PRODUCTION OF SELENIUM ENRICHED *Saccharomyces boulardii* IN PILOT SCALE BIOREACTOR

AMIR FUHAIRA BIN HJ. ISHAK

UNIVERSITI TEKNOLOGI MALAYSIA
ACKNOWLEDGEMENT

During my time doing this research I have met with countless of peoples, friends and acquaintances who have contributed greatly to my research. First of all I would like to express my deepest gratitude and appreciation to my supervisor and co-supervisor, Professor. Ramlan B. Abd Aziz and Professor Dr. Hesham Ali El-Enshasy for all his guidance, thoughts, advice, critics and advice throughout my research. I am also very thankful to our research officer; Madam Zalina, Madam Roslinda and Mr Solleh for all their guidance, assistance and support, without them, my research vision would be obscure.

I also wanted to use this opportunity to express my thankful to all my fellow postgraduate friends and lab mates especially Danial, Helmi, Khairuddin, Azuan, Subeesh, Soltani, Ali, Hafizah, Hamizah, Khai, Naqi, Yahya and all the other names that I could not write it here. This feeling also goes to all the peoples who had helped me direct or indirectly throughout my years here. Without all of them I could never achieved until this point. For all this years I faced so many experiences which challenged me physically, emotionally, mentally and financially to the edge. To my surprise all of this has helped me to be a better person. Lastly I would like to express my gratitude towards my family especially to my lovely father for his understanding, kindness and unconditional love towards me.
ABSTRACT

Selenium (Se) yeast has been widely used as a Se supplementation for humans. Supplementation with Se-enriched yeast in animal and human diet has been proven to have beneficial health effects. One major disadvantage in Se yeast production is the complexity in the yeast production. The objective of this study is to optimize cell mass production of *Saccharomyces boulardii* for Selenium enrichment process. Production of *S. boulardii* cell mass was optimized by using both classical and statistical approach. Production of high cell mass of *S. boulardii* was upscaled using a 16-L stirred tanked bioreactor in batch and fed-batch cultivation strategies where the fed batch bioreactor cultivation with complete medium showed the highest cell mass production at 34.16 g L\(^{-1}\). During Se enrichment process, effects of different Se concentration and addition time were examined to maximize the Se absorption process by *S. boulardii*. The production of Se yeast was further upscaled in a 16-L stirred tank bioreactor in batch and fed batch cultivation strategies. In Se enrichment process 90 mg mL\(^{-1}\) Se which added at 16 hour of cultivation time for 24 hour was found to be best condition for Se enrichment in *S. boulardii*. The process was used in fed-batch cultivation in 16-L stirred tank bioreactor with full medium. Maximum cell biomass was at 24.97 g L\(^{-1}\) with 0.177 h\(^{-1}\) specific growth rate. The highest Se content was achieved at 41.65 µg g\(^{-1}\) with 1.78 µg g\(^{-1}\) h\(^{-1}\) absorption rate. Therefore it can concluded that addition of Se in late exponential phase of *S. boulardii* growth is the most suitable condition to minimize the inhibition effect on *S. boulardii* cell mass production and at the same time maximize the absorption of Se process.
Selenium yis telah digunakan secara meluas sebagai sumber tambahan Se kepada manusia. Yis yang diperkaya dengan Se terbukti dapat meningkatkan kesehatan apabila diambil dengan berkala. Masalah utama yang dihadapi dalam penghasilan yis diperkaya dengan Se adalah kerumitan dalam penghasilan yis yang mampu bertahan dengan kesan-kesan sampingan akibat penggunaan Se. Matlamat kajian ini adalah untuk mengoptimumkan penghasilan sel *S. boulardii* untuk penghasilan yis yang diperkaya dengan Se. Penghasilan sel *S. boulardii* dioptimumkan menggunakan pendekatan klasikal dan statistikal. Media yang telah dioptimumkan digunakan untuk penghasilan sel *S. boulardii* di dalam skala yang lebih besar iaitu 16 liter bioreaktor dengan kaedah kelompok dan suapan kelompok. Penghasilan sel *S. boulardii* yang tertinggi pada 34.16 g L\(^{-1}\) berjaya di capai melalui kaedah suapan kelompok dengan menggunakan suapan media lengkap. Yis yang diperkaya dengan Se di uji dengan pelbagai kepekatan dan masa tambahan Se untuk mengoptimumkan penyerapan Se oleh sel. *S. boulardii* diperkaya dengan Se di hasilkan dalam skala besar 16 liter bioreaktor dengan kaedah kelompok dan suapan kelompok. Jumlah kandungan Se menunjukan 90 mg mL\(^{-1}\) dengan waktu penambahan Se selepas 16 jam dan rawatan selama 24 jam adalah kaedah yang paling sesuai untuk pengasilan *S. boulardii* diperkaya dengan Se. Jumlah kandungan Se tertinggi di hasilkan melalui kaedah suapan kelompok di dalam 16-L bioreactor dengan jumlah kandungan Se adalah sebanyak 41.65 µg g\(^{-1}\) dengan kadar penyerapan Se pada 1.78 µg g\(^{-1}\) J\(^{-1}\). Melalui hasil penyelidikan ini, tambahan Se pada hujung fasa eksponen *S. boulardii* dapat mengurangkan kesan yang merencatkan pertumbuhan *S. boulardii* dan pada masa yang sama memaksimumkan daya penyerapan Se.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Research Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Scopes</td>
<td>5</td>
</tr>
</tbody>
</table>
2 LITERATURE REVIEW

2.1 Introduction

2.2 Saccharomyces boulardii
   2.2.1 Advantages of probiotic from *S. boulardii*
   2.2.2 Properties of probiotic yeast, *S. boulardii*
   2.2.3 Cultivation Condition of *S. boulardii*
     2.2.3.1 Effect of Carbon Sources
     2.2.3.2 Effect of Nitrogen Sources
     2.2.3.3 Effect of Phosphate Sources
     2.2.3.4 Effect of Other Inorganic Elements
   2.2.4 Optimization of Culture Condition
     2.2.4.1 High Biomass Culture of *S. boulardii*
        Cultivation
   2.2.5 Fermentation Mode
     2.2.5.1 Batch Cultivation

2.3 Selenium Enrich Yeast
   2.3.1 Selenium Species and their chemical properties
   2.3.2 Bioavailability of Se and Its Role
   2.3.3 Selenium Deficiency and Health
   2.3.4 Sodium selenite
   2.3.5 Selenium enriched Yeast
   2.3.6 Production of Se yeast
   2.3.7 Effect of Sodium selenite addition on Yeast

2.4 Influential Factors of Metal Accumulation
   2.4.1 pH
   2.4.2 Temperature
   2.4.3 Initial Concentration of Metal Ions and Yeast Biomass
   2.4.4 Cell Age
### METHODOLOGY

3.1 Introduction

3.2 Overview of the Research Methodology

3.3 *Saccharomyces boulardii* Strain

3.4 Preparation of Working Cell Culture

3.5 Studies on Shake Flask Cultivation

3.5.1 Shake Flask Media Screening

3.5.2 Shake Flask Media Growth Study

3.5.3 Carbon Sources Screening

3.5.4 Nitrogen Sources Screening

3.5.5 Different glucose concentration

3.5.6 Different Meat Extract concentration

3.5.7 Carbon to Nitrogen ratio

3.5.8 Media optimization in Factorial Design

3.5.9 Media Optimization using RSM

3.5.10 Growth Kinetic comparison between Optimized and un-optimized media

3.6 Study on Bioreactor cultivation

3.6.1 16-L Stirred Tank Batch Bioreactor Cultivation

3.6.2 16-L Stirred Tank Fed-Batch Bioreactor Cultivation

3.7 Cultivation of *S. boulardii* with Sodium selenite

3.7.1 Different Concentration of Sodium Selenite in *S. boulardii*

3.7.2 Different Addition Time and Treatment hour of Sodium selenite

3.7.3 Study of Se Absorption Kinetic in *S. boulardii* Growth Curve

3.7.4 Study of Se Absorption Kinetic in post harvest Cultivation of *S. boulardii*
3.7.5 16-L Stirred Tank Bioreactor Batch Cultivation for Se Enriched \textit{S. boulardii} production 51

3.7.6 Fed-Batch cultivation of 16-L Stirred Tank for Se enriched \textit{S. boulardii} production 52

3.8 Analysis 53

3.8.1 Cell Mass Determination 53

3.8.2 Glucose Determination 53

3.8.2.1 Dinitrosalicylic colometric (DNS) Preparation 53

3.8.3 Selenium Analysis 54

4 RESULTS AND DISCUSSION 55

4.1 Introduction 55

4.2 Medium Optimization Study for High Cell Biomass Production of \textit{S. boulardii} 56

4.2.1 Screening of Different Media Cultivation 56

4.2.2 Effect of Different Carbon Sources on Cell Growth 58

4.2.3 Effect of Difference Nitrogen Sources on Cell Growth 60

4.2.4 Effect of Difference Inorganic Nitrogen Sources on Cell Growth 62

4.2.5 Effect of Difference Glucose concentration on Cell Growth 64

4.2.6 Effect of Difference Meat Extract Concentrations on Cell Growth 66

4.2.7 Effect of Carbon to Nitrogen Ratio on Cell Growth 68
4.2.8 Statistical Media Optimization 70
4.2.8.1 Factorial Design 70
4.2.8.2 Box-Behnken Design for Medium Optimization Study 73
4.2.9 Growth Kinetic Comparison 82
4.2.10 Batch Cultivation in 16-L Stirred Tank Bioreactor 85
4.2.11 Fed-Batch Cultivation in 16-L Stirred Tank Bioreactor 88
4.2.11.1 Full Medium and Glucose with Constant Feeding in uncontrolled pH 88

4.3 Selenium enrichment of *S. boulardii* 93
4.3.1 Study of Different Se concentration in *S. boulardii* enrichment 93
4.3.2 Study of Different Se Addition Time and Treatment Hour for Se Yeast Enrichment 95
4.3.3 Selenium Absorption Kinetic 97
4.3.4 Study of Se enrichment in Post Harvest Cultivation of *S. boulardii* 98
4.3.5 Batch cultivation of Se enriched *S. boulardii* in 16-L Stirred Tank Bioreactor 100
4.3.6 Fed-Batch Cultivation of Se Enriched *S. boulardii* in 16-L Stirred Tank Bioreactor 102

5 CONCLUSION 105
5.1 Conclusion 105
5.2 Recommendation 107

REFERENCES 109
APPENDICES A- R 119-135
# LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Maximal cell mass using different media in both shake flask and bioreactor</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Cultivation media for biomass production</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Media Composition of Different Carbon Sources</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Media Composition of Different Nitrogen Sources</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Media Composition of Different Glucose Concentration</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Media Composition of Different Meat Extract Concentration</td>
<td>41</td>
</tr>
<tr>
<td>3.6</td>
<td>Carbon to Nitrogen Ratio</td>
<td>42</td>
</tr>
<tr>
<td>3.7</td>
<td>Different range and levels of factors influencing <em>S. boulardii</em> cell growth</td>
<td>43</td>
</tr>
</tbody>
</table>
3.8 Media composition for medium optimization

3.9 Media composition of 16L bioreactor Cultivation

3.10 Composition of starting and feeding medium for Fed-batch cultivation of *S. boulardii* in 16-L stirred tank bioreactor

3.11 Media components of Se enriched *S. boulardii* bioreactor cultivation

3.12 Composition of starting and feeding media in fed batch cultivation of Se enriched *S. boulardii* in 16-L stir tanked bioreactor

4.1 Experimental range and level of factors influencing *S. boulardii* cell growth in two-level full factorial design

4.2 Five factors, two-level full factorial design for experiment

4.3 Analysis of Variance (ANOVA) for Cell Mass Production of *S. boulardii* by using five factors with two-level factorial designs

4.4 Experimental range and levels of factors influencing *S. boulardii* cell growth in A Box-Behnken design

4.5 Box Behnken design of experiments.
4.6 Estimation of Regression Coefficient of cell mass production of *S. boulardii* using Box-Behnken Design. 79

4.7 Analysis of Variance for cell mass 80

4.8 Estimated Regression Coefficient for cell mass of *S. Boulardii* using data in un-coded unit 81

4.9 Comparison growth kinetic for un-optimized and optimized shakes flask and batch for controlled and uncontrolled pH 82

4.10 Parameters used in fed-batch cultivation of *S. boulardii* in controlled pH 88

4.11 Composition of full medium for feeding substrate 88

4.12 Growth kinetic for Fed-Batch culture with different feeding medium 89

4.13 Kinetic growth for Se absorption in batch and Fed-batch bioreactor 91

4.14 Kinetic growth for Se absorption in batch and Fed-batch bioreactor 104
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Equation based on the stoichiometry for growth and product formation</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical growth curve of a bacterial population in batch cultivation system</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Equation for Specific Growth Rate</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Equation for Doubling time</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Equation for Specific Growth Rate and Residue growth limiting Substrate</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Equation of Yield Coefficient</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview of Methodology</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>Cell dry weight of <em>S. boulardii</em>, final pH and ethanol [%] in seven different media</td>
<td>59</td>
</tr>
</tbody>
</table>
4.2 Cell dry weight and final pH in shake flask culture of *S. boulardii* with different carbon sources

4.3 Cell dry weight and final pH in shake flask culture of *S. boulardii* with different nitrogen sources

4.4 Cell dry weight and final pH in shake flask culture of *S. boulardii* with different inorganic nitrogen sources

4.5 Cell dry weight and final pH in shake flask culture of *S. boulardii* with different glucose concentration

4.6 Cell dry weight and final pH in shake flask culture of *S. boulardii* with different meat extract concentration

4.7 Cell Dry Weight of *S. boulardii* in Different Carbon to Nitrogen Ratio

4.8 Pareto Chart of the Standardized Effects which Identify The Medium Components Influenced the Response.

4.9 Effect of interaction factors for NaNO₃ and glucose In medium composition for cell biomass production of *S. boulardii*

4.10 Effect of interaction factors for meat extract and glucose in medium composition for cell biomass production of *S. boulardii*
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>Effect of Interaction Factors for NaNO₃ and meat extract in medium composition for cell biomass production of <em>S. boulardii</em></td>
<td>78</td>
</tr>
<tr>
<td>4.12</td>
<td>Growth curve kinetic of un-optimized media in shake flask cultivation of <em>S. boulardii</em></td>
<td>84</td>
</tr>
<tr>
<td>4.13</td>
<td>Growth curve kinetic of optimized media in shake flask cultivation</td>
<td>84</td>
</tr>
<tr>
<td>4.14</td>
<td>Cell dry weight production, glucose residual, and dissolve oxygen changes in batch bioreactor 16-l cultivation with controlled pH</td>
<td>87</td>
</tr>
<tr>
<td>4.15</td>
<td>Cell dry weight production, glucose residual, and dissolve oxygen changes in batch bioreactor 16-l cultivation with un-controlled pH</td>
<td>87</td>
</tr>
<tr>
<td>4.16</td>
<td>Cell dry weight, glucose residual, pH, and dissolve oxygen changes in fed-batch cultivation of <em>S. boulardii</em> in complete media feeding</td>
<td>90</td>
</tr>
<tr>
<td>4.17</td>
<td>Cell dry weight, glucose residual, pH, and dissolve oxygen changes in fed batch cultivation of <em>S. boulardii</em> in single glucose feeding</td>
<td>90</td>
</tr>
<tr>
<td>4.18</td>
<td>Cell dry weight production and Se content in different Se concentration</td>
<td>94</td>
</tr>
<tr>
<td>4.19</td>
<td>Cell dry weight and Se content in different Se addition time.</td>
<td>96</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>Growth curve of Se accumulation during cell growth kinetic</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Cell dry weight and Se content in post harvest of Se treatment</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>Batch cultivation of Se enriched <em>S. boulardii</em> in 16-L Stirred tank bioreactor</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>Fed-Batch cultivation of Se enriched <em>S. boulardii</em> in 16-L Stirred tank bioreactor</td>
<td></td>
</tr>
</tbody>
</table>
# LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD</td>
<td>Antibiotic Associated Diarrhea</td>
</tr>
<tr>
<td>ATCC-MYA</td>
<td>American Type Culture Collection, Manassas</td>
</tr>
<tr>
<td>CD</td>
<td>Crohn’s Disease</td>
</tr>
<tr>
<td>CDW</td>
<td>Cell dry weight</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OD₅₄₀</td>
<td>Optical density at 540 nm</td>
</tr>
<tr>
<td>OD₆₀₀</td>
<td>Optical density at 600 nm</td>
</tr>
<tr>
<td>pH</td>
<td>Potential of hydrogen</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>SCF</td>
<td>The Scientific Committee for Food</td>
</tr>
<tr>
<td>sp.</td>
<td>Species</td>
</tr>
<tr>
<td>S.</td>
<td><em>Saccharomyces</em></td>
</tr>
<tr>
<td>UV</td>
<td>Ulcerative colitis</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma mass spectrometry</td>
</tr>
</tbody>
</table>
LIST OF CHEMICALS

C   -   Carbon
CaCl₂, 2H₂O - Calcium chloride dehydrate
CoCl₂·6H₂O - Cobalt Chloride, hexahydrate
CuSO₄·5H₂O - Copper (II) sulfate pentahydrate
DNS   -  3, 5-dinitro-salicylic acid
FeCl₃·6H₂O - Iron (III) Chloride, hexahydrate
FeSO₄·7H₂O - Iron (II) sulfate heptahydrate
H₂O    -  Water
H₃PO₄   -  Hydrogen phosphate
H₃PO₃   -  Phosphorous Acid
HCl     -  Hydrochloric acid
HNO₃    -  Nitric Acid
K₂HPO₄ - Dipotassium phosphate
KH₂PO₄ - Monopotassium phosphate
MgCl₂·6H₂O - Magnesium sulfate hexahydrate
MgSO₄  -  Magnesium sulfat
MgSO₄·7H₂O - Magnesium sulfate heptahydrate
MnSO₄·2H₂O - Manganese Sulfate
Na₂SO₄  -  Sodium sulfate
NaCl    -  Sodium Chloride
NaNO₃  -  Sodium Nitrate
NaOH    -  Sodium hydroxide
NH₄Cl   -  Ammonium chloride
(NH₄)₂SO₄ - Ammonium sulfate
Se - Selenium
YPD - Yeast Peptose Dextrose
ZnSO₄·7H₂O - Zinc sulfate heptahydrate

LIST OF SYMBOLS

°C - Degree Celsius
μ - Specific growth rate [h⁻¹]
t_d - Doubling time [h⁻¹]
% - Percentage
F - Feed Rate [g L⁻¹ h⁻¹]
v/v - Volume per volume
vvm - Volume per volume per minute
X - Biomass concentration [g L⁻¹]
H - Hour
Nm - Nanometer
# LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Medium composition for screening</td>
<td>122</td>
</tr>
<tr>
<td>B</td>
<td>Media Screening</td>
<td>125</td>
</tr>
<tr>
<td>C</td>
<td>Carbon Source Screening</td>
<td>126</td>
</tr>
<tr>
<td>D</td>
<td>Nitrogen Source Screening</td>
<td>126</td>
</tr>
<tr>
<td>E</td>
<td>Inorganic Nitrogen Source Screening</td>
<td>127</td>
</tr>
<tr>
<td>F</td>
<td>Glucose Concentration Optimization</td>
<td>127</td>
</tr>
<tr>
<td>G</td>
<td>Meat Extract Concentration optimization</td>
<td>128</td>
</tr>
<tr>
<td>H</td>
<td>Carbon to Nitrogen Ratio</td>
<td>128</td>
</tr>
<tr>
<td>I</td>
<td>Batch Bioreactor cultivation Controlled pH</td>
<td>129</td>
</tr>
<tr>
<td>J</td>
<td>Batch Bioreactor cultivation Uncontrolled pH</td>
<td>130</td>
</tr>
<tr>
<td>K</td>
<td>Fed-Batch Bioreactor (Glucose Feeding)</td>
<td>131</td>
</tr>
<tr>
<td>L</td>
<td>Fed-Batch Bioreactor (Full Media Feeding)</td>
<td>132</td>
</tr>
<tr>
<td>M</td>
<td>Different Se Concentration</td>
<td>133</td>
</tr>
<tr>
<td>N</td>
<td>Different Addition Time</td>
<td>133</td>
</tr>
<tr>
<td>O</td>
<td>Se Absorption in Growth Kinetic</td>
<td>134</td>
</tr>
<tr>
<td>P</td>
<td>Se Absorption at Post Harvest</td>
<td>134</td>
</tr>
<tr>
<td>Q</td>
<td>Batch Cultivation of Se enriched <em>S. boulardii</em></td>
<td>135</td>
</tr>
<tr>
<td>R</td>
<td>Fed Batch Cultivation of Se Enriched <em>S. boulardii</em></td>
<td>137</td>
</tr>
</tbody>
</table>
INTRODUCTION

1.1 Research Background

Probiotic organisms or biotherapeutic agent can be defined as live microorganisms which feed on or use in adequate amounts will beneficially affects the host by improving its intestinal microbial balance (Wohlgemuth et al., 2010). The gastrointestinal (GI) microflora is a complex ecosystem that has to be equilibrium with the host. Whereby the clinical disorder within the GI might occur once the equilibrium state has been disturb. *Lactobacilli* and *Bifidobacteria* is one of the most famous probiotics bacteria since they are the normal inhabitants of the human gut. The discovery of the yeast strain that can withstand and grow optimally in 37 °C has managed to discover a new strain that have large potential to the gastrointestinal (GI) microflora. Although yeast accounts for only a minority of the organisms which making up the microbiota, it has larger cell size compared to bacteria whereby up to 10 times larger. Therefore it might represent a significant stearic hindrance for bacteria.
Saccharomyces boulardii is the only probiotic that has been proven effective in the double-blind studies and commonly found as a health supplement (Sazawal et al., 2006). It was discovered by a French Microbiologist, Henri Boulard in 1923 when he was searching for a new yeast strain for making wine that withstand of the high temperature (Malgoire and Vandenplas, 2000).

Nowadays Saccharomyces boulardii has been used in many countries either as preventive or therapeutic agent for diarrhea and also other GI disorders which cause by administration of antimicrobial agents. The properties that residue by S. boulardii has made it a great potential for probiotic agent. It can survive the transit through the GI tract, 37 °C of optimum temperature and also it can inhibit the growth in some microbial pathogen. Yeast is a good candidate for probiotic studies as it resistance to the local stresses when enter the GI tract such as enzymes, bile salts, organic acids and variation of pH and temperature.

During the 20th century many research has been conducted in order understanding the mechanisms of action and its benefits to the host organism. The research has been progress as they managed to understand the mechanism of action of the S. boulardii to the host organism. It has been discovered that S. boulardii has efficacy as an adjuvant agent for the treatment of diarrhea and also has the efficiency to prevent the antibiotic associated diarrhea (AAD).

Trace elements is important for human body in maintaining normal and yet complex physiological functions related to growth and development. Unlike major elements, such as carbon, hydrogen, nitrogen, oxygen, chlorine, phosphorous, potassium, sodium and so on which are present as the major constituent of body tissues, trace elements are present in body tissues at sub µg g⁻¹ levels but often acts as essential factors or co factors in biological process. Among there trace elements, Selenium (Se)
and Arsenic (As) are the only metalloid which are considered to be essential in life (Gissel-Nielsen et al., 1984). From the periodic Table selenium compound can be found to be metallic and non metallic in characteristic and can form cationic and anionic compounds.

Selenium has been known for it is toxicity at high concentration and affects to the central nervous system (Diaz-Alcaron et al., 1994). However recently selenium has been recognize to play a role as essential dietary supplement for the human. Deficiency in Selenium uptake has been associated with loss of hair pigment and macrocytosis in intravenously fed children (Navarro and Cabrera, 2008).

Inorganic selenium is generally toxic compared to organically bound forms. Therefore the organically production of selenium is very important as it has role in human diet. The production of selenium yeast is a key factor to obtain organically and safe selenium uptake by human. Moreover discovery of the S. boulardii has provided advantageous for researchers to further study on the production of selenium enriched yeast that able to perform as probiotic yeast as well.
1.2 Problem Statement

One major problem in the previous experimental of Se enriched yeast production was the complexity in the yeast production process. Previous research was focus more on process which intended for the production of only final product which is Se without consideration of cell mass production. Since, early stage of yeast growth is very critical in the fermentation process even though large fermenter with complex system control (pH, aeration, DO, etc) are used in order to grow yeast in good condition. This is even more difficult to manage when Se has to be incorporated to the yeast during cultivation process. Moreover yeast cultures inoculated with Se in previous studied, seemed to indicate a stunted primary growth stage which can be related with an increasing in toxicity of the Se therefore resulting a limited final biomass as well as low Se incorporation rate.

On the other hand, In spite of many literatures published concerning the importance of *S. boulardii* and its medical applications, very little information are available for cultivation and cell mass production. Thus through optimization of cell mass production of *S. boulardii* will provide platform for understanding more on *S. boulardii* cultivation process. Apart from that production of Selenium enriched *S. boulardii* will provide new dimension of Se enriched yeast production as up to date, no literature to be found on the production of Selenium enriched *S. boulardii*. 
1.3 Objective of the Study

The objective of this study is to optimize high cell mass cultivation of *S. boulardii* and to achieve a good process for selenium enriched *S. boulardii* production.

1.4 Scopes of Research

The scope of this research are:

1. Study high cell mass production of *S. boulardii*:
   a) Media optimization study for high cell mass production of *S. boulardii* using classical and statistical approach in shake flask cultivation
   b) Comparison between optimize and non-optimized media on cell mass production of *S. boulardii*
   c) Batch cultivation of *S. boulardii* in a 16-L stirred tanked bioreactor for high cell mass production under controlled and uncontrolled pH
   d) Fed-batch cultivation of *S. boulardii* in a 16-L stirred tanked bioreactor for high cell mass production
2 Study the cultivation of *S. boulardii* in Selenium supplemented media.

a) Treatment of different Selenium concentration on *S. boulardii* growth and Selenium enrichment in shake flask cultivation level

b) Study the effects of Selenium enrichment protocols in *S. boulardii* at various points at cell cycle.

c) Study of Selenium absorption kinetic in *S. boulardii* growth curve

d) Enrichment of Selenium in post harvest *S. boulardii* cultivation

e) Batch cultivation of Se enriched *S. boulardii* in a 16-L stirred tank bioreactor for production of Selenium enriched yeast

f) Fed-batch cultivation of Se enriched *S. boulardii* in a 16-L stirred tank bioreactor for high Selenium enriched cell production
REFERENCES


Czerucka, D., Dahan, S. and Mograbi, B. (2000). *Saccharomyces boulardii* Preserves The Barrier Function and Modulates The Signal Transduction Pathway Induced


