6.6** Pericardial Rub
- **2.6.7** Aortic Stenosis (AS)
- **2.6.8** Aortic Insufficiency (AI)
- **2.6.9** Mitral Stenosis (MS)
- **2.6.10** Mitral Regurgitation (MR)
- **2.6.11** Patent Ductus Arteriosus (PDA)

2.7 The Recording using Electronic Stethoscope

2.8 Sound Localization

2.9 The Acquisition Apparatus

2.10 Denoising

2.11 The Segmentation Issues

2.12 Biosignal Analysis of Heart Murmurs

2.13 Automatic Classification of Heart Sound

2.14 Alternate Method for Heart Sound Analysis

2.15 Beamforming Method

- **2.15.1** Delay and Sum Method
- **2.15.2** Microphone Array Design

2.16 Summary
3 THE DESIGN ACQUISITION APPARATUS 52

3.1 Introduction 52
3.2 Single Location Recording 53
3.3 Design Requirement and Philosophy 54
3.4 The Design of Heart Diagnostic System 55
 3.4.1 The Transducer 56
 3.4.2 The Analog Front-End 60
 3.4.3 Computer Interfacing 63
3.5 Single Supply 5V Data Acquisition System 65
3.6 Dual Supply 12V Data Acquisition System 74
3.7 Summary 76

4 THE PROCESSING FRAMEWORK 77

4.1 Introduction 77
4.2 Database 78
4.3 Patient Preparation 79
4.4 Stethoscope Positioning and Placement 80
4.5 Signal Examination and Segmentation 80
4.6 The Sound of Interest. 83
 4.6.1 The Clinical Significance of S1 and S2 84
 4.6.2 The Clinical Significance of Murmurs 89
4.7 Sound Localization using Beamforming 89
 4.7.1 Beam Pattern for Source Localization 92
 4.7.2 Spatial Filtering 95
4.8 The Time Frequency Analysis 98
4.9 Summary 104
RESULTS AND DISCUSSION

105

5.1 Introduction
5.2 The Design of Acquisition System
5.3 Instrumentation
5.4 Morphological Analysis
5.5 Multi-location Heart Sound Recording
5.6 Comparison between the Proposed Designs and Welch Allyn System
5.7 Analysis on S1 and S2
5.8 Heart Sound Localization using Beamforming
5.8.1 Case 1
5.8.1.1 Time Delay Calculation Method
5.8.1.2 Delay and Sum Beamforming Method
5.8.2 Case 2
5.8.2.1 Time Delay Calculation Method
5.8.2.2 Delay and Sum Beamforming Method
5.8.3 Case 3
5.8.3.1 Time Delay Calculation Method
5.9 Time-Frequency Analysis
5.10 Summary

CONCLUSIONS AND FUTURE WORK

146

6.1 Conclusion
6.2 Future Work
REFERENCES

Appendices A-D

Appendices A-D 165-180
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLES NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Sensor design matrix</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Specification of transducer</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison of commonly used operational amplifier</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>Types of beamforming</td>
<td>90</td>
</tr>
<tr>
<td>5.1</td>
<td>Digital value representing uptrend for 12V and 5V System</td>
<td>114</td>
</tr>
<tr>
<td>5.2</td>
<td>Digital value representing sideways movement for 12V and 5V system</td>
<td>115</td>
</tr>
<tr>
<td>5.3</td>
<td>Performance comparison between Welch Allyn Stethoscope system and 100 Analyzer system.</td>
<td>118</td>
</tr>
<tr>
<td>5.4</td>
<td>The peak difference between the heart sound signal’s peak and the ECG signal’s peak from subject 1.</td>
<td>123</td>
</tr>
<tr>
<td>5.5</td>
<td>Time delay between all four stethoscopes</td>
<td>123</td>
</tr>
<tr>
<td>5.6</td>
<td>The difference in distance</td>
<td>124</td>
</tr>
<tr>
<td>5.7</td>
<td>The peak difference between the heart sound signal’s peak and the ECG signal’s peak from subject 2.</td>
<td>129</td>
</tr>
<tr>
<td>5.8</td>
<td>Time delay between all four stethoscopes</td>
<td>130</td>
</tr>
<tr>
<td>5.9</td>
<td>The difference in distance</td>
<td>130</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Auscultory areas</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Complete cardiac cycle</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Cardiac events.</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Components typically occurs mid diastolic, late diastolic and mid systolic</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Crescendo decrescendo murmur</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Decrescendo murmur</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Crescendo murmur</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Mitral stenosis murmur</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>Mitral regurgitation murmur</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Continuous murmur</td>
<td>22</td>
</tr>
<tr>
<td>2.11</td>
<td>Typical system setup for automatic heart sound diagnostic system</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>QRS complex with R point to determine every cycle of the one minute data of the heart sound</td>
<td>23</td>
</tr>
<tr>
<td>2.13</td>
<td>Echocardiogram image</td>
<td>25</td>
</tr>
<tr>
<td>2.14</td>
<td>Planar waveform reaching linear microphone array</td>
<td>46</td>
</tr>
<tr>
<td>2.15</td>
<td>Beam shape</td>
<td>48</td>
</tr>
<tr>
<td>2.16</td>
<td>Cardiac image constructed different beamforming technique</td>
<td>49</td>
</tr>
<tr>
<td>2.17</td>
<td>Delay and sum beamformer</td>
<td>50</td>
</tr>
<tr>
<td>3.1</td>
<td>Auscultation Location</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Overall system design of electronic processing interface</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Sample waveform of heart sound</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Operational amplifier using INA118</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>The cascaded filter and amplifier for heart sound acquisition</td>
<td></td>
</tr>
</tbody>
</table>
3.6 The USB interface circuit design for heart sound acquisition system

3.7 CMRR for INA118

3.8 CMRR for LF412

3.9 CMRR for OPA330

3.10 CMRR for OP07

3.11 CMRR for LF347

3.12 CMRR for AD620

3.13 Rescaled design of heart sound and ECG data acquisition system using 3.3V supply system

3.14 Heart sound recording using Welch Allyn and the proposed device for a normal subject

3.15 Information lost due to improper gain setting and small range operating voltage

4.1 Mobile medical trolley to carry recording device

4.2 Heart sound signals

4.3 Heart sound and ECG timing characteristics

4.4 Effect of inspiratio and expiration upon the morphology of S1 and S2

4.5 Location of each electronic stethoscope

4.6 Beamforming flowchart

4.7 Overall beamforming processing pathway

4.8 Source localization simulation using 400Hz source and four electronic stethoscope array

4.9 Comparison of beam width versus the number of electronic stethoscope

4.10 Comparison of beam width versus frequency using two electronic stethoscope

4.11 Decibel scale plot of a four electronic stethoscope array beam pattern for a 600Hz signal at 90 degree

4.12 The noise sources at 300Hz attenuated at about 3dB using two electronic stethoscopes separated at 60 degrees

4.13 An array of two electronic stethoscope with sources
An array of four electronic stethoscope with sources separated by 90 degrees with attenuate noise by 13dB.

An array of four electronic stethoscope with sources separated by 60 degrees with attenuate noise by 12dB.

An array of four electronic stethoscope with sources separated by 90 degrees with attenuate noise about 12dB lower than the source signal.

The constructed recording apparatus.

Signal recording for 5V system and 12V system.

Three cycles of close-up signal showing details of raw ECG signals.

One cycle zoomed version. (a) Distorted signal using 5V system, (b) 12V system.

QRS complexes. (a) Distorted QRS complex of 5V system, (b) Smooth peak of QRS complex for 12V system.

Position of actual peak and distorted peak, (a) Peak of 5V system, (b) Peak of 12V system.

Signal peak delay difference between 5V system and 12V system.

Effect of different voltage range on signal morphology.

Effect of different voltage range on signal morphology.

Tracking of signal changes.

Design of stethoscope housing.

Transducers arrangement as a recording system.

Amplitude comparison for S1 and S2 for location Aortic (V1), pulmonic (V2), tricuspid (V3) and mitral (V4).

Amplitude comparison for S1 and S2 for location Aortic (V1), pulmonic (V2), tricuspid (V3) and mitral (V4).

Amplitude comparison for S1 and S2 for location Aortic (V1), pulmonic (V2), tricuspid (V3) and mitral (V4).

Amplitude comparison for S1 and S2 for location Aortic (V1), pulmonic (V2), tricuspid (V3) and mitral (V4).

Amplitude comparison for S1 and S2 for location Aortic (V1), pulmonic (V2), tricuspid (V3) and mitral (V4).

Coordinates system for four location stethoscopes.

Coordinates of unknown sound source form data 1.

Calculated unknown sound of the source at (-38, 61).
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.20</td>
<td>Heart sound signal data 1 from subject 1 at four locations</td>
</tr>
<tr>
<td>5.21</td>
<td>Original signal and received signal with beamforming method</td>
</tr>
<tr>
<td>5.22</td>
<td>Angle of arrival calculation method</td>
</tr>
<tr>
<td>5.23</td>
<td>Arrival angle (32 degree)</td>
</tr>
<tr>
<td>5.24</td>
<td>Coordinates of unknown sound source form data 2</td>
</tr>
<tr>
<td>5.25</td>
<td>Calculated unknown sound of the source (-43, 58)</td>
</tr>
<tr>
<td>5.26</td>
<td>Heart sound signal data 2 from subject 2 at four locations</td>
</tr>
<tr>
<td>5.27</td>
<td>Original signal and received signal with Beamforming</td>
</tr>
<tr>
<td>5.28</td>
<td>Angle of arrival calculation method</td>
</tr>
<tr>
<td>5.29</td>
<td>Arrival angle</td>
</tr>
<tr>
<td>5.30</td>
<td>Heart sound signal recorded from normal subject at four locations.</td>
</tr>
<tr>
<td>5.31</td>
<td>Source of sound for the normal heart sound</td>
</tr>
<tr>
<td>5.32</td>
<td>EMBD plot for normal heart sound</td>
</tr>
<tr>
<td>5.33</td>
<td>EMBD plot for an abnormal heart sound</td>
</tr>
<tr>
<td>5.34</td>
<td>Multi-location Time-Frequency representative of normal heart sound before and after Beamforming</td>
</tr>
<tr>
<td>5.35</td>
<td>Multi-location Time-Frequency representative of abnormal heart sound before and after Beamforming.</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>Aortic Valve Closure Sound</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>AI</td>
<td>Aortic Insufficiency</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>CHF</td>
<td>Coronary Heart Failure</td>
</tr>
<tr>
<td>CI</td>
<td>Cochlear Implant</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
</tr>
<tr>
<td>CWT</td>
<td>Continuous Wavelet Transform</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>DSBF</td>
<td>Delay and Sum Beamforming</td>
</tr>
<tr>
<td>DTW</td>
<td>Dynamic Time Warping</td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EMD</td>
<td>Empirical Mode Decomposition</td>
</tr>
<tr>
<td>EMBD</td>
<td>Extended Modified B-Distribution</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
<tr>
<td>HA</td>
<td>Hearing Aid</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov Models</td>
</tr>
<tr>
<td>ICS</td>
<td>Intercostal Space</td>
</tr>
<tr>
<td>IDFT</td>
<td>Inverse Discrete Fourier Transform</td>
</tr>
<tr>
<td>LPC</td>
<td>Linear Predictive Coding</td>
</tr>
<tr>
<td>LPCC</td>
<td>Linear Predictive Coding Cepstrum</td>
</tr>
<tr>
<td>LSB</td>
<td>Left Sternal Border</td>
</tr>
<tr>
<td>M1</td>
<td>Mitral Valve Closure Sound</td>
</tr>
<tr>
<td>MR</td>
<td>Mitral Regurgitation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>MS</td>
<td>Mitral Stenosis</td>
</tr>
<tr>
<td>MBD</td>
<td>Modified B-Distribution</td>
</tr>
<tr>
<td>MCE</td>
<td>Minimum classification error</td>
</tr>
<tr>
<td>MFCC</td>
<td>Mel-Frequency Cepstral Coefficients</td>
</tr>
<tr>
<td>MFPC</td>
<td>Mel-Frequency Power Cepstrum</td>
</tr>
<tr>
<td>MLP</td>
<td>Multi-Layer Perceptron</td>
</tr>
<tr>
<td>MVP</td>
<td>Mitral Valve Prolapse</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>OS</td>
<td>Opening Snap</td>
</tr>
<tr>
<td>P2</td>
<td>Pulmonic valve closure sound</td>
</tr>
<tr>
<td>PCG</td>
<td>Phonocardiogram</td>
</tr>
<tr>
<td>PLP</td>
<td>Perceptual Linear Prediction</td>
</tr>
<tr>
<td>PR</td>
<td>Pulmonary Regurgitation</td>
</tr>
<tr>
<td>PS</td>
<td>Pulmonary Stenosis</td>
</tr>
<tr>
<td>PVWD</td>
<td>Pseudo Wigner Ville Distribution</td>
</tr>
<tr>
<td>RSB</td>
<td>Right Sternal Border</td>
</tr>
<tr>
<td>S1</td>
<td>First Heart Sound</td>
</tr>
<tr>
<td>S2</td>
<td>Second Heart Sound</td>
</tr>
<tr>
<td>S3</td>
<td>Third Heart Sound</td>
</tr>
<tr>
<td>S4</td>
<td>Fourth Heart Sound</td>
</tr>
<tr>
<td>SA</td>
<td>Sinus Atria</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>STFT</td>
<td>Short Time Fourier Transform</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>T1</td>
<td>Tricuspid Valve Closure Sound</td>
</tr>
<tr>
<td>TF</td>
<td>Time-Frequency</td>
</tr>
<tr>
<td>TFD</td>
<td>Time-Frequency Distribution</td>
</tr>
<tr>
<td>TR</td>
<td>Tricuspid Regurgitation</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>VSD</td>
<td>Ventricular Septal Defect</td>
</tr>
<tr>
<td>WT</td>
<td>Wavelet Transform</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_m</td>
<td>Delay of the m^{th} stethoscope</td>
</tr>
<tr>
<td>$\gamma_m(i)$</td>
<td>Scalar representation of stethoscope amplitude</td>
</tr>
<tr>
<td>τ</td>
<td>Signal delay</td>
</tr>
<tr>
<td>$S(\omega)$</td>
<td>Source signal from stethoscope</td>
</tr>
<tr>
<td>$Z(\omega, \theta)$</td>
<td>Signal mixture of all stethoscopes</td>
</tr>
<tr>
<td>$H(\omega, \theta)$</td>
<td>Transfer function for source signal</td>
</tr>
<tr>
<td>$z(t)$</td>
<td>Time domain representative of signal</td>
</tr>
<tr>
<td>$E(t)$</td>
<td>Energy representative of signal</td>
</tr>
<tr>
<td>$S(f)$</td>
<td>Frequency domain representation of signal</td>
</tr>
<tr>
<td>$\rho(t, f)$</td>
<td>Time frequency representation of signal</td>
</tr>
<tr>
<td>$G(t, \tau)$</td>
<td>Time lag kernel</td>
</tr>
<tr>
<td>$g(\nu, \tau)$</td>
<td>Doppler lag kernel function</td>
</tr>
<tr>
<td>β</td>
<td>Smoothing variable for time-frequency</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ethics committee approval from the Ministry of Health</td>
<td>165</td>
</tr>
<tr>
<td>B</td>
<td>Patient Consent Form</td>
<td>169</td>
</tr>
<tr>
<td>C</td>
<td>Patient Information Sheet</td>
<td>172</td>
</tr>
<tr>
<td>D</td>
<td>Publications</td>
<td>179</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction.

Heart disease is the number one killer disease in most countries in the world (Nichols M., 2014). The statistic shows significant increment in mortality rate each year. Regardless of the causes, most fatality is caused by the inability to detect this disease at the early stage (Michael S., 2006). Detection at the earlier stage could save many lives and able to reduce the treatment cost tremendously.

Human heart exhibits a plethora of information regarding its health status and working condition via its electrical signal known as electrocardiogram (ECG). The acoustic signal generated is known as phonocardiogram (PCG) or heart sound. The ECG is an electrical impulse originating from Sinoatrial (SA) node as an effect of polarization and depolarization of heart tissue (Pipberger et al., 1962). This electrical impulse initiates the working mechanism of blood pumping activity, which open and close four valves in the heart and produces the PCG.

ECG has been used for more than a century in diagnosing heart disease (Pipberger et al., 1962). The information contain in ECG signal is more related to the
heart tissue conduction issues and the pumping regulations of the valves. However it does not describe the pumping capability of each valve, the condition of each valve and the overall efficiency of the heart. Since heart sound is capable in providing such information, it has been used as a primary screening tool together with ECG when diagnosing patients with suspected heart disease. In general practice, a physician will perform heart sound auscultation before recommending ECG screening. This procedure makes complete sense to examine the valve first then ECG on the basis that ECG is the one which regulates the valves operation. Any discrepancy on the valve operation may possibly be caused by the ECG.

1.2 The Organization of the Thesis.

This thesis is divided into 6 chapters. Chapter 1 introduces the issues and related motivational element, which drives the need to perform this research. It also covers the research objectives as well as outlining the research limitation, bridging the research gap and scope. Chapter 2 describes the literature review on anatomy of heart sound and it’s relation to heart disease. The significant heart sound signatures of each disease are explained which is important in extracting unique features. It is then followed by a review of heart sound analysis. A number of heart disease detection methods are elaborated in terms of its strength and weakness and how the proposed method emerged. Chapter 3 describes the design and development of 5 channels acquisition apparatus that is used in this research. Chapter 4 describes the processing procedure using beamforming and time-frequency analysis. In chapter 5, the results are presented with related discussions. In chapter 6, the conclusions are presented.
1.3 Problem Background

Developing the skill of listening to the heart sound or also known as auscultation requires years of training. This ability is different from one physician to another. The outcome of interpretation is also subjective. A physician is required to be trained regularly in order to maintain the auscultation skill (Tavel, 1996 and Cheitlin et al., 1997). The traditional acoustic bell shape stethoscope is capable in delivering sound from 100Hz to 200Hz. However, most of the heart sounds frequency content lies at the lower frequency band, which is as low as 50Hz to 500Hz (Abbas, 2009). This provides limited heart sound information and led to many false diagnoses resulting in numerous unnecessary referrals. The subject with heart disease is sent back when the disease is still undetected. Many studies have proven that as many as 87% of patients that are referred to cardiologists are as a result of false alarms (Pease, 2001).

Since the introduction of echocardiography technology which is based on ultrasound imaging, it has become a gold standard in heart disease verification. Here the heart sound and ECG are only used as pre-screening tools. However, the implementation is restricted by the availability of this tool due to high acquisition cost. A typical machine would cost up to 1.5 million ringgit. Only big hospitals can afford the cost and only a few units can be made available. This limited number of machine could not be a solution to help the large number of the population. As a result, the patients have to wait for the disease to be diagnosed before it is confirmed and treated. Such machine has been around for more than a decades and heart disease still remain as the number one killer disease. Therefore, echocardiogram seems not to be the solution to current scenario. A much cheaper machine with the capability to detect heart disease from the very earlier stage is critically needed. This is the main subject of this thesis in order to address the issue raised earlier in heart related disease.
Diagnosing heart disease based on heart sound will require an ECG signal to be recorded together and displayed side by side. This will help the physician to determine the beginning of a cardiac cycle. However, it is rather difficult to find a system that records heart sound and ECG simultaneously. A typical system that is available in the medical field is either to record the heart sound or just ECG. Even if there is, the principle behind the design is just for the sake of monitoring and not tailored for heart disease diagnosis. Diagnosing bio-signal requires high precision data with specialized design of analog and digital circuitry that preserve not only the information but also remove the unwanted noise which is one of the concerns of this study.

Since the heart is operated by four valves, and typically diagnosed down to each valve, it makes perfect sense to listen to all of the sound that is produced by each of these valves. Manual diagnosis performed by physician usually moves the stethoscope around the chest area to find abnormal sound produced by the valves. Once the location is identified, the physician listens closely and starts to list down several suspected diagnosis based on the sound. Automated diagnosis would require all four locations of heart sound in order to be able to locate the actual source of the problem. Recording one after another will not help to locate the problem in real-time, thus simultaneous recording is suggested in this thesis.
1.4 Problem Statement

The study is motivated by the need of solutions from the following problems:

- Lack of fast and reliable screening tool to aid the general practitioner (GP) in the primary care center (echocardiogram machine cannot be placed in all the clinics).

- The use of single stethoscope to acquire heart sound provides limited information. A tool that is able to maximize the information acquisition from the beating heart, down to each and individual valve is critically needed. The multi-point auscultation device which records four sounds from four valves simultaneously with lead II ECG provides massive advantages.

- The correct information has to be extracted from the heart sound from the right location on the chest. Recording four heart sounds simultaneously provides a localization advantage. An efficient algorithm to pinpoint the exact location of murmur is necessary to improve detection.

- The general practitioner needs support in making decision. A reliable and accurate scientific presentation and visualization would be of a great advantage in deciding whether a subject should be referred or otherwise.

1.5 Objectives.

In this thesis, the research objective is concerned with identifying murmurs based on heart auscultation. In particular, the thesis focuses on the improvement of
system hardware design by specific development of the multi-point bio-signal input. Various performance measures are used to evaluate the beamforming auscultation system for different aspect of performance. The results presented reflect the acceptable level of initial performance of the system. The research objectives of this study are as follows:

- To design and develop a 5 channel data acquisition system for the heart sound and ECG.
- To perform multi-point auscultation to acquire four heart sound simultaneously.
- To enhance the beamforming auscultation system for heart murmur analysis.
- To evaluate the performance of time-frequency analysis of heart murmurs.

1.6 Scope.

The main concern of this study is to design a new five channel data acquisition system for multi-point auscultation of the heart sound. The primary focus is on the design of the new hardware for signal acquisition as the available data processing system are only capable of monitoring of the heart sound. A special emphasis is placed on the evaluation methods with real microphone recording involving simultaneous heart sound signals, as opposed to computer-generated simulation.
This new design will be followed by an introduction to a new procedure to process the multi-channel heart sound which enables the localization of heart murmurs utilizing beamforming algorithm. As the beamforming is usually used in communication, this is the first time to utilize the approach in biomedical signal particularly in heart sound.

There are several approaches to time frequency analysis (Cohen et al., 2001) which can be used to tackle this problem, but this does not come to focus as the extended modified B-distribution algorithm is used here. The modification is necessary to fit the nature of heart sound signal model, which is generated by vibration collected by microphone.

The scope of the study is limited on these specific issues:

- Ensure the proposed 5 channels design is capable of acquiring high quality bio-signal data, which correlates the ECG and heart sound signal.

- Utilization the beamforming algorithm to localize heart murmurs based on multi-point auscultation system.

- Utilize the extended modified B-distribution algorithm to visualize the presence of murmurs.

1.7 The Contribution of the Study.

In this research, an optimal method of accessing cardiac abnormalities is deployed. There are several major contributions that have been achieved from this research as follows:
A new 5-channel analog front-end system is developed to ensure optimal signal quality is acquired. The consideration started from the selection of proper transducer which is sufficiently sensitive to capture the vibration of beating heart from the human chest. The instrumentation stage is carefully designed to ensure all possible information is preserved with the most minimum information losses. The selection of operational amplifier, filter, analog to digital converter, the operating voltage is discussed in detail in chapter 3.

This study proposes multi-point auscultation technique in acquiring the heart sound. Typically, heart sound is acquired at one location and disease is determined using that information. As the acquired sound originated from four locations namely aortic valve, pulmonic valve, tricuspid valve and mitral valve, and the disease is also associated to each and individual valve, it makes perfect sense to acquire all the four sound at the same time and use the combination of all the sound as input to the processing stage. This could provide more information about the dynamic operation of all valves especially when it comes to diseases.

A physician usually start listening to heart sound at a position and move the stethoscope around until the desired diseased sound is audible. This justify that disease sound is not always present at the location where it is originally produced which are the valves. The sound has to be mapped out around the valves. To adapt this approach, beamforming technique is used to identify the actual source of the sound. It is hypothesized that beamforming method is able to highlight the important sound from all the given four valves sound and to pin point the location that heart sound should be acquired.

Time-frequency analysis is a popular tool to visualize signal content in term of energy, time and frequency. It is usually derived from communication research and application. Time frequency analysis utilizing B-distribution algorithm is modified to fit medical application. This could provide an improved presentation of heart sound and murmur.
REFERENCES

Baura GD. (2005), The Business of innovation. *MX: The Online Information Source for the Medical Device Industry*.

Djebbari A., Bereksi-Reguig F. (2013), Detection of the valvular split within the second heart sound using the reassigned smoothed pseudo Wigner–Ville distribution, Biomedical engineering online 12 (1), 37

Donghui, C., Zhijing, L.()2010, New text categorization method based on HMM and SVM. Proc. 2010 Second Int. Conf. on Computer Engineering and Technology, Chengdu, China, pp. 383 – 386

Digital Stethoscope Implementation on the TMS320C5515 DSP Medical
SPRAB38A–June 2010, Development Kit (MDK).

and incremental self-organizing map, Digital Signal Processing 18, Elsevier,
pp. 951-959.

periodicity detection. In Fifth Intl. Conf. on Data Mining, p. 8.

Etchells E, Bell C, Robb K (1997), Does this patient have an abnormal systolic
murmur? JAMA; 277:564-71.

Flandrin P. and Martin W. (1997), Wigner-Ville spectrum of non-stationary random
signals, The Wigner Distribution, Mecklenbrauker and Hlawatsch.

vol.3229, pp.138-147. (ICASSP), pp. 653-656.

instrument for data acquisition and analysis of the phonocardiogram,
Engineering in Medicine and Biology Society. Proceedings of the 20th
Annual International Conference of the IEEE , 436 - 439 vol.1

classification of homomorphic segmented heart sound”, Applied Soft

Gupta, C.N., Palaniappan, R., Swaminathan, S., Krishnan, S.M(2006), Neural
network classification of homomorphic segmented heart sounds’, Appl. Soft
Comput., 7, pp. 286 – 297

Green JM, Wilcke JR, Abbott J, Rees LP (2006), Development and evaluation of
methods for structured recording of heart murmur findings using SNOMED-

Marcus GM, Gerber IL, McKeown BH, Vessey JC, Jordan MV, Huddleston M, McCulloch CE, Foster E, Chatterjee K, Michaels AD (2005) , Association between phonocardiographic third and fourth heart sounds and objective measures of left ventricular function. *JAMA*, 293(18):2238-44.

Michael S Figueroa and Jay I Peters (2006), Congestive Heart Failure: Diagnosis, Pathophysiology, Therapy, and Implications for Respiratory Care, Respiratory Care, Vol. 51 No 4, pp 403-412.

Noponen AL (2005), 4th Congress on Paediatric Cardiology. Poster Presentation.

Pease, A.F.: If the heart could speak (2001),
 w4.siemens.de/FuI/en/archiv/pof/heft2_01/artikel19/index.html

Tavel ME, Katz H. (2005), Usefulness of a new sound spectral averaging technique to distinguish an innocent systolic murmur from that of aortic stenosis. Am J Cardiol, 95:902-904.

Tian Xian-ting, Zhao Zhi-dong (2011), Heart sound acquisition based on PDA and Bluetooth, 4th International Conference on Biomedical Engineering and Informatics (BMEI).

Tilkian AG, Canover MB (1984), Understanding Heart Sounds and Mururs with an introduction to Lung Sound, Philadelphia, Sounders.

Várady P., Gross I., Hein A., Chouk L. (2001), Analysis of the Fetal Heart Activity by the Means of Phonocardiography, Proc. IFAC Int. Conf. on Telematics and Automation, Weingarten, Germany.

Yuanyang Li, Xinpei Wang and Churan Sun, Changchun Liu (2009), Identifying Heart Sound Sources through Multichannel, Acquisition and a 3-D Model, *Biomedical Engineering and Informatics*.
