ANTIOXIDATIVE AND ANTI PROLIFERATIVE ACTIVITY OF

Polygonum minus LEAVES EXTRACTS

GAYATHIRI ARUMUGAM

UNIVERSITI TEKNOLOGI MALAYSIA
ANTIOXIDATIVE AND ANTIPROLIFERATIVE ACTIVITY OF

Polygonum minus LEAVES EXTRACTS

GAYATHIRI ARUMUGAM

A dissertation submitted in partial fulfilment of the
requirements for the award of the degree of
Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

FEBRUARY 2015
To my beloved family
ACKNOWLEDGEMENT

With the grace of God, I have completed my dissertation entitled “Antioxidative and Antiproliferative Activity of Polygonum minus Leaves Extracts”. First of all, I would like to convey my sincere appreciation and gratitude to my supervisor, Dr. Salehuddin Hamdan for his endless guidance and support.

My gratitude also goes to Universiti Teknologi Malaysia for the financial support given throughout my research period. I would also like to acknowledge all the staff of Faculty of Biosciences and Medical Engineering for their endless assistance and help. I would also like to thank my lab mates for their support and advice that they so generously offered during the course of my research work at Animal Tissue Culture Laboratory of Faculty of Biosciences and Medical Engineering, UTM. My sincere thanks go to my family for their continuous morale support in completing research work. Last but not least, my warmest appreciation to all my friends, those who helped me directly and indirectly in completing my dissertation.
Cancer is one of the leading causes of death in the world, particularly in developing countries. Cancer prevention by dietary constituents has emerged as a novel approach to reduce the number of cancer incidence. The Polygonum minus leaves or commonly known as ‘Kesum’ in Malaysia, have been used as natural remedy in traditional medicine. The leaves of this plant have been reported to be high in antioxidants. Thus, this study was carried out to investigate the presence of phytochemicals, antioxidant effect and antiproliferative activity of P. minus leaves extracts. In the present study, ethanol and n-hexane extracts of P. minus leaves were examined for the presence of phytochemical constituents using various standard procedures. Folin-Ciocalteau’s method was used for the evaluation of total phenolic content of the extracts. The antioxidant activity of the extracts was measured using DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals scavenging activity assay. The antiproliferative activity of the extracts was examined against colon cancer cell line (HT 29) using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The ethanolic extract of P. minus showed the presence of more phytoconstituents than n-hexane extract. Ethanol extract showed higher total phenolic content (137.07 ± 29.17 mg GAE/L) and strong antioxidant effect (IC$_{50}$ = 63.1 µg/ml). The n-hexane extract exerted better antiproliferative activity against colon cancer cells (IC$_{50}$ = 316 µg/ml). These data shows that ethanolic extract of P. minus leaves possesses antioxidant effect and n-hexane extract demonstrated antiproliferative activity against colon cancer cells.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 3
1.3 Objectives 3
1.4 Scope of Study 4

2 LITERATURE REVIEW

2.1 Cancer 5
 2.1.1 Colon Cancer 6
2.2 Natural Product 8
2.3 Polygonum minus 8
 2.3.1 Uses of Polygonum minus 10
2.4 Phytochemical Constituents 12
2.5 Free Radicals 14
2.6 Antioxidant 15
2.7 Assays
 2.7.1 Total Phenolic Content (TPC) 17
 2.7.2 DPPH Radical Scavenging Activity Assay 18
 2.7.3 MTT (3-(4,5-dimethylthiazol-2-yl)-2, 18
 5-diphenyl tetrazolium bromide) Assay

3 MATERIALS AND METHODS
 3.1 Chemicals and reagents 20
 3.2 Sample Preparation 21
 3.3 Experimental Design 21
 3.4 Plant Extraction 22
 3.5 Screening of phytochemical constituents of the 24
 ethanolic and n-hexane extracts of P. minus leaves
 3.5.1 Test for Phenolic Compounds and Tannins
 3.5.1.1 Ferric chloride test 24
 3.5.1.2 Gelatin test 24
 3.5.2 Test for Alkaloids
 3.5.2.1 Wagner’s test 25
 3.5.3 Test for Flavonoids
 3.5.3.1 Alkaline reagent test 25
 3.5.3.2 Lead acetate test 25
 3.5.4 Test for Saponins
 3.5.4.1 Froth test 26
 3.5.4.2 Foam test 26
 3.5.5 Test for Phytosterols
 3.5.5.1 Salkowski’s test 26
 3.5.6 Test for Fixed Oils and Fats
 3.5.6.1 Stain test 27
3.6 Quantification of total phenolic content of ethanolic and n-hexane extracts of P. minus leaves 27
3.7 Determination of antioxidant activity of ethanolic and n-hexane extracts of P. minus leaves 28
3.8 Evaluation of cytotoxicity effect of ethanolic and n-hexane extracts of P. minus leaves 29

4 RESULTS AND DISCUSSION
4.1 Extract Yield 31
4.2 Phytochemical Screening 33
4.3 Total Phenolic Content 39
4.4 Antioxidant Effect 41
4.5 Antiproliferative Activity 43

5 CONCLUSION
5.1 Conclusion 46
5.2 Suggestions 47

REFERENCES 48

APPENDICES 60
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Taxonomy of P. minus</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of several medicinal properties of P. minus using different type of solvents</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Bioactive phytochemicals in medicinal plants</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Different types of free radicals</td>
<td>14</td>
</tr>
<tr>
<td>4.1</td>
<td>Extract yield of P. minus leaves</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of phytochemical screening of P. minus leaves extracts</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>TPC (mg/L gallic acid equivalents) of solvent extracts of P. minus</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>IC$_{50}$ values of solvent extracts of P. minus as determined by DPPH assay</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>IC$_{50}$ values of P. minus extracts on colon cancer cell line after 72 hours of incubation</td>
<td>44</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison between normal cell division and cancer development</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Image of human colon</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Image of P. minus</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Electron donation by antioxidant to free radical</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Formation of formazan</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Tests for phenols and tannins, a) Ferric chloride test and b) Gelatin test</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Test for alkaloids</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Tests for flavonoids, a) Alkaline reagent test and b) Lead acetate test</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>Tests for saponins, a) Froth test and b) Foam test</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>Test for phytosterols</td>
<td>36</td>
</tr>
<tr>
<td>4.6</td>
<td>Test for fixed oil and fats</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

% - Percentage
°C - Degree celsius
< - Less than
µg - Microgram
µl - Microlitre
Abs - Absorbance
ANOVA - Analysis of variance
ATP - Adenosine-5'-triphosphate
CI - Cytotoxicity Index
CO₂ - Carbon dioxide
cm - Centimetre
df - degree of freedom
DMSO - Dimethyl sulfoxide
DNA - Deoxyribonucleic acid
DPPH - 2,2-Diphenyl-1-picrylhydrazyl
ELISA - Enzyme-linked immunosorbent assay
e.g. - exempli gratia
et al. - Et alia
FBS - Foetal Bovine Serum
g - Gram
GAE - Gallic acid equivalents
h - hour
HCl - Hydrochloric acid
HT 29 - Human colorectal adenocarcinoma cell line
IC50 - Inhibition concentration at 50%
LN2 - Liquid Nitrogen
m - Metre
M - Molar
mg - Milligram
min - Minute
mL - Milli Litre
mg/L - Milligram per Litre
mg/ml - Milligram per millilitre
mL/g - Milli Litre per gram
MTT - Methyl tetrazolium
nm - Nanometre
OD - Optical Density

pH - Hydrogen concentration

PBS - Phosphate buffer saline

R^2 - coefficient of determination

RNA - Ribonucleic acid

rpm - Revolution per minute

RPMI - Roswell Park Memorial Institute

SD - Standard deviation

SPSS - Statistical Product and Service Solutions

TPC - Total Phenolic Content

USA - United States America

UV - Ultraviolet

v/v - volume per volume

w/v - weight per volume
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Total Phenolic Content Standard Curve</td>
<td>60</td>
</tr>
<tr>
<td>B</td>
<td>DPPH Assay Results</td>
<td>61</td>
</tr>
<tr>
<td>C</td>
<td>MTT Assay Results</td>
<td>63</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Cancer is a disease in which abnormal cells divide without control and are able to invade other tissues. Cancer is one of the leading causes of death in the world, particularly in developing countries (WHO, 2013). Lung, liver, stomach, colorectal and breast cancers cause the most cancer deaths every year (WHO, 2012). According to American Institute for Cancer Research (2007), colorectal cancer accounts for over 9% of all cancer incidences. The incidence rates have been rapidly increasing in Eastern Asia for last two decades due to poor dietary and lifestyle factors, including smoking and obesity (Siegel, 2012; Center, 2009). Global awareness of cancer as one of the largest causes of death in people of various ages and racial backgrounds has led to research and many clinical studies in an effort to limit the progression of this disease. Chemoprevention by dietary constituents has emerged as a novel approach to reduce the number of cancer incidence (Soumya, 2011).
Polygonum minus or locally named as ‘Kesum’ or is a traditional plant that has been used by the Malays in the treatment of digestive disorders and stomach pain. *P. minus* originated from Southeast Asia countries namely Malaysia, Thailand, Vietnam and Indonesia. This member of a Polygonaceae family is a raw medicinal plant for preventive health care (Ravichandran *et al*., 2014). Recently, reports have emphasized that *P. minus* shows high free radical scavenging activity, which is why scientists have become very interested in identifying its phytochemical composition (Suhailah, *et al*., 2012).

P. minus produces a large number of secondary metabolites which includes phenolic compounds such as gallic acid, rutin, coumaric acid and quercetin (Suhailah *et al*., 2012). The unique flavour of the plant is mainly due to the secondary metabolites (Baharum *et al*., 2010). The secondary metabolites present in *P. minus* are also responsible for its useful biological properties, which includes antiulcer (Suhailah, *et al*., 2012), antiviral (Uyub *et al*., 2010), antimicrobial (Haasim *et al*., 2013) and antifungal (Johnny *et al*., 2011) properties. Besides that, it is also being used as shampoo to treat dandruff (Saiful, 2012). Antiproliferative effects of crude extracts of *P. minus* on selected cancer and normal cell lines were studied by Mohd Alfazari and team (2014). Numerous studies had showed good antioxidant activity of *P. minus* (Vimala *et al*., 2003; Huda-Faujan *et al*., 2009).

Antioxidant substances are capable of fighting and destroying excess free radicals and repair oxidative damage in biomolecules. The substances act by inhibiting or delaying the oxidation of biomolecules by inhibiting the initiation or propagation of oxidizing chain reactions (Saiful, 2012). Antioxidants are known for their ability in promoting health and lowering the risk for hypertension, heart disease and cancer (Wolfe and Liu, 2003; Valko *et al*., 2007). In the present study, phytochemical constituents present in the leaves extracts will be screened and antioxidant and antiproliferative properties of the *P. minus* leaves extracts also will be evaluated.
1.2 Problem Statement

P. minus is being used traditionally to treat rheumatism, indigestion, kidney stones and to control hair dandruff. Researchers have interlinked the pharmacological effects of this plant to its high antioxidant capacity. Aqueous, methanolic and ethanolic extracts of this plant demonstrated high antioxidant activity which was mostly due to its phenolic compounds (Maizura *et al.*, 2011). Fractions from ethanolic and aqueous extract showed gastroprotective effect by inhibiting ulcer lesions in stomach wall of ethanol-induced gastric ulcer in rats (Suhailah *et al.*, 2012) which can protect against the occurrence of colon cancer. Although various chemotherapeutic agents have been developed for the treatment of colorectal cancer, there are harmful side effects caused by the synthetic compounds (Paritala *et al.*, 2014). Thus, dietary interventions have recently caught the attention of researchers and clinicians for the treatment of colon cancer (Center *et al.*, 2009). In this study, the antioxidant property and antiproliferative activity of *P. minus* leaves extract against the colon cancer cells were studied.

1.3 Objectives

The objectives of the present study are:

i. to screen for the phytochemical constituents of *P. minus* leaves extracts,

ii. to evaluate antioxidant activity of *P. minus* leaves extracts, and

iii. to investigate antiproliferative property of *P. minus* leaves extracts against colon cancer cells (HT 29).
1.4 Scope of Study

P. minus leaves was extracted using ethanol and n-hexane solvents to obtain polar and nonpolar solvent extracts. The extracts were screened for its phytochemical constituents by various standard procedures to determine the phytochemical constituents or secondary metabolites present in the *P. minus* leaves extracts. The total phenolic content (TPC) of the extracts was determined by using Folin-ciocalteu’s method. The extracts were evaluated for its antioxidant effects by employing DPPH assay. The antiproliferative activity of the leaves extracts was evaluated against colon cancer cell line (HT 29) by using MTT assay.
REFERENCES

National Cancer Registry, Ministry of Health Malaysia (2006). Malaysian Cancer Statistics - Data And Figure Peninsular Malaysia.

