REACTANT DILUTION EFFECTS AND REACTION KINETICS OF METHANE DRY REFORMING IN DIELECTRIC BARRIER DISCHARGE REACTOR

MARYAM KHOSHTINAT NIKOO

A thesis submitted in fulfilment of the requirements for the award of degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JULY 2015
Particularly dedicated to my treasured parents, my beloved husband and sibling and to the memories of my cherished grandparents who have left our family

Long live all in my memory!
ACKNOWLEDGEMENT

Do not judge me by my successes, judge me by how many times I fell down and got back up again. Nelson Mandela (May his soul rest in peace)

First and foremost, I want to express my endless gratitude to my loving creator for bestowing me intellect and perseverance, and supporting me through these, the stiffest years of my life to gain a deep understanding of self-knowing and my life concept. There are a number of people who conspired and encouraged me, in their different ways, to complete this research project successfully. These people include whose arms I have jumped into compassionately, and indeed, who put the stones on the stairs toward my destiny, as I had to learn how to take them as small ladders to move up wisely. I would like to offer my sincere appreciation especially to the following. This achievement is heartily dedicated to my beloved dearest parents, soulmate and sibling; though I cannot find any words to justly express my love and gratefulness towards you. You gave me love with no condition, strength with your gentleness and shower me with the power of your prayers. Within these years of doing this investigation, I have laughed, cried, thought, and fought with my friends and colleagues in many different levels, that I cannot disclose their names all here.

If I had to mention a few names, I would like to start with my supervisor Prof. Nor Aishah Saidina Amin for having accepted to be my PhD supervisor. I am also grateful to Mr Abu hassan Arshad (lab technician), Dr. Tuan Amran, Dr. Zaki Yamani Zakaria, Prof. Mohammad Ghazali Mohammad Nawawi, Prof. Zainuddin Manan, Assoc. Prof Zulkafle Buntat and Assoc. Prof Xin Tu (University of Liverpool), who have lent me a hand about the instruments preparation, research tasks and everything in between. I also acknowledge my true friends, Dr. Samrand Saeidi for assisting me during formatting my thesis and Dr. Fereshteh Rashidi (Georgia Institute of Technology) for giving me the aspiration and courage to reach the accomplishment of this research.
Methane dry reforming (MDR) is a promising way for fuel production due to the mitigation of carbon dioxide (CO$_2$) and methane (CH$_4$) emissions, as well as tackling global warming. Recently, dielectric barrier discharge (DBD) has received much attention for greenhouse-gas conversion. This study is divided into two main parts. In the first part, the feasibility of the main reactions in MDR as well as the key reactions generating solid carbon was investigated. A carbon-free MDR is practically possible by increasing the temperature higher than 1173 K at the atmospheric pressure, yielding a considerable amount of syngas with hydrogen to carbon monoxide ratio of unity (H$_2$/CO=1) suitable for downstream Fischer–Tropsch synthesis. A thermodynamic analysis was also performed for oxidative MDR to identify the condition for syngas production with no carbon deposition, with the minimum loss of syngas and a higher reactant conversion at a lower temperature. In the second part of the work, extensive laboratory and modeling studies were conducted to identify the effects of influential parameters (discharge power, CO$_2$/CH$_4$ ratio, gap spacing, and reactant flow rate) on DBD MDR in terms of reactant conversion, product distribution, discharge characteristics (including the reduced electric field, breakdown voltage, dielectric and gas capacitances, electron density, electron energy distribution function and mean electron energy) and energy efficiency. In the present study, CO$_2$/CH$_4$ ratio of 1, the flow rate of 50 ml/min, discharge gap of 1 mm, discharge power of 30 W and frequency of 10 kHz have been justified to present acceptable values of reactant conversion and yields of CO and H$_2$ as well as to maintain the H$_2$/CO ratio of close to unity (suitable for liquid fuel production) while maximizing the energy efficiency, conversion ability and production ability of H$_2$ and CO. Reactant dilution with coplasmagen gas, argon (Ar), facilitates the plasma generation due to their low breakdown voltage. Therefore, the effects of the diluent gas (Ar) on DBD MDR in terms of reactant conversion, product selectivity, discharge characteristics and energy efficiency were investigated. The results revealed that higher Ar dilution factor led to the greater performance and a further restriction of carbon deposition. To benchmark our model forecasts, we also presented an overview of reported conversions and energy efficiencies in literature, to show the potential for an enhancement in comparison with the state-of-the-art. However, adding Ar is not an economical approach to improve the efficiency of non-catalytic DBD MDR, due to increased energy consumption. Furthermore, a global kinetics model for Ar diluted DBD CH$_4$/CO$_2$ was proposed, and the kinetics behaviour was compared to the one for helium (He) diluted DBD MDR reported in the literature.
ABSTRAK

Pembentukan semula metana kering (MDR) adalah cara yang berpotensi untuk pengeluaran bahan api disebabkan oleh pengurangan karbon dioksida (CO\textsubscript{2}) dan pengeluaran metana (CH\textsubscript{4}), serta dapat menangani isu pemanasan global. Pada masa ini, pembuangan halangan dielektrik (DBD) telah menerima banyak perhatian sebagai kaedah penukaran gas rumah hijau. Pada bahagian pertama, kebolehupayaan tindak balas MDR serta tindak balas utama penjanaan karbon pepejal dikaji. MDR bebas karbon berkemungkinan boleh terhasil dengan meningkatkan suhu yang lebih tinggi daripada 1173 K pada tekanan atmosfera bagi menghasilkan sejumlah besar syngas dengan nisbah hidrogen kepada karbon monoksida (H\textsubscript{2}/CO=1) yang sesuai untuk sintesis hiliran Fischer-Tropsch. Analisis termodinamik dilakukan untuk MDR oksidatif bagi mengenalpasti keperluan pengeluaran syngas tanpa pemendapan karbon dengan jumlah minimum kehilangan syngas dan penukaran bahan tindak balas lebih tinggi pada suhu yang lebih rendah, Seterusnya dalam bahagian kedua, melalui kajian makmal dan pemodelan yang menyeluruh, kesan daripada parameter utama (kuasa pelepasan, nisbah dan kadar aliran bahan tindak balas CO\textsubscript{2}/CH\textsubscript{4}, jarak gas) pada DBD MDR dari segi penukaran bahan tindak balas, pengagihan produk, ciri-ciri pelepasan (termasuk pengurangan medan elektrik, pengirangan voltan, kepadatan elektron, fungsi pengagihan tenaga elektron dan purata tenaga elektron) dan kecekapan tenaga dikaji. Dalam kajian ini mendapati nisbah CO\textsubscript{2}/CH\textsubscript{4} kepada 1, dengan kadar aliran 50 ml/min, jarak pengeluaran 1 mm, kuasa pelepasan 30 W dan frekuensi pada 10 kHz memberikan nilai pertukaran bahan kajian dan penghasilan CO dan H\textsubscript{2} yang boleh diterima di mana nisbah H\textsubscript{2}/CO menghampiri penyatuan (sesuai untuk penghasilan cecair minyak) dengan memaksimumkan kecekapan tenaga, keupayaan penukaran dan penghasilan H\textsubscript{2} and CO. Bahan tindak balas pencair dengan gas koplasmagen, argon (Ar), memudahkan penghasilan plasma akibat voltan pecahan rendah. Oleh itu, kesan gas pencair (Ar) pada DBD MDR dari segi penukaran bahan tindak balas, pemilihan produk, ciri-ciri pelepasan dan kecekapan tenaga telah dikaji. Keputusan menunjukkan bahawa lebih tinggi faktor pencair Ar membawa kepada peningkatan prestasi dan lanjutan pada sekatan pemendapan karbon. Sebagai penandaaras model ramalan, tinjauan dari laporan ilmiah mengenai penukaran dan kecekapan tenaga bagi menunjukkan peningkatan potensi berbanding tahap pencapaian dibentang. Walau bagaimanapun, menambah Ar bukan satu pendekatan ekonomi untuk meningkatkan kecekapan bukan pemangkin DBD MDR kerana ia meningkatkan penggunaan tenaga. Oleh yang demikian, model kinetik global untuk DBD dicairkan Ar, CH\textsubscript{4}/CO\textsubscript{2} adalah dicadangkan dan perbandingan tingkah laku kinetik dengan DBD MDR dicairkan helium (He) berdasarkan kajian lepas yang dilaporkan.
TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xx
LIST OF SYMBOLS xxii
LIST OF APPENDICES xxvi

1 INTRODUCTION 1
1.1 Natural Gas the Most Available Basic Fossil-Fuel 1
1.2 Background of Syngas Production 4
1.3 Problem Statement 7
1.4 Hypothesis 10
1.5 Objectives of the Research 11
1.6 Scopes of Research 12
1.7 Expected Contribution 13
1.8 Organization of the Thesis 14

2 LITERATURE REVIEW 16
2.1 Introduction 16
2.2 Syngas Applications 17
2.3 Different Industrial Approaches of Syngas Production 18
 2.3.1 Coal Gasification 19
2.3.2 Partial Oxidation of Heavy Oils 20
2.3.3 Reforming of NG 21
 2.3.3.1 Steam Reforming of NG 21
 2.3.3.2 Partial Oxidation of NG 23
 2.3.3.3 Combined Reforming of NG 24
 2.3.3.4 Single Auto-thermal Reforming 25
 2.3.3.5 CO₂ Reforming of Methane (MDR) 27
2.4 Thermodynamic of CO₂ and CH₄ Combination 29
2.5 Background of Plasma 31
2.6 Types of Plasmas 32
2.7 Applications of Different Plasmas 34
2.8 Plasma Generation 35
 2.8.1 Constant Direct Current (DC) Plasma 36
 2.8.1.1 Glow Discharge 37
 2.8.1.2 Atmospheric-Pressure Plasma Jet (APPJ) 38
 2.8.1.3 Arc Discharges and Gliding Arc Discharges (GAD) 39
 2.8.1.4 Corona Discharges 40
 2.8.2 High Frequency Plasma 43
 2.8.3 AC Potential or Pulsed DC Plasma 45
 2.8.4 Overview of Dielectric Barrier Discharge (DBD) 46
 2.8.4.1 Breakdown in Dielectric Barrier Discharge 48
 2.8.4.2 Efficiency of a DBD 50
 2.8.5 Characteristics of Different Non-thermal Plasmas 51
 2.8.6 Reactions in Plasma 52
2.9 Overview of Plasma-Assisted MDR with CO₂ 55
2.10 Addition of Diluent Gas to the Reactants 57
2.11 Kinetics Model of MDR 60

3 RESEARCH METHODOLOGY 64
3.1 Research Design 64
3.2 Thermodynamic Analysis 66
3.3 Experimental Section
3.3.1 Materials of Research 68
3.3.2 Reactor Design 68
3.3.3 Experimental Rig Design and Installation 69
 3.3.3.1 Gas Chromatography Analysis of Products Composition 71
 3.3.3.2 Power Supply 72
 3.3.3.3 Oscilloscope 73
3.3.4 Evaluation Parameters 74
 3.3.4.1 Calculation of Discharge Power 74
 3.3.4.2 Reactor Performance Parameters 77
 3.3.4.3 Fourier Transform Infrared Spectroscopy (FTIR) 79
3.3.5 Investigation of CO₂ Reforming of CH₄ in the Presence of Ar in the Blank DBD Reactor 79
3.3.6 Derivation of the Reaction Kinetics Model for CH₄/CO₂/ Diluent 80

4 THERMODYNAMIC ANALYSIS OF CARBON DIOXIDE REFORMING of METHANE IN VIEW OF SOLID CARBON FORMATION 82
4.1 Introduction 82
4.2 Mathematical Modelling 83
4.3 Results and Discussion 86
 4.3.1 Feasible Reactions 86
 4.3.2 Effect of Temperature and CO₂/CH₄ Ratio on Equilibrium Reactant Conversion and Product Distribution 89
 4.3.2.1 Methane Conversion 89
 4.3.2.2 Carbon Dioxide Conversion 92
 4.3.2.3 Syngas Production 94
 4.3.2.4 Carbon Production 100
 4.3.2.5 Water Production 103
 4.3.2.6 Ethylene and Ethane Production 105
4.3.2.7 Methanol and DME Production 108
4.3.3 Effect of Pressure on Reactant Conversion and Product Distribution during MDR 111
4.3.4 Effect of O₂ Addition in MDR 113
4.4 Summary 119

5 REACTIVITY OF MDR IN THE ABSENCE AND PRESENCE OF DILUENT GASSES USING DIELECTRIC BARRIER DISCHARGE 122

5.1 Introduction 122
5.2 Reaction Pathways in CO₂/CH₄ Mixture 125
5.3 Effects of Process Parameters on the Undiluted MDR DBD Performance 127
 5.3.1 CO₂/CH₄ Ratio Study on DBD Performance 127
 5.3.1.1 Effect of CO₂/CH₄ Ratio on the Discharge Characteristics of DBD MDR 128
 5.3.1.2 Effect of CO₂/CH₄ Ratio on Reactant Conversion 135
 5.3.1.3 Effect of CO₂/CH₄ Ratio on Product Distribution 140
 5.3.1.4 Effect of CO₂/CH₄ Ratio on Energy Efficiency 144
 5.3.2 Gap Distance and Flow Rate Study on the DBD Performance 146
 5.3.3 Discharge Power Study on DBD Performance 153
5.4 MDR in the Presence of Argon Using Dielectric Barrier Discharge 160
 5.4.1 Reaction Mechanism in CO₂/CH₄/Ar DBD 161
 5.4.2 Electrical Characteristics of the Discharge 164
 5.4.2.1 Electrical Waveforms 165
 5.4.2.2 Energy Transfer Efficiency for MDR as a Function of Ar Content 170
 5.4.2.3 Lissajous Figures for CO₂/CH₄ Mixture Diluted with Different Ar Contents 171
 5.4.2.4 Breakdown Voltages for CO₂/CH₄
Mixture Diluted by Different Ar

Contents

5.4.3 Influence of Ar on Reactant Conversion and Main Products During the Time on Stream 173

5.4.4 Effect of Ar Content on CO₂ and CH₄ Conversions 179

5.4.5 Product Distribution in Ar Diluted DBD Dry Reforming of CH₄ 181

5.5 Effect of Ar content on the Energy Efficiency of MDR 184

5.5.1 Influence of Ar Content on Energy Efficiency for Bond Cleavage of CO₂ and CH₄ 191

5.5.2 Influence of SEI on the Reactant Loss (Converted Reactant) for Different Ar Contents 199

5.6 Summary 203

6 DERIVATION OF REACTION KINETICS OF MDR DILUTED WITH DIFFERENT Ar CONTENT 206

6.1 Introduction 206

6.2 Chemical Kinetics Model for Pollutant Removal Proposed in the Literature 207

6.3 Modified and Simplified Chemical Kinetics Model 209

6.3.1 Kinetics Model for the Ar Content < 50% 210

6.3.2 Kinetics Model for the Ar Content > 50% 213

6.4 Summary 221

7 CONCLUSION AND RECOMMENDATIONS 222

7.1 Conclusion 222

7.2 Recommendation 227

REFERENCES 229

Appendices A-D 248-275
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Characteristics of thermal and non-thermal plasmas (Fridman, 2008)</td>
<td>34</td>
</tr>
<tr>
<td>2.2</td>
<td>Characteristic parameters of different gas discharges (Eliasson and Kogelschatz, 1991)</td>
<td>51</td>
</tr>
<tr>
<td>2.3</td>
<td>The basic reactions in plasma processing (Fridman, 2008)</td>
<td>52</td>
</tr>
<tr>
<td>2.4</td>
<td>Experimental results of partial oxidation of methane in the presence of nitrogen (modified from Larkin et al. (2001))</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Reactions in MDR with CO₂</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Reactant conversions (X) and product yield (Y) for MDR with CO₂ using CO₂/CH₄ ratio of 1 at atmospheric pressure</td>
<td>91</td>
</tr>
<tr>
<td>4.3</td>
<td>Oxidation reactions in oxidative MDR</td>
<td>114</td>
</tr>
<tr>
<td>5.1</td>
<td>DBD discharge parameters for MDR with different CO₂/CH₄ ratios</td>
<td>129</td>
</tr>
<tr>
<td>5.2</td>
<td>E/N and gas temperature for various CO₂/CH₄ ratios</td>
<td>131</td>
</tr>
<tr>
<td>5.3</td>
<td>Reactions involved in CO₂ regeneration (*Reaction rate in [cm³/s.molecule²])</td>
<td>138</td>
</tr>
<tr>
<td>5.4</td>
<td>Atomic carbon balance and solid material retained on the reactor wall</td>
<td>142</td>
</tr>
<tr>
<td>5.5</td>
<td>CO/(C₂ + C₃ + C₄ + C₅ + C₆) ratio, H₂/CO ratio and solid material/feed retained on the reactor wall as a function of discharge power</td>
<td>157</td>
</tr>
<tr>
<td>5.6</td>
<td>Phase shift for various Ar contents in CO₂/CH₄ plasma discharges</td>
<td>169</td>
</tr>
<tr>
<td>5.7</td>
<td>Input power and energy transfer efficiency of undiluted and diluted CO₂/CH₄ DBD</td>
<td>171</td>
</tr>
<tr>
<td>5.8</td>
<td>Charges and capacitances for CO₂/CH₄ with different Ar contents</td>
<td>173</td>
</tr>
</tbody>
</table>
5.9 Minimum and breakdown voltages as a function of Ar content in the feed 175
5.10 Electrical discharge characteristics as a function of Ar content 178
5.11 Electron impact dissociation and ionization reactions in Ar diluted CO\textsubscript{2}/CH\textsubscript{4} plasma 183
5.12 Effect of Ar content on materials deposited on the wall of the plasma reactor and C, H and O balances 190
5.13 FTIR absorption band assignments for the Ar diluted and undiluted CO\textsubscript{2}/CH\textsubscript{4} feed mixture 192
5.14 Ranges of FTIR spectrum for Carbonyl derivatives (Bacher, 2000) 193
5.15 Comparison of DBD reactor performance and energy efficiency for diluted and undiluted CO\textsubscript{2}/CH\textsubscript{4} mixtures 202
6.1 Parameters of the global kinetics model for CH\textsubscript{4}/CO\textsubscript{2}/Ar DBD in this study 219
6.2 Parameters of global kinetics model for CH\textsubscript{4}/CO\textsubscript{2}/He DBD (Taken from the study by Goujard et al. (2011)) 220
6.3 Comparison of the energy cost against the reactant concentration for Ar diluted and He diluted CO\textsubscript{2}/CH\textsubscript{4} DBD plasma 220
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>World NG reserves by geographic region, January 2011 (Vera J., 2011)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Organization of the thesis</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Main applications of syngas</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Steam reforming of methane for methanol production</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Combined reforming of methane (Nexant ChemSystems, 2005)</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Auto-thermal reforming of methane (Nexant ChemSystems, 2005)</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagram of voltage-current properties for different types of DC discharges (Conrads and Schmidt, 2000)</td>
<td>36</td>
</tr>
<tr>
<td>2.6</td>
<td>Atmospheric pressure glow discharge (APGD) in a tube (Fridman, 2008)</td>
<td>37</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic diagram of an atmospheric pressure plasma jet (Li et al., 2009)</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>A photo image of a gliding arc discharge in a parallel flow reactor (Fridman et al., 1998)</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic diagram of different corona discharge reactors a) Point to plate, b) point to point, and c) Coaxial wire-cylindrical configuration, source: (Chang et al., 1991)</td>
<td>42</td>
</tr>
<tr>
<td>2.10</td>
<td>Electron avalanche, electrons, atoms or molecules (Fridman, 2008)</td>
<td>43</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic diagram of a microwave chamber reactor taken from (Tendero et al., 2006)</td>
<td>45</td>
</tr>
<tr>
<td>2.12</td>
<td>Conventional DBDs configurations (Kogelschatz, 2003)</td>
<td>48</td>
</tr>
</tbody>
</table>
2.13 Illustration of a breakdown gap with avalanche phenomenon (Fridman et al., 2005)

3.1 Flow chart of general research methodology

3.2 Schematic diagram of a plasma reactor

3.3 Experimental rig for MDR with CO₂

3.4 Erected experimental rig used in this study a) DBD plasma reactor, b) Plasma rig from above, and c) Plasma rig from side view

3.5 Arrangement of the high voltage dividing capacitor and charge sampling capacitors for CTP-2000K power supply

3.6 Electrical characteristics for DBD in CO₂/CH₄ mixture diluted with 30% (vol.%) Ar; a) Lissajous figure, b) Voltage and current waveforms versus time (P = 30 W; Gap discharge = 1 mm; Total flow rate = 50 cc/min)

4.1 Equilibrium constants of reactions involving in CH₄-CO₂ reaction at different temperatures and atmospheric pressure

4.2 CH₄ equilibrium conversion as a function of temperature and CO₂/CH₄ ratio at 1 atm n(CH₄ + CO₂) = 2 kmol

4.3 CO₂ equilibrium conversion as a function of temperature and CO₂/CH₄ ratio at 1 atm for n(CH₄ + CO₂) = 2 kmol

4.4 Moles of H₂ as a function of temperature and CO₂/CH₄ ratio at 1 atm for n(CH₄ + CO₂) = 2 mol

4.5 Moles of CO as a function of temperature and CO₂/CH₄ ratio at 1 atm for n(CH₄ + CO₂) = 2 mol

4.6 H₂/CO ratio as a function of temperature (573-823 K) and CO₂/CH₄ ratio at 1 atm for n(CH₄ + CO₂) = 2 mol

4.7 Moles of carbon as a function of temperature and CO₂/CH₄ ratio at 1 atm for n(CH₄ + CO₂) = 2 mol

4.8 Moles of water as a function of temperature and CO₂/CH₄ ratio at 1 atm for n(CH₄ + CO₂) = 2 mol

4.9 Moles of C₂H₆ as a function of temperature and CO₂/CH₄ ratio at 1 atm for n(CH₄ + CO₂) = 2 mol

4.10 Moles of C₂H₄ as a function of temperature and CO₂/CH₄ ratio at 1 atm for n(CH₄ + CO₂) = 2 mol

4.11 Moles of methanol as a function of temperature and CO₂/CH₄ ratio at 1 atm for n(CH₄ + CO₂) = 2 mol
4.12 Moles of DME as a function of temperature and CO₂/CH₄ ratio at 1 atm for \(n^3(\text{CH}_4 + \text{CO}_2) = 2 \) mol

4.13 The effect of pressure on a) equilibrium conversion of reactants and products distribution for \(\text{CO}_2/\text{CH}_4 = 1 \) and 1173 K and \(n^3(\text{CH}_4 + \text{CO}_2) = 2 \) mol and on b) solid carbon

4.14 Equilibrium conversion of reactants and product distribution as a function of temperature and \(\text{O}_2/\text{CH}_4 \) ratio at 1 atm and \(\text{CO}_2/\text{CH}_4 = 1 \) for \(n^3(\text{CH}_4 + \text{CO}_2 + \text{O}_2) = 2 \) mol: (a) \(\text{CH}_4 \) conversions; (b) \(\text{CO}_2 \) conversion; (c) Moles of \(\text{H}_2 \); (d) Moles of \(\text{CO} \); (e) Moles of water; and (f) \(\text{H}_2/\text{CO} \) ratio

4.15 Moles of solid carbon as a function of temperature for different \(\text{O}_2/\text{CH}_4 \) ratios at 1 atm and \(n^3(\text{CH}_4 + \text{CO}_2 + \text{O}_2) = 2 \) mol

5.1 Lissajous figures of the discharge in various \(\text{CH}_4/\text{CO}_2 \) mixtures. Power, 30 W; frequency, 10 kHz; flow rate, 50 ml/min; gap, 1 mm; discharge length, 20 cm

5.2 Electron density as a function of \(\text{CO}_2/\text{CH}_4 \) molar ratio in the \(\text{CO}_2/\text{CH}_4 \) DBD plasma

5.3 Discharge current and voltage against \(\text{CO}_2/\text{CH}_4 \) ratio

5.4 Energy loss coefficients of electron impact dissociation and ionization of \(\text{CH}_4 \) and \(\text{CO}_2 \)

5.5 EEDF for MDR at different \(\text{CO}_2/\text{CH}_4 \) ratios

5.6 Mean electron energy as a function of reduced electric field for \(\text{CO}_2/\text{CH}_4 \) mixture plasmas. a) In the entire range from 0-500 Td, b) in the range of 177-232 Td. The data presented by symbols on the lines corresponds to the experimental results of the present study

5.7 Rates of conversions and absolute conversions of \(\text{CO}_2 \) and \(\text{CH}_4 \) along with the rate of \(\text{CO} \) production (\(\mu \)mol/min)

5.8 Reaction rate coefficients for electron attachment to \(\text{CO}_2 \), electron impact dissociation and ionization for \(\text{CO}_2 \) and \(\text{CH}_4 \)

5.9 Product selectivity against \(\text{CO}_2/\text{CH}_4 \) ratio

5.10 Hydrocarbon selectivity against \(\text{CO}_2/\text{CH}_4 \) ratio

5.11 Yield of products as a function of \(\text{CO}_2/\text{CH}_4 \) molar ratio
5.12 a) CO yield versus CH$_4$ and CO$_2$ conversions and, b) H$_2$ yield versus CH$_4$ conversion (the values next to the points illustrate the CO$_2$/CH$_4$ ratios) 143

5.13 H$_2$/CO ratio as a function of CO$_2$/CH$_4$ ratio 144

5.14 Effect of CO$_2$/CH$_4$ ratio on a) reactant conversion ability, and b) production ability 145

5.15 The effects of total flow rate and discharge gap on the conversion of a) CH$_4$, and b) CO$_2$ 147

5.16 Flow rate as a function of SEI 147

5.17 Effect of flow rate on the selectivity of a) H$_2$, b) CO, c) C$_2$, d) C$_3$, e) C$_4$, and f) carbon balance 148

5.18 Solid material retained on the reactor wall against flow rate and gap 149

5.19 Yields of a) H$_2$ and b) CO as a function of total flow rate and gap distance 149

5.20 a) Conversion ability of CH$_4$ and CO$_2$, b) specific energy consumption and c) energy efficiency as a function of flow rate and gap distance 150

5.21 Production ability of a) H$_2$, b) CO, c) C$_2$, d) C$_3$ and e) C$_4$ against flow rate 152

5.22 Effect of discharge power on SEI and temperature, b) effect of SEI on reactant conversion, and c) effect of discharge power on the reactant conversion. Feed flow rate, 50 ml/min; CO$_2$/CH$_4$, 1; frequency, 10 kHz 154

5.23 Product distribution (selectivity) as a function of discharge power 156

5.24 Effect of discharge power on yields of products. Feed flow rate, 50 ml/min; CO$_2$/CH$_4$, 1; frequency, 10 kHz 158

5.25 Energy efficiency against discharge power 158

5.26 a) Conversion ability and b) production ability against discharge power 160

5.27 Images of a) uniform diffuse discharge mode and b) filamentary discharge (Xue-Chen et al., 2007) 165

5.28 Discharge current and applied voltage waveforms of diluted CO$_2$/CH$_4$ with a) 0%, b) 10%, c) 50%, and d) 80% Ar 167

5.29 Comparison of applied voltage and average current waveforms of CO$_2$/CH$_4$ mixtures in the absence of Ar and using 10%, 50% and 80% Ar 168
5.30 Discharge current, applied and discharge voltages for CO$_2$/CH$_4$ mixtures diluted with various Ar content

5.31 Lissajous figures for the various concentrations of CH$_4$/CO$_2$/Ar mixtures plasmas

5.32 Effective Townsend ionization coefficient as a function of reduced electric field. The hollow circles are representative of the experimental data

5.33 Mean electron energy as a function of reduced electric field. The hollow circles are representative of the experimental data

5.34 EEDF for different Ar diluted mixture against Electron energy

5.35 Stability for MDR in the presence of 50% Ar and in the absence of diluent; (a) CH$_4$ conversion, (b) CO$_2$ conversion, (c) H$_2$ yield; and (d) CO yield

5.36 Influence of Ar content on CO$_2$ and CH$_4$ conversion. Power, 30 W; total flow rate, 50 CC/min; CO$_2$/CH$_4$ ratio, 1; gap, 1 mm

5.37 Influence of Ar content on CO$_2$ and CH$_4$ conversion rate and CO and H$_2$ production rates

5.38 Reaction rate constants for CO$_2$/CH$_4$ diluted with different Ar contents

5.39 Influence of Ar content on the product selectivities. Power, 30 W; total flow rate, 50 CC/min; CO$_2$/CH$_4$ ratio, 1; gap, 1 mm

5.40 Influence of Ar content on the hydrocarbon products selectivities. Power, 30 W; total flow rate, 50 CC/min; CO$_2$/CH$_4$ ratio, 1; gap, 1 mm

5.41 Influence of Ar content on the product yields. Power, 30 W; total flow rate, 50 ml/min; CO$_2$/CH$_4$ ratio, 1; gap, 1 mm

5.42 Influence of Ar content on H$_2$/CO ratio. Power, 30 W; total flow rate, 50 CC/min; CO$_2$/CH$_4$ ratio, 1; gap, 1 mm

5.43 FTIR Spectra for (a) 50% Ar diluted CO$_2$/CH$_4$ feed system; (b) Undiluted CO$_2$/CH$_4$ feed system

5.44 Influence of Ar content on conversion ability

5.45 Influence of Ar content on production abilities of different products. Power, 30 W; total flow rate, 50 CC/min; CO$_2$/CH$_4$ ratio, 1; gap, 1 mm. The open triangles and circles are corresponding to production abilities for H$_2$ and CO (Goujard et al., 2011)
5.46 Energy efficiency versus Ar contents calculated based on Eq.3.16 197
5.47 Ratio of practical energy efficiency to theoretical energy efficiency for cleavage of C-H bonds in CH₄ and C=O bonds in CO₂ 198
5.48 Variation of converted CH₄ and CO₂ with SEI for CO₂/CH₄/Ar mixture DBD plasma 200
6.1 Conversions of a) CH₄ and b) CO₂ as a function of energy transferred to the feed gases containing 0% to 50% Ar (Bullets and the solid lines are indicatives of the experimental data and the simulated data) 212
6.2 Forecasted energy cost values for CO₂/CH₄ mixture diluted with Ar content varied from 55% to 80% (vol.%) according to the global kinetics model 216
6.3 The energy cost (β) value against the CH₄ and CO₂ concentrations in the DBD 217
6.4 Forecasted behaviour of a) CH₄, b) CO₂ conversions upon variation of energy transfer to the gas 218
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternative current</td>
</tr>
<tr>
<td>APG</td>
<td>Atmospheric pressure glow</td>
</tr>
<tr>
<td>APGD</td>
<td>Atmospheric pressure glow discharge</td>
</tr>
<tr>
<td>APPJ</td>
<td>Atmospheric pressure plasma jet</td>
</tr>
<tr>
<td>bpd</td>
<td>Barrel per day</td>
</tr>
<tr>
<td>CCP</td>
<td>Capacitively coupled plasma</td>
</tr>
<tr>
<td>DBD</td>
<td>Dielectric barrier discharge</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethyl ether</td>
</tr>
<tr>
<td>EEDF</td>
<td>Electron energy distribution function</td>
</tr>
<tr>
<td>EOR</td>
<td>Enhanced oil recovery</td>
</tr>
<tr>
<td>FID</td>
<td>Flame ionization detector</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transmission infra-red</td>
</tr>
<tr>
<td>FTS</td>
<td>Fischer-Tropsch synthesis</td>
</tr>
<tr>
<td>GAD</td>
<td>Gliding arc discharge</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GTL</td>
<td>Gas-to-liquid</td>
</tr>
<tr>
<td>ICP</td>
<td>Inductively coupled plasma</td>
</tr>
<tr>
<td>LFG</td>
<td>Landfill gas</td>
</tr>
<tr>
<td>MDR</td>
<td>Methane dry reforming</td>
</tr>
<tr>
<td>NG</td>
<td>Natural gas</td>
</tr>
<tr>
<td>OCM</td>
<td>Oxidative coupling of methane</td>
</tr>
<tr>
<td>PTFE</td>
<td>Poly tetra fluoro ethylene</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RWGS</td>
<td>Reverse water-gas shift reaction</td>
</tr>
</tbody>
</table>
SEI — Specific energy input
SPARG — Sulfur-passivated reforming
SRK — Soave-Redlich-Kwong
TCD — Thermal conductivity detector
Td — Townsend (unit of electric field)
VOC — Volatile organic compounds
WGS — Water gas shift
LIST OF SYMBOLS

\(a \) — Acceleration term

\(a_{ik} \) — Number of atoms of the \(k^{th} \) element present in each molecule of species \(i \)

\(A, B \) — Stand for atoms in Chapters 2 and 5, \(B \) is concentration of Ar and carbonaceous species in Chapter 6.

\(A_2, B_2 \) — Stands for molecules in Chapter 2

\(A_k \) — Total mass of \(k^{th} \) element in the feed

\(C_d \) — Dielectric capacitance (F)

\(C_{\text{eff}} \) — Effective capacitance (F)

\(C_g \) — Gas capacitance (F)

\(C_t \) — Total capacitance (F)

\(d \) — Distance between the electrodes (mm)

\(D_e \) — Diffusion coefficient

\(e \) — Electron charge (Coulomb)

\(E \) — Activation energy (J/mol)

\(E_e \) — Average bulk electric field (V/m)

\(E/N_X \) — Average reduced electric field (Td)

\(f \) — Frequency (Hz)

\(f_{i}^{*g} \) — Standard-state fugacity of pure component \(i \) in the gas phase

\(f_{i}^{*s} \) — Standard-state fugacity of pure component \(i \) in the solid phase

\(\hat{f}_{i}^{g} \) — Fugacity of species \(i \) in gas system

\(\hat{f}_{i}^{s} \) — Fugacity of species \(i \) in the solid phase

\(\Delta G_{fC}^{*s} \) — Standard Gibbs energy of formation for solid graphite carbon (kJ/mol)

\(\Delta G_{f_i}^{*g} \) — Standard Gibbs free energy of formation for species \(i \) in the gas phase (kJ/mol)
\(\Delta G_r \) — Free energy change of reaction (kJ/mol)

\(\overline{G_C^S} \) — Partial molar Gibbs free energy of carbon in a solid state (kJ/mol)

\(\overline{G_C^g} \) — Partial molar Gibbs free energy of carbon in a gas state (kJ/mol)

\(\overline{G_i^g} \) — Partial molar Gibbs free energy of species i in a gas phase (kJ/mol)

\(\overline{G_i^s} \) — Partial molar Gibbs free energy of species i in a solid phase (kJ/mol)

\(G_{t(T,P)} \) — Total Gibbs free energy of two phase (kJ)

\(G_{tg(T,P)} \) — Total Gibbs free energy in gas phase (kJ)

\(G_{ts(T,P)} \) — Total Gibbs free energy in solid phase (kJ)

\(G_C^s \) — Standard Gibbs free energy of pure solid carbon (kJ/mol)

\(G_i^{s,g} \) — Standard Gibbs free energy of elements i in a gas phase (kJ/mol)

\(G_i^{s,g} \) — Standard Gibbs free energy of species i in a gas phase (kJ/mol)

\(G_i^{s,s} \) — Standard Gibbs free energy of species i in a solid phase (kJ/mol)

\(I_g \) — Average discharge current (mA)

\(I_p \) — Peak current (mA)

\(J_{\text{collision}} \) — Collision term corresponding to the changes in electron energy distribution

\(I_{pk-pk} \) — Peak to peak current (mA)

\(k_b \) — Boltzmann constant

\(K \) — Reaction rate constant in Chapters 5 and 6, heat conductivity in appendix D

\(l \) — Length of reactor (cm)

\(k_0 \) — Pre-exponential constant in Arrhenius equation

\(k_{\text{dissociation}}^X \) — Reaction rate constant for dissociation of X species

\(m, n \) — Indices for reaction rate based on general power law model

\(m_e \) — Mass of electron (kg)

\(M_e \) — Molar mass of electron (g/mol)

\(M_w \) — Molecular weight (g/mol)

\(M^* \) — Excited species such as He*, Ar*, N2*, and N*

\(N \) — Number of species in a reaction system
\(n_e \) — Electron density \((1/\text{m}^3)\)

\(n_i \) — Moles of species \(i \) \((\text{mol})\)

\(n_C \) — Moles of carbon \((\text{mol})\)

\(N_X \) — Gas density \((1/\text{m}^3)\)

\(P \) — Pressure of the reaction system \((\text{atm})\)

\(P_l \) — Product in chapter 6 \((P_1, P_2, \ldots)\)

\(P^0 \) — Standard-state pressure \((1 \text{ atm})\)

\(P_{\text{ave}} \) — Average electrical power \((\text{W})\)

\(P_{\text{dis}} \) — Discharge power \((\text{W})\)

\(P_{\text{input}} \) — Input power \((\text{W})\)

\(P_{\text{instant}} \) — Instantaneous input power \((\text{W})\)

\(Q_d \) — Discharged charges per half cycle \((\text{nC})\)

\(Q_{\text{pk-pk}} \) — Peak-peak charges per half cycle \((\text{nC})\)

\(Q_t \) — Total charges \((\text{nC})\)

\(r \) — Reaction rate

\(r_i \) — Radius of the high voltage electrode \((\text{mm})\)

\(r_o \) — Radius of the outer electrode \((\text{mm})\)

\(R \) — Molar gas constant \((\text{kJ/mole.K})\) in Chapter 4 and radical concentration in Chapter 6

\(R_{\text{dissociation}}^X \) — Reaction rate for dissociation of species \(X \) \((\text{m}^3/\text{s})\)

\(S \) — Solid surface sites in Chapters 2 and 4, reaction step in Chapter 6 \((S_1, S_2, \ldots)\)

\(T \) — Temperature of the reaction system \((\text{K})\)

\(T_e \) — Temperature of electron \((\text{eV})\)

\(T_g \) — Gas temperature \((\text{K})\)

\(T_{\text{E0}} \) — Threshold energy of electron-molecule impact \((\text{eV})\)

\(T_{\text{E1}} \) — Threshold energy of molecule/atom-molecule/atom impact \((\text{eV})\)

\(T_{\text{HV}} \) — High voltage electrode temperature \((\text{K})\)

\(T_w \) — Wall temperature of the DBD reactor

\(v \) — Electron drift velocity \((\text{m/s})\)

\(V_B \) — Breakdown voltage \((\text{kV})\)

\(V_C \) — Instantaneous voltage across the capacitor \((\text{V})\)

\(V_g \) — Discharge voltage \((\text{kV})\)
V_{Min} — Minimum voltage (kV)

V_{pk} — Peak voltage (kV)

V_{pk-pk} — Peak to peak voltage (kV)

x — Reactant (CO_2/CH_4) conversion (%)

X — Concentration of CH$_4$/CO$_2$ in Chapter 2 and 6 at time t

X_0 — Initial concentration of CH$_4$/CO$_2$ in Chapter 2 and 6

y_i — Mole fraction of species i in a gas phase

Greek symbols

α — First Townsend ionization coefficient

β — Energy cost

ϵ — Mean electron energy (eV) in Chapter 5, efficiency of the reactant conversion in the plasma zone in appendix D

ΔT_g — Average increase in gas temperature (K)

ϕ — Shift phase between current and voltage (Radian)

$\hat{\phi}_i$ — Fugacity coefficient of species i

γ_i — Stoichiometric coefficient of species i

λ_k — Lagrange multiplier

η — Electron attachment coefficient

μ_e — Electron drift mobility ($m^2/V.s$)

μ^S_C — Chemical potential of carbon in a solid phase

μ^θ_C — Chemical potential of carbon in a gas phase

μ^S_i — Chemical potential of species i in a solid phase

μ^θ_i — Chemical potential of species i in a gas phase

ρ_{gas} — Gas density (kg/m3)

τ — Residence time (s)

ω — Angular velocity (Radian/s)
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Publications</td>
<td>248</td>
</tr>
<tr>
<td>B</td>
<td>Equilibrium Constants of Different Reactions in MDR</td>
<td>250</td>
</tr>
<tr>
<td>C</td>
<td>Analytical Equipment</td>
<td>256</td>
</tr>
<tr>
<td>D</td>
<td>Calculation of Electrical Characteristics in AC Circuits</td>
<td>265</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Natural Gas the Most Available Basic Fossil-Fuel

Natural gas (NG) is an abundant, inexpensive and clean fuel. It has been formed during millions of years, under the earth’s ground within the rocks surfaces or shelves. The principal components of NG are CH₄ and CO₂. The composition of the substances in NG is different and related to the type of the reservoir rocks and the type of the organic material. There are approximately 5,000 trillion cubic feet NG reservoirs equal to roughly 47% of the world's petroleum (Mooday, 1998). It is also mentioned that there are large resources of methane hydrates isolated in the vast regions of the subarctic tundra and under the seas where the continental shelves exist. These kinds of hydrocarbon resources will finally be exploited, although it will be more difficult to utilize them due to exhausting procedures such as drilling and extraction (Olah et al., 2006).

Figure 1.1 depicts the geographical regions of world proven natural gas reserves, of which substantial extents are reported in Middle Eastern and Eurasian countries.
In spite of availability and low-cost of methane, the hazardous specification of natural gas is the reason for being economically unfeasible to transport over far distances. For more descriptions, it needs to be compressed and pumped through the long pipe lines, which is expensive and rarely practical. Furthermore, methane has hazardous physical properties to make it difficult to handle. It remains in the gas form; even in very high pressure is impossible to be liquefied. However, the significant attention of researchers to natural gas is attributed to search for the substituents to replace petroleum-based resources and for producing energy with low carbon emissions. Such an attention led to the deep and serious research, especially among developed countries (Klemm et al., 2005; Klemm et al., 2006; Simkovic, 2008). Furthermore, independent scarcity of oil in the near future is stimulating the governments to devote the research for a substituent that can compensate the shortcoming of oil-based fuels. In comparison, natural gas reserves are not as valuable as the petroleum reservoirs. Due to this fact, there is no sufficient care of natural gas associated with petroleum reservoirs. While the highly precise petroleum is carefully under-exploited, the natural gas coupled with petroleum reservoirs is volatilized into the environment or burnt inside the flares. Providentially, this
The situation is increasingly changing to attract more attention to maintain the natural gas resources due to the enhanced demand of the market to hydrogen production. Among the common fossil-fuels, natural gas is the most proper for hydrogen production. It is worth noting that natural gas is a clean and environmentally friendly fossil-fuel while emitting low amounts of carbon to the atmosphere. Therefore, natural gas is largely distributed to homes for household consumption such as cooking and central heating. Moreover, natural gas has been utilizing in gas-fired power plants in order to generate electricity.

Methane is released from various natural and human-influenced resources. It has a capacity over 20 times greater than CO$_2$ to absorb and maintain the heat in the atmosphere. Landfills, coal mining, agricultural activities, waste water treatment and combustion systems are common examples of human-influenced sources. Since methane is the principal components of natural gas, it is very promising and efficient to utilize methane as a feedstock for production of highly valuable chemicals and clean fuels. In the case of CO$_2$, the flue gases of fossil-fuel based power plants, cement and steel factories produce a large amount of CO$_2$ and need significantly to be controlled. Carbon dioxide is used in flash drying, welding, brewing, enhanced oil recovery (EOR) and carbonated beverages. Moreover, it has been employed as chemical feedstock, inert gas, and as a supercritical fluid for solvent extraction. The major CO$_2$ sources are (Chapel et al., 1999):

1- CO$_2$ wells
2- Natural gas sweetening
3- Natural sources
4- Syngas production
5- Flue gases
6- Fossil fuel-fired power plants
7- Cement plants
8- Industrial furnaces
9- Lime kiln exhausts
10- Engine exhausts
The CO₂ released by the petrochemical plants can be recovered and utilized in the other industries. However, the amount of CO₂ produced by petrochemical industries is much higher than its consumption. According to aforementioned, since the most utilized feedstock for syngas production is currently CH₄, it plays a key role in the world's energy infra-structure. Moreover, CH₄ as a major contributor to the man-made greenhouse effect has attracted much attention since it can be converted into higher hydrocarbons and easily transportable liquids, such as methanol (CH₃OH), di-methyl ether (DME) and formaldehyde (HCHO). It is expected that methane will become increasingly important in the production of energy and chemicals during this century (Brown and Parkyns, 1991; Roth, 1994).

1.2 Background of Syngas Production

Syngas (synthesis gas), a versatile energy source, is the product of gasification or reforming of a carbon containing fuel such as coal, oil, natural gas, heavy residual fuel oil, gas oils, and biomass. Steam reforming of methane, the most preferred processes among the syngas production methods, contributes to 50% of global processes of hydrogen production. Nowadays, this figure touches 90% in the U.S. In this process, the reaction of natural gas (methane) with vaporized water in the presence of a metallic catalyst under high pressure and temperature generates syngas. During the past decades, heavier hydrocarbons up to naphtha have been employed as feedstock for syngas production over developed and selective catalysts (Olah et al., 2006).

Although the formation of syngas from oil has been well-established for a long time, is not permanent since it is not supposed to meet the market demand in the long term, due to deficiency of oil reservoirs. In fact, the feedstock for syngas production is related to available resources in different countries and the downstream application. For instance, in the USA, coal was used as a conventional feedstock to
generate syngas in 1940s (Mooday, 1998). At that time, natural gas due to being an inexpensive and efficient primary fuel source was introduced to the market and utilized in many plants such as methanol production units all over the world. In contrast to natural gas, the world’s coal reservoirs are extensive and accessible at a lower price. However, the syngas produced by coal contained a larger quantity of CO₂ compared to its counterpart produced by natural gas due to coal’s deficiency in hydrogen. Additionally, a great quantity of energy is required for removing or sequestering the produced CO₂, causing a large increase in the process cost (Neiva and Gama, 2010).

According to one estimation (Yamamura et al., 1982), the investment for a methane-based syngas unit is almost three times lower than that for a coal-based syngas plant. Therefore, the syngas with low H₂/CO ratio could not be appropriate when using as a feedstock in most of chemicals plants such as methanol production, and gradually, avoided by the chemical industries of this field. Hence, natural gas is the most favorable fossil-fuel for syngas production due to the production of cheapest syngas and highest hydrogen to carbon monoxide ratio, which reduces the formation of carbon dioxide as a by-product (Parmon et al., 1998).

The term syngas is derived from its usage as an intermediate for generation of synthetic natural gas and creating ammonia or methanol (Olsbye et al., 1997). The potential of syngas conversion into valuable chemicals provides an attractive substituent to petroleum-based fuels and organic products. It is employed as a suitable feedstock for producing various kinds of products such as a transport fuel and electricity. The energy density of syngas is about 50% of that of natural gas. As syngas mostly comprises of H₂, CO, CH₄ and CO₂, it has some heating value and is well-suited for using as either heating gas or as a building-block feedstock for downstream applications such as fuel and chemical production (Saeidi et al., 2014). The relative quantity of each species in the produced syngas depends on different parameters, such as type of feedstock, processing procedures and operation conditions. If syngas contains a large amount of nitrogen, this nitrogen should be removed. Since nitrogen and carbon monoxide have almost equal boiling points,
which are -195.79 °C and -191.5 °C, respectively, post-treating of syngas by cryogenic processing in order to recover pure carbon monoxide would be very difficult. The carbon monoxide with the purity in the order of 99% is a proper feedstock for using in industrial purposes. The process gas comprising of CO₂, H₂, CH₄ and N₂ can be further treated by a special purification method to separate H₂. Regardless of the end-use, the particle impurities should be removed from syngas in scrubbers or cyclones as a first step of gas purification. Afterward, the gas stream is directed to ultimate purification where CO and H₂ are separated. The production cost notably depends on the final separation technique. There are four main techniques for purification of the process gas:

1- Pressure swing adsorption (PSA)
2- Cryogenic purification
3- Salt solution absorption
4- Membrane separation

The pure H₂ and CO, then, can be mixed in an appropriate ratio for using in Fischer-Tropsch process or in the other desired chemical production. Considering the downstream application, the ultimate hydrogen to carbon monoxide ratio can be adjusted employing the water-gas shift reaction (Saeidi et al., 2014). Different qualitative analyses are required to select the most suitable and economic syngas production process for an especial application. Different downstream applications need different process criterion. Therefore, determination of the key factors, evaluation of the reaction process method and final gas processing techniques in detail are of great importance. When designing a syngas plant, some of the key factors such as unit capacity, feedstock accessibility, hydrogen to carbon monoxide ratio, and product purity are necessary to be determined since they strongly affect the reaction process design and the selection of the syngas production method.
1.3 Problem Statement

There are different basic methane reforming reactions for syngas production depending on the downstream objectives. Methane can be converted to hydrogen by steam reforming, partial oxidation and dry reforming or distinct combinations of these reforming reactions. Currently, syngas is mainly produced by methane-based steam reforming process. However, there are some inevitable drawbacks associated with steam-reforming of methane:

1- The stoichiometric H_2/CO ratio in the produced syngas by methane steam reforming is 3, which is higher than the value required by some downstream applications such as FTS (Eliasson et al., 2000; Li et al., 2007; Zhu et al., 2001).

2- Due to the endothermicity of the reaction of steam reforming of methane, a large amount of energy is needed, resulting in a costly and energy-intensive process. The amount of energy required by the reaction is generally supplied by burning the other fossil-fuels like methane or coal, which add greenhouse gases to the atmosphere.

3- The necessity to use a selective and efficient catalyst for steam reforming of methane lead to the great demand on the process management and on the reactant purification to avoid coke formation, sintering or poisoning of the catalytic materials, which are sometimes expensive and time-consuming. To minimize the carbon deposition on the catalyst, excess steam more than the stoichiometric value is added to the reaction system which itself leads to a higher operation cost.

4- Furthermore, a considerable amount of CO_2 (the greenhouse gas) is being produced in syngas and higher hydrocarbons production (Liu et al., 2003).

Partial oxidation of methane produces a theoretical H_2/CO ratio of 2, suitable value for many downstream synthesis processes such as methanol production. Partial oxidation of methane into syngas is traditionally performed catalytically and non-
catalytically. The catalytic process can be operated at the lower temperatures compared to non-catalytic counterpart, hence; it can be the most economical and efficient process for syngas production. However, the catalytic process is still under research on the laboratory scale, due to the instability function and short lifetime of the catalyst during the runs (Wu et al., 2005). In contrast, the non-catalytic methane partial oxidation process has been industrialized. It can operate at temperature and pressure of around 1300 °C and 30-100 atm, respectively. Thus, supplying high pressure and temperature lead to an expensive operation cost.

As aforementioned, the conventional syngas (hydrogen) production techniques are expensive, not environmentally friendly due to a large quantity of CO₂ emissions and not very energy efficient. Hence, discovering and selecting a friendly environmentally syngas production route is considered necessary. In last decades, from the standpoint of simultaneous mitigation of two undesirable and less valuable greenhouse gases (GHG) emissions, CH₄ and CO₂, it has been of interest to employ methane dry reforming (MDR). The feasible utilization of CH₄ and CO₂ to higher value-added products such as higher hydrocarbons, syngas and liquid oxygenates are being investigated (Eliasson et al., 2000; Istadi et al., 2005; Olsbye et al., 1997). Additionally, this process has the potential benefit of generating a H₂/CO ratio close to 1, a suitable ratio for production of oxygenates and long-chain hydrocarbons. Furthermore, it can be used in areas where water is not easily available (Olah et al., 2006). It is worth noting that biogas containing a substantial amount of CO₂ without pre-separation of CO₂ can be widely employed as the feedstock.

There are two major challenges concerning catalytic MDR by which the commercialization of this process can be limited: the first one is associated with the high temperature (>700 °C) requirement in order to reach the acceptable yield of syngas and reactant conversion. Supplying such a high temperature to break the strong C-H bonds of CH₄ in this quite endothermic reaction calls for a high-energy cost. The second one is the deposition of intensive carbon, which clogs the pores and rapidly deactivates the metal phase of the catalyst, particularly the surface of the non-noble metal catalyst. Thus, MDR is still under research at the laboratory scale.
The aforementioned challenges and defects associated with the current conventional techniques of CH$_4$ reforming into syngas production have attracted the researcher’s interest in a substitute reforming methods with lower reaction temperature and pressure, more active catalyst and decreased process cost. However, in the initial steps of development for a new technology, further technological research would be necessary to accomplish before the technology could be commercialized or introduced to the market.

There have been some investigations on the application of different kinds of plasma to break various molecular bonds since the 19th century. A Norwegian-British company Gasplus developed an environmentally friendly breakthrough for production of hydrogen and a high-grade carbon black via methane decomposition. This technique which is called Kverner process established in Norway in the late 1980s and has been industrialized since 1992 (Bromberg et al., 2001). In view of its advantages for on-board applications, eliminating CO$_2$ emissions and enhancing the energy efficiency are eminent. It can be also an advantageous step for representing the future’s electric cars for which only water vapour exists in the exhaust gas. Depending on the case of application, the plasma reactor can be fabricated in the scale ranging from a small device to a gas station or even an industrial plant.

Compliance with the request of exploiting syngas as a primary fuel would necessitate a large enhance in the syngas production capability. However, in view of the above, syngas production is expensive and introducing an efficient and cost-effective method as well as a smaller scale developed reactor design with higher performance compatible with the market demand seems to be a distinguished step in present fuel resources. It is interesting to note that in the majority of the published research, data regarding the production ability and energy efficiency of methane dry reforming (MDR) in dielectric barrier discharge (DBD) has not been reported. Therefore, calculations and comparison of the energy efficiency of the different plasma techniques in order to make the effective remedies for reduction of the gap between the experimental and industrial values seem necessary.
1.4 Hypothesis

One of the suggested approaches for the reactions to occur is generating abundant levels of free radicals, which in contact and collision to the other excited molecules or particles can produce a vast variety of products. It is proven that plasma technology can generate a huge amount of free radicals, which play an important role in oxidative and non-oxidative reactions. In fact, non-equilibrium plasma technology overcomes the disadvantages of the commercial and high-temperature methods because the major amount of the electrical energy is consumed for the formation of energetic electrons, which are responsible for breaking C-H bonds of methane instead of heating the gas (Olah et al., 2006). The potential of plasma reforming for syngas (or H₂) formation from natural gas (methane) has revealed a promising perspective for either on-board vehicles or stationary industrial application. Therefore, the necessity for H₂ storage and transport piping which both are costly and hazardous can be eliminated. The plasma reformer has the significant advantages of rapid start-up, compactness, light weight and low device cost.

In MDR, a dilution gas being chemically inactive is often introduced to the reactant mixture. Note that in the case of plasma, if the diluent gas does not activate CO₂ and CH₄, it cannot be a proper choice. Ar and He can affect the plasma discharge due to their lower breakdown voltages in comparison with the reactants of CH₄ and CO₂, which lead to the increased ionization and dissociation processes. Indeed, according to the literature (Avtaeva et al., 1997), rare gas atoms such as Ar and He can be excited to the metastable levels and ionized states, which are responsible for energy transfer in the plasma. The excitation and ionization process for the rare gas atoms (Ar and He) are listed as below (Avtaeva et al., 1997):

\[
\begin{align*}
\text{Ar} + e^- & \rightarrow \text{Ar}^* + e^- \quad (1.1) \\
\text{Ar} & \rightarrow \text{Ar}^+ + e^- \quad (1.2) \\
\text{He} + e^- & \rightarrow \text{He}^* + e^- \quad (1.3) \\
\text{He} & \rightarrow \text{He}^+ + e^- \quad (1.4)
\end{align*}
\]
In fact, addition of noble gases such as He or Ar causes a greater value for electron energy distribution function in the gas discharge state, resulting in more opportunities for inelastic impact of methane/carbon dioxide with the co-reactants and the other species (Pu et al., 2006). Hence, it is supposed that the ionization of CH$_4$ and CO$_2$ molecules in the presence of noble gases would become higher; and dissociation of CH$_4$ and CO$_2$ is faster.

A large number of studies about kinetics models of catalytic methane steam reforming (MSR) and MDR on a different catalyst at laboratory scale have been reported in the literatures (Bebelis et al., 2000; Xu and Froment, 1989). However, due to the difference between molecular and species interactions behavior in non-thermal plasma and thermal reactors, these kinetics models are not applicable and valid for MDR with CO$_2$ in non-thermal plasma reactors. In has been proven that reactions between free radicals govern the reaction mechanism in DBD plasma chemistry. In our work, CO$_2$ and CH$_4$ are introduced into the reactor with a dilution gas, which is itself a case under plasma. In this regard, presenting a kinetics model that can explain the behavior of MDR with CO$_2$ in the presence of a diluent in DBD reactor is considered to be useful.

1.5 Objectives of the Research

Considering the main problems regarding the traditional syngas production, the purpose of this investigation is to evaluate the feasibility of producing reasonable quantities of syngas by MDR using a DBD plasma reactor. The main objectives of this study focus on:

1- Performing thermodynamic analysis of possible reactions in CO$_2$ reforming of CH$_4$ in order to feasibility study of producing syngas, hydrocarbon, and methanol by MDR.
2- Investigating the effect of important parameters of CO$_2$/CH$_4$ ratio, residence time (by varying gap distance and flow rate), and discharge power on the conversion, product distribution and energy efficiency of the plasma performance.

3- Evaluating the electrical discharge characteristics (such as voltage and current waveforms, transferred charges and total capacitance) of CO$_2$/CH$_4$ reactant mixture diluted with Ar in DBD.

4- Determining the effects of Ar on reactant conversion, product distribution, energy efficiency and production ability in MDR using DBD-plasma reactor and comparing the results with that of conventional approach.

5- Deriving a global reaction kinetics model for Ar diluted MDR.

1.6 Scopes of Research

The scopes of this research are focused on the procedures and concepts resulting in more findings about MDR into syngas via a DBD plasma reactor:

1- Thermodynamic equilibrium analysis of possible reactions in MDR with CO$_2$ into syngas and hydrocarbons.

2- Set up a DBD-plasma rig consisting of the electrical discharge diagnostics, flow measurement instruments, plasma generator and gas product analysing to conduct experiments.

3- The appropriate values of the dominant process parameters such as CO$_2$/CH$_4$ ratio, discharge power and residence time (by varying gap distance and flow rate) in terms of the energy efficiency, carbon deposition and reaction performance are determined.
4- Effect of Ar introduced into the CO₂/CH₄ reactant mixture are investigated to understand more deeply the role of the diluent as energy transfer shuttles on the performance and energy efficiency of the blank DBD reactor.

5- The simplified kinetics model is derived considering the activated CH₄ and CO₂ species and generated fragments by the exerted discharge power, which is aimed to determine the practical behaviour of MDR diluted by different mole fractions of the Ar.

1.7 Expected Contribution

1- The equilibrium optimal condition for syngas production by MDR and oxidative MDR with negligible carbon deposition and water formation while the loss of syngas is minimal would be expected.

2- A bridge is supposed to be built between electrical discharge characteristics of pure/diluted MDR in DBD and their reaction performance in order to determine an operating condition leading to a higher reactant conversion and energy efficiency.

3- The kinetics model of Ar diluted CO₂/CH₄ mixture at two types of conditions: one in the lower Ar content (less than 50%) and another one in the higher Ar content (higher than 50%) is expected to be presented.
1.8 Organization of the Thesis

This thesis is organized into seven chapters as shown in Figure 1.2.

Chapter 1 provides background of the research, problem statement, objectives and scopes of the study. Chapter 2 provides a review of related literature about the different types of hydrogen/syngas production along with their challenges. In addition, a variety of plasma reactors as new and promising alternatives for MDR and their advantages/disadvantages are discussed. The current research regarding the
In this section, the optimal operating condition of DBD plasma reactor is determined and then applied in studying the effect of diluent gas on the reactor performance. In this regard, the possible roles of diluted MDR with the various contents of the inert gas in terms of plasma discharge characteristics, reactant conversion, product distribution and energy efficiency of DBD reactor are discussed. Moreover, a comparison between the performance of diluted and undiluted DBD MDR with the earlier research is available in this study. The kinetics model for diluted MDR with Ar determined from Chapter 5 is presented in Chapter 6. Finally, Chapter 7 lists the contribution of the research and our recommendations for the future work.

