PARTIAL DISCHARGE BEHAVIOUR OF CROSS-LINKED POLYETHYLENE - NATURAL RUBBER BLENDS NANOCOMPOSITES AS ELECTRICAL INSULATING MATERIAL

WAN AKMAL ‘IZZATI BINTI WAN MOHD ZAWAWI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

MAY 2015
To

My beloved husband Muhammad Nor Harith Bin Ismail,
My precious daughter Nur Amani Sofea,
My beloved father and mother
Wan Mohd Zawawi Bin Wan Abd Rahman and Sarah Binti Ramli,
And last but not least my siblings and also my in-laws family.
ACKNOWLEDGEMENT

Sincere gratitude to the Almighty Allah S.W.T. for the grace and blessings, I was able to go through trials and challenges and complete my Master study.

I take this opportunity to express my deepest sense of gratitude and respect to my supervisor, Dr. Yanuar Zulardiansyah Arief for his support, inspiring guidance and encouragement in doing my research. I am also grateful to my research members who are also the experts in this field, Dr. Zuraimy, Dr. Nor Asiah, Assoc. Prof. Dr. Mohamed Affendi for their invaluable suggestions and assistance in preparation of conference and journal papers. I also extend my appreciation to the Ministry of Higher Education Malaysia and Universiti Teknologi Malaysia (UTM) for their supports through Research University Grant (RUG) under vote number: 00H19.

Furthermore, I would like to thank the staffs and technicians in Institute of High Voltage & High Current in Faculty of Electrical Engineering, Polymer Processing Lab. and Institute of Ibnu Sina in Faculty of Chemical Engineering, Composite Centre and Material Lab. in Faculty of Mechanical Engineering, for their help in running the instruments and monitoring the research activities. I would also like to thank my lab members, Nadiah, Diana, Che Nuru, Rubiatul, Asilah, Ain, Shakira, and Zaini for their encouraging supports and opinions.

Last but not least, I would like to express million thanks to my husband, father, mother, and siblings who never failed to be by my side since the beginning of the study. I could never have achieved this stage without their encouragement and motivation.
Polymeric materials are widely used in power apparatus as electrical insulation, especially for high voltage cable insulation. However, partial discharge (PD) has always been a predecessor to major faults and problems in this field. By adding a weight percentage (wt%) of a nanofiller to the electrical insulation, the physical and electrical properties can be enhanced. In this research, natural rubber (NR) blends polymeric material of cross-linked polyethylene (XLPE) as insulation was combined with nanofillers, namely nanosilica (SiO₂) or organo-montmorillonite (O-MMT). Seven samples comprising six compositions of a blend of 20 wt% NR and 80 wt% of XLPE with 2, 4, and 8 pph from SiO₂ and O-MMT, and one without nanofiller were used in the experiments. Two PD tests were carried out based on CIGRE Method II technique, where 7 kVrms high voltage was applied for 1 hour and 3 hours. LabVIEW™ program was used to analyse the PD data captured from the on-line and off-line PD measuring system where PD pulse magnitudes and number of PD occurrences were measured. Results showed that samples of NR-XLPE blended with SiO₂ have lower PD number than the O-MMT samples. Scanning Electron Microscopy images showed that smoother surfaces were observed as the wt% of the nanofiller increased, indicating that the samples were less degraded. Energy Dispersive X-ray measurement of samples containing SiO₂ emitted more stable amounts of oxygen and carbon contents when exposed to high voltage. Analysis on Fourier Transform Infrared spectroscopy showed a reduction of OH groups in the samples. Using QuickField™, the electric field distribution of the samples confirmed that in series of 2, 4, and 8 pph nanofiller loading, there is a correlation between the amount of nanofiller and discharge activities. The findings have shown that SiO₂ and O-MMT and the different loadings do enhance the insulation properties when mixed with NR-XLPE.
ABSTRAK

Bahan polimer digunakan dengan meluas dalam alat kuasa sebagai penebat elektrik, terutamanya sebagai penebat kabel voltan tinggi. Walau bagaimanapun, nyahcas separa (PD) sentiasa menjadi pendahulu kepada kerosakan dan masalah utama dalam bidang ini. Dengan menambah peratusan berat (wt%) pengisi nano kepada penebat elektrik ciri-ciri fizikal dan elektrikal polimer boleh dipertingkatkan. Dalam kajian ini getah asli (NR) yang menggabungkan bahan polimer polietilena silang-hubung (XLPE) sebagai penebat disatukan dengan pengisi nano, iaitu nanosilika (SiO$_2$) atau organo-montmorilonit (O-MMT). Tujuh sampel yang terdiri daripada enam komposisi campuran 20 wt% NR dan 80 wt% XLPE dengan 2, 4 dan 8 pph daripada SiO$_2$ dan O-MMT serta dengan satu tanpa pengisi nano telah digunakan dalam eksperimen ini. Dua ujian PD telah dijalankan mengikut teknik CIGRE Kaedah II dengan voltan tinggi 7 kV$_{rms}$ digunakan untuk ujian PD selama 1 dan 3 jam. Program LabVIEW™ telah digunakan untuk menganalisis data PD yang diperoleh daripada sistem pengukuran PD dalam talian dan luar talian. Magnitud pulsa PD dan bilangan kejadian PD diukur. Keputusan ujian menunjukkan sampel NR-XLPE yang dicampur dengan SiO$_2$ mempunyai bilangan PD lebih rendah berbanding dengan sampel O-MMT. Imej imbasan elektron mikroskopi (SEM) sampel menunjukkan bahawa permukaan lebih licin dapat diperhatikan apabila wt% pengisi ditambah yang menunjukkan bahawa sampel kurang terosot. Pengukuran tenaga serakan x-ray (EDX) sampel yang mengandungi SiO$_2$ mengeluarkan jumlah kandungan oksigen dan karbon yang lebih stabil apabila terdedah kepada voltan tinggi. Analisis spektroskopi inframerah transformasi Fourier (FTIR) menunjukkan pengurangan kumpulan OH dalam sampel. Dengan QuickField™ taburan medan elektrik sampel mengesahkan bahawa terdapat korelasi antara jumlah pengisi nano dengan aktiviti nyahcas dalam siri muatan 2, 4 dan 8 pph. Penemuan ini menunjukkan bahawa SiO$_2$ dan O-MMT dan muatan yang berbeza dapat meningkatkan ciri-ciri penebat apabila dicampur dengan NR-XLPE.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background

1.1.1 Research Trends on Polymer Nanocomposite Dielectrics
2

1.1.2 Application of Nanocomposite Insulating Material in Electrical Apparatuses
2

1.2 Problem Statement
3

1.3 Objective of the Research
5

1.4 Scope of the Research
5

1.5 Significance of the Research
6
LITERATURE REVIEW: MATERIALS UNDER STUDY AND THE CHARACTERISTICS

2.1 Introduction

2.2 The Nature of Partial Discharge in Insulation

2.3 Polymer Nanocomposites as Electrical Insulating Materials

2.4 Notion of Polymer Nanocomposites

2.5 Constituents of Polymer Nanocomposites

2.5.1 Polymer Matrix

2.5.2 Nanofillers

2.5.3 Interaction Zone

2.6 Polymer Nanocomposite Structures

2.6.1 Tactoid

2.6.2 Intercalation

2.6.3 Exfoliation

2.7 Types of Polymer Nanocomposites

2.7.1 Polymer /Layered Silicate Nanocomposites

2.7.2 Montmorillonite (MMT) Clay

2.7.3 Polymer /Metal Oxide Nanocomposites

2.8 Interaction Zone of Polymer Nanocomposites

2.9 Effect of Nanostructuration on Electrical Properties of Polymer Nanocomposites

2.9.1 Partial Discharge Characteristics

2.9.1.1 Epoxy

2.9.1.2 Linear Low Density Polyethylene (LLDPE)

2.9.1.3 Low Density Polyethylene (LDPE)

2.9.1.4 Crosslinked Polyethylene (XLPE)

2.9.1.5 Polyimide (PI)

2.9.1.6 Polyamide (PA)

2.9.2 Dielectric Breakdown Strength

2.9.3 Leakage Current

2.9.4 Electrical Tracking Resistance
5 CONCLUSION AND RECOMMENDATION 86

5.1 Conclusion 86

5.2 Recommendations for Future Works 87

REFERENCES 89

Appendices A-D 100-108
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparisons between microcomposite and Nanocomposite [20]</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Surface roughness parameter of neat epoxy, nano Al₂O₃, nano TiO₂, and micro Al₂O₃ composites before degradation (BD) and after degradation(AD) over mm distance from the edge of the electrode [40]</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Compositions of materials in polymer nanocomposites samples</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Compositions of materials in polymer nanocomposites samples</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Cumulative number of positive PD for 1 hour PD test in 10 minutes time duration</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Cumulative number of negative PD for 1 hour PD test in 10 minutes time duration</td>
<td>61</td>
</tr>
<tr>
<td>4.4</td>
<td>Total PD number for 1 hour PD test in 10 minutes time duration</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Number of PD peaks and maximum PD peak in 1 hour</td>
<td>64</td>
</tr>
<tr>
<td>4.6</td>
<td>Number of PD peaks and maximum PD peak in 3 hours</td>
<td>64</td>
</tr>
<tr>
<td>4.7</td>
<td>Wavenumber of peaks corresponding to chemical bond in sample containing SiO₂ nanofiller</td>
<td>74</td>
</tr>
<tr>
<td>4.8</td>
<td>Wavenumber of peaks corresponding to chemical bond</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Voltage distribution across polymer nanocomposite sample in CIGRE Method II partial discharge test at 5, 10, 20, and 30 kVrms voltage application</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Electric field strength across polymer nanocomposite sample in CIGRE Method II partial discharge test at 5, 10, 20, and 30 kVrms voltage application</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Possible void location in insulation system [16-18]</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Polymer nanocomposites constituents; Polymer matrix, neighboring fillers, and interaction zone [21]</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Illustrated figure of the three types of nanocomposite structures of filler when combined with polymer; i) tactoid, ii) intercalation, iii) exfoliation [23]</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>XRD patterns comparisons of PE/MMT samples (5% of MMT loading) prepared in KO Kneader Buss and APV twin screw extruder [23]</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>AFM images of 900nm x 900 nm surface (2nm from the electrode edge) of (a) neat epoxy after 6h of degradation and Al2O3 filled nanocomposites after (b) 6h, (c) 12h, (d) 18h of degradation [40]</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Interfacial area of micro particle and nano particles, which shows that nano particles has greater surface-to-volume ratio compared to that of micro particle</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Roughness profile of (a) neat epoxy (b) epoxy nanofilled TiO2 composite after 6h of degradation [40]</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Images of the eroded surface of the specimens; (a) LDPE; (b) LDPE + MMT 5%; (c) LDPE + Si 5% [60]</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>CIGRE Method II electrode configuration [10]</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Evolution of PD erosion for sample unfilled XLPE, XLPE</td>
<td></td>
</tr>
</tbody>
</table>
with 5% unfunctionalized silica, and XLPE with 5% functionalized silica, with ageing time; (a) erosion pit depth, (b) cross-sectional area of a formed pit [61]

2.11 Molecular structure of Polyimide [68]

2.12 SEM images of areas degraded by partial discharge activity for 48 hours at 6 kVrms, of nanocomposite specimens: (a) pure polyamide, (b) 2 wt% silicate polyamide, (c) 4 wt% silicate polyamide, (d) 5 wt% silicate polyamide [71]

2.13 Weibull plot of dielectric breakdown strength of neat HDPE and HDPE with SiO2 nanoparticles [59]

2.14 Weibull distribution of breakdown strength evaluated for 0wt%, 40wt%, 60wt%, 70wt%, 80wt% Al2O3 Microcomposites [78]

2.15 Breakdown test on microcomposite and nano-microcomposite samples of 60wt% microfiller [47]

2.16 Relation between MgO content and impulse breakdown Strength [80]

3.1 Flowchart of PD behaviour on electrical properties of natural rubber blends- nanocomposites as electrical insulating material

3.2 Molecular structure of cross-linked polyethylene (XLPE)

3.3 Molecular structure of polyethylene

3.4 Flowchart of sample production process

3.5 Two-roll mill machine

3.6 Masticated natural rubber

3.7 Twin screw extruder attached to control panel (back) and conveyor belt (front)

3.8 Pellet mill used to pelletize the long-tube composite product from twin screw extruder
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>Technopress 100HC-beta Compression Molding System</td>
<td>45</td>
</tr>
<tr>
<td>3.10</td>
<td>Natural rubber-XLPE-nanocomposite pellets and mold prepared for compression</td>
<td>45</td>
</tr>
<tr>
<td>3.11</td>
<td>Schematic diagram of partial discharge measuring system</td>
<td>46</td>
</tr>
<tr>
<td>3.12</td>
<td>CIGRE Method II electrode system</td>
<td>47</td>
</tr>
<tr>
<td>3.13</td>
<td>CIGRE Method II electrode used in the experiment</td>
<td>47</td>
</tr>
<tr>
<td>3.14</td>
<td>Schematic circuit of impedance matching circuit with RC Detector</td>
<td>49</td>
</tr>
<tr>
<td>3.15</td>
<td>LabVIEW™ program “On-Line PD Analysis”</td>
<td>50</td>
</tr>
<tr>
<td>3.16</td>
<td>LabVIEW™ program “Off-Line PD Analyzer for High Voltage Insulation Condition Monitoring”</td>
<td>50</td>
</tr>
<tr>
<td>3.17</td>
<td>Scanning electron microscope (SEM) model JEOL JSM-6390LV in Institute of Ibnu Sina</td>
<td>52</td>
</tr>
<tr>
<td>3.18</td>
<td>Flowchart of analyzing the PD behaviour using CIGRE Method II in QuickField</td>
<td>54</td>
</tr>
<tr>
<td>3.19</td>
<td>Geometry model of CIGRE Method II test cell with polymer nanocomposite sample</td>
<td>55</td>
</tr>
<tr>
<td>3.20</td>
<td>Colour map of permittivity of the geometry model</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>PD pulse captured from XLPE-NR sample using Picoscope 6™ software</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>PD pulse captured from XLPE-NR sample using LabVIEW™ program</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Graph of cumulative number of positive PD in 1 hour PD test versus time</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Graph of cumulative number of negative PD in 1 hour PD test versus time</td>
<td>62</td>
</tr>
<tr>
<td>4.5</td>
<td>Graph of total PD number in 1 hour PD test versus time</td>
<td>63</td>
</tr>
<tr>
<td>4.6</td>
<td>Characteristics of PD in terms of PD number occurrence</td>
<td></td>
</tr>
</tbody>
</table>
in (a) 1 hour and (b) 3 hours high voltage stress of all samples

4.7 Characteristics of PD in terms of maximum magnitude after being stressed for 1 hour and 3 hours high voltage stress of all samples

4.8 SEM images of sample B1[Si-2] taken at 10,000x magnification showing that the small particles having size of less than 200nm, which is believed are the nanofiller particles

4.9 SEM images of the samples taken at 1000x magnification

4.10 Results from EDX analysis showing percentage of oxygen and carbon after experiencing PD stress for all samples

4.11 Comparison between aged and unaged FTIR spectra of NR-XLPE containing (a) no filler, (b) SiO$_2$ nanofiller, (c) O-MMT nanofiller, showing broad intensity of OH group before exposed to PD stress at wavenumber 3500-3200 cm$^{-1}$ before PD stress

4.12 FTIR spectra of samples containing SiO$_2$ nanofiller; (a) sample B1 [Si-2]; (b) sample B2 [Si-4]; (c) sample B3 [Si-8]

4.13 FTIR spectra of samples containing O-MMT nanofiller; (a) sample F1 [Om-2]; (b) sample F2 [Om-4]; (c) sample F3 [Om-8]

4.14 Voltage distribution across polymer nanocomposite sample in CIGRE Method II partial discharge test model where (a) Field colour map and (b) XY plot on sample, at 10 kV$_{rms}$ voltage application

4.15 Electric field strength across polymer nanocomposite sample in CIGRE Method II partial discharge test model where (a) Field colour map and (b) XY plot on sample, at 10 kV$_{rms}$ voltage application

4.16 Voltage distribution across polymer nanocomposite sample in CIGRE Method II partial discharge test, 10, 20, and 30 kV$_{rms}$ voltage application
Electric field strength across polymer nanocomposite sample in CIGRE Method II partial discharge test at 10, 20, and 30 kV_{rms} voltage application e 84
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ve</td>
<td>Positive</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>AD</td>
<td>After degradation</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminium trioxide/ alumina</td>
</tr>
<tr>
<td>ATH</td>
<td>Alumina Trihydrate</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated Total Reflectance</td>
</tr>
<tr>
<td>BD</td>
<td>Before degradation</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>div</td>
<td>Division</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray</td>
</tr>
<tr>
<td>EPDM</td>
<td>Ethylene-Propylene-Diene Monomer</td>
</tr>
<tr>
<td>EPR</td>
<td>Ethylene Propylene Rubber</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GHz</td>
<td>Giga hertz</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>H₂O</td>
<td>Moisture/ water</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene</td>
</tr>
<tr>
<td>HV</td>
<td>High voltage</td>
</tr>
<tr>
<td>IEC</td>
<td>International of Electrotechnical Commission</td>
</tr>
</tbody>
</table>
IEEE - Institute of Electrical & Electronic Engineers
IMC - Impedance Matching Circuit
km - Kilometre
kV - Kilovolt
LDPE - Low Density Polyethylene
LLDPE - Linear Low Density Polyethylene
LVSEM - Low Vacuum Scanning Electron Microscope
MC - Microcomposite
MDPE - Medium Density Polyethylene
MgO - Magnesium Oxide
MHz - Mega hertz
min - Minute
mm - Millimetre
MMT - Monmorillonite
ms - Milisecond
Ms/S - Megasecond per sample
mV - Milivolt
nA - Nano ampere
NDI - Normalized Degradation Index
NF - No filler
nm - Nanometer
NR - Natural rubber
ºC - Degree celcius
OH - Hydroxyl
O-MMT - Organo-Montmorillonite
PA - Polyamide
PD - Partial discharge
PE - Polyethylene
PI - Polyimide
PP - Polypropylene
PUR - Polyurethane rubber
PVC - Polyvinyl Chloride
R&D - Research and development
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>rms</td>
<td>Root mean square</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SF$_6$</td>
<td>Sulphur Hexafluoride</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Silicon Dioxide/ silica</td>
</tr>
<tr>
<td>SiR</td>
<td>Silicone Rubber</td>
</tr>
<tr>
<td>SMR</td>
<td>Standard Malaysian Rubber</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>Titanium dioxide/ titania</td>
</tr>
<tr>
<td>-ve</td>
<td>Negative</td>
</tr>
<tr>
<td>vol. %</td>
<td>Volume percentage</td>
</tr>
<tr>
<td>wt%</td>
<td>Weight percentage</td>
</tr>
<tr>
<td>XLPE</td>
<td>Crosslinked Polyethylene</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffractometer</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\[Z_L \] - Load impedance
\[Z_S \] - Source impedance
\[R_a \] - Average Roughness
\[\varepsilon \] - Permittivity
\[U_0 \] - Voltage assigned on ground electrode
\[U_{HV} \] - Voltage assigned on high voltage electrode
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Gantt chart of research activities and milestones</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>Energy Dispersive X-Ray (EDX) analysis</td>
<td>101</td>
</tr>
<tr>
<td>C</td>
<td>Fourier Transform Infrared (FTIR) correlation table</td>
<td>105</td>
</tr>
<tr>
<td>D</td>
<td>List of publications</td>
<td>107</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Nanotechnology includes techniques for controlling, modifying, and fabricating materials and devices with nanometric dimensions. It has a very broad definition in fields of surface science, physics, engineering materials, molecular biology, organic chemistry, etc. Through this technology, it will be able of create or fabricate many new materials and devices in a wide range of application including polymer nanocomposites. Polymer nanocomposites will possess promising high performances as engineering materials if they are prepared and fabricated properly [1, 2].

Polymer molecular composites and polymer nanocomposites have been a target for R&D since 1970’s. In fact, polymer composite research has begun in the early 1900 [3]. Since 1990, much effort has been made to develop and apply polymer nanocomposites in transportation, electrical and electronics engineering, food package, and building industries. Good mechanical and chemical properties such as tensile strength, impact strength, elastic modulus, and heat deflection temperature have becoming an added value to the nanocomposite polymer as a material in these fields [2].
In recent years, there have been a lot of research activities in electrical insulating material involving nanotechnology by utilizing renewable source added with nanocomposite as the electrical insulating material [1-7] due to its promising properties enhancement which leads to researches on nanocomposite polymer. Polymer nanocomposites are the second generation of filled resin in the insulation engineering which consists of polymers filled with small amount of nano-sized fillers that slowly overrule the first generation of filled resin micro-sized fillers. The polymer nanocomposites provide better electrical characteristics as dielectrics materials such as discharge characteristic and dielectric strength.

1.1.1 Research Trends on Polymer Nanocomposite Dielectrics

The research trends on polymer nanocomposites dielectrics has started in early 1990’s as the paper entitled “Nanometric Dielectrics” by T. J. Lewis was published in IEEE Transactions on Dielectrics and Electrical Insulation [8]. It has become a trigger bullet to a vast research in dielectrics that after the becoming years, a lot of experimental data on nanometric dielectric were published. More detailed concept on nanometric dielectric was studied with yearly increasing rate, including the structure of nanocomposites, the interactions between the polymer matrix and nanocomposites, and the effects of nanostructuration on dielectrics [5].

1.1.2 Application of Nanocomposite Insulating Material in Electrical Apparatuses

Development in nanostructuration has opened a wide opportunity in the application of nanocomposite materials as electrical insulation, especially cable
insulation. Studies [9-12] have shown that XLPE filled with a small amount of filler can hold great performance as power cable insulation. The problems that occur in the dielectrics are partial discharge, water tree, thermal failure in the insulation, and space charge accumulation. Adding a small amount of nanofiller seems to enhancing the ability of the dielectrics, thus overcoming these problems.

Other than that, a university research team collaborated with an electrical apparatuses’ manufacturer, Toshiba Corporation in Japan have developed a nanocomposite insulating material with high insulation performance obtained by homogeneous dispersion of nano fillers to epoxy resin. They focused on designing environmentally-friendly switchgear without sulphur hexafluoride (SF₆) that could gives environmental impact. One way is to use solid insulation systems using nano-clay and micro silica composites. Evaluations have verified that nanocomposites insulation are superior than SF₆ gas insulation in switchgear in terms of partial discharge degradation, thus longer time to breakdown [13, 14].

1.2 Problem Statement

The life expectancy of electrical insulation lies on its sensitivity towards partial discharge occurrence, dielectric stress, thermal stress, etc. Partial discharge has always been a predecessor faults and problem electrical insulation. A partial discharge (PD) is a short release of current caused by the build up of localized electric field intensity. According to BS 60270 “High Voltage Test Techniques-Partial Discharge Measurement”, PD is defined as localized electrical discharge that only partially bridge the insulation between conductors and which can or can not occur adjacent to a conductor [15]. PD activities can initiate under normal working conditions in electrical insulation when the insulation is thermally aged or deteriorated due to surroundings or poor workmanship. The PD can propagate and develop into electrical trees, thus leads to problems such as current floating and
insulation breakdown, and affect a device or electrical system. The occurrence of PD can caused devastated problems that will consume high repairing cost and wastage if there is no early and accurate detection [16].

In order to enhance the electrical properties of electrical insulation, many researches utilizing improved technology has been done. Previously, addition of microsized filler or microfiller into a host polymer, for example crosslinked-polyethylene (XLPE) seems to make this happens. However, this conventional microcomposite requires a large amount of microfiller that it can reach up to 50 wt% of the total materials weight to be added into the composites, thus changing the characteristics of the base polymer considerably [17].

Recently, nanostructuration of filler material in electrical insulation has gained attention among researchers. By adding an amount of nanosized-filler, or nanofiller into electrical insulation, the partial discharge characteristics can be improved. Despite of these numerous research it has opens doors into many investigations and getting more exciting.

Other than that, a few researches have been done utilizing natural rubber blends in polymeric insulation. Natural rubber, an elastomer has been extensively studied because of its wide usage in human life. However, the utilization of natural rubber blends nanocomposite including discharge characteristics and interfacial phenomena of polymer-nanocomposites are not clearly understood. Malaysia is among the top 5 rubber producing country in the world. Hence, this could be an advantage of Malaysia to pursue utilization of natural rubber in electrical insulation. This proposed research work will utilize natural rubber-blends polymeric base material of polyethylene (PE) and nanoscale of silica (SiO$_2$), and organo-montmorillonite (O-MMT) as added materials. With proper preparation, these materials can offer great advantages as electrical insulation.
1.3 Objective of the Research

This study embarks on the following objectives:

1. To investigate partial discharge characteristics of natural rubber blends-nanocomposites as electrical insulating material.

2. To define morphological characteristics of natural rubber blends-nanocomposite after experiencing electrical stress.

3. To find optimum natural rubber blends-nanocomposite compound as electrical insulating material in terms of PD number, surface morphology, and element composition, as the measurement of the degradation level.

1.4 Scope of the Research

Laboratory investigations were carried out on sample of natural rubber blends XLPE and two types of nanofiller; i.e. silica and organo-montmorillonite. The process involved in sample preparation were mastication, extrusion, and compression moulding. Mastication process is a mechanical shearing process using two roll mill to soften the natural rubber as well as reducing its molecular weight and viscosity. Extrusion process is a high volume manufacturing process in which the mixed compounds are melted and formed into a long-tube shape composite. Compression moulding process prepares the sample into the desired thickness appropriate to the PD test.

The samples have undergone partial discharge test and several analyses. In order to study the partial discharge characteristic, the parameters observed are
voltage magnitude and number of partial discharge occurrences. The partial discharge test utilized CIGRE Method II as partial discharge measurement technique and Impedance Matching Circuit (IMC) in its transmission system. The data acquisition was done via LabVIEW™ program. The morphological structures of the samples were analyzed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared Spectroscopy (FTIR) before and after being exposed to high voltage stress.

1.5 Significance of the Research

1. The partial discharge resistance test utilized CIGRE Method II as partial discharge measurement technique and Impedance Matching Circuit (IMC) in its transmission system. LabVIEW™ programs were used as the data acquisition in on-line monitoring and off-line analysis. In order to study the partial discharge characteristic, the parameters observed are voltage amplitude and number of occurrence of partial discharge.

2. Computational simulation studies using Quickfield was practical in showing the electric distribution in the test cell and sample in different voltage application, where it shows the surrounding the of the sample which most deteriorated from the PD stress.
REFERENCES

Measurements in Compliance to IEC 60270, in *ELECTRA Technical Brochure WG D1.33*. 2008, CIGRE.

68. Siddabattuni, S.V., Interfacial effects on dielectric properties of polymer-particle nanocomposites. 2011, Missouri University of Science and Technology: Ann Arbor. p. 175.

