GREEN ELECTRICITY PRODUCTION BY EPIPREMNUM AUREUM AND BACTERIA IN PLANT MICROBIAL FUEL CELL

NEGAR DASINEH KHIAVI

UNIVERSITI TEKNOLOGI MALAYSIA
GREEN ELECTRICITY PRODUCTION BY EPIPREMNUM AUREUM AND BACTERIA IN PLANT MICROBIAL FUEL CELL

NEGAR DASINEH KHIAVI

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

DECEMBER 2014
This thesis is dedicated to my parents, Nader and Ashraf, who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve.

Especially to my husband Saeid who has been a constant source of support and encouragement during the challenges of graduate school and life. I am truly thankful for having you in my life. And my son, Elshan who have always stood by me and dealt with all of my absence from many family occasions with a smile.

To my brother, Mohammad, for his inspiration and love.

And finally, special dedications to some of my friends in Malaysia and Iran whose love and support gave me peace and motivation.
ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor Dr. Norahim bin Ibrahim for the useful comments, remarks and engagement through the learning process of this master thesis. I appreciate his vast knowledge and skill in many areas.

I would like to thank all of lecturers and staffs at Faculty of Biosciences and Medical Engineering, University Technology Malaysia. And finally I would like to thank my fellow lab-mates who helped me during lab works to keep me moving and motivated.
ABSTRACT

Due to high energy demand worldwide, finding an alternative renewable and sustainable energy source is of great interest. Plant microbial fuel cell (P-MFC) is one of the most promising methods to generate green energy. In P-MFC, a plant is placed into the anode compartment. Mutual interaction between plant root rhizodeposits and bacterial community present in biofilm format at the vicinity of the rhizosphere area in plant root could be utilized to generate electricity. Indeed, in P-MFC, bacteria metabolize rhizodeposits into electrons and protons. These electrons could be then converted into green electricity. In this work, *Epipremnum aureum*, was selected as the studied plant species. Measurement of electricity generation by this specific species was conducted for 20 days. The open circuit voltage (OCV) was measured at 195 mV and the maximum power density was 0.85 μW/cm². Five isolated bacterial strains from the graphite felt surface found on the anode were screened by nine biochemical tests such as catalase, TSI (triple sugar iron agar), gelatin and etc.
Oleh kerana permintaan tenaga yang tinggi di dunia, mencari alternative sumber tenaga boleh diperbaharui merupakan satu bidang yang sangat menarik. Sel bahan api mikrob (MFC-P) adalah salah satu kaedah yang paling berpotensi untuk menjana tenaga hijau. Di dalam P-MFC, tumbuhan ditempatkan ke dalam petak anod. Interaksi bersama di antara rhizodeposits tumbuhan dan komuniti bakteria (bio-filem) di sekitar rizosfera menghasilkan proton dan elektron. Elektron yang terhasil ini kemudiannya ditukarkan menjadi tenaga elektrik. Di dalam projek ini, sejenis sepsis pokok keladi, telah dipilih sebagai tumbuhan kajian, dan pengukuran penjanaan elektrik menggunakan spesies ini telah dijalankan selama 20 hari. Maksimum voltan litar terbuka (OCV) yang diukur bernilai 195 mV dan ketumpatan kuasa maksimum sebanyak 0.85μW/cm2 telah diperolehi. Lima jenis bacteria telah dipencilkan daripada permukaan anod dan telah disaring untuk 9 ujian biokimia seperti katalase, TSI (tiga kali ganda agar besigula), gelatine dan sebagainya.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND SYMBOLS</td>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 **INTRODUCTION**

1.1 Background of Study 1

1.2 Statement of Problem 3

1.3 Objectives of Study 4

1.4 Scope of Study 4

2 **LITERATURE REVIEW**

2.1 Microbial Fuel Cell (MFC) 6

2.2 Concept of Plant- MFC 7

2.2.1 Plant-assisted Sediment-MFCs (S-MFC) 9

2.3 Microbes in MFC 13

2.3.1 Electrical Interactions Between Microbes and Electrodes 15
2.4 Construction Materials for MFCs
- **2.4.1 Anode Electrode Material**
 - **2.4.1.1 Cathode Electrode Materials**
- **2.4.2 Configuration of MFC**
 - **2.4.2.1 Anode Compartment**
 - **2.4.2.2 Cathode Compartment**
 - **2.4.2.3 Membrane**

2.5 pH Effect in Current Generation

2.6 Biochemical Tests
- **2.6.1 Gram Staining Technique**

3 MATERIALS AND METHODS
- **3.1 Preparation of Hoagland Solution**
 - **3.1.1 Preparation of Micronutrient Stocks**
 - **3.1.1.2 Preparation of Iron stock**
- **3.2 Salt Bridge Preparation**
- **3.3 Experimental Set-up**
- **3.4 Plant Microbial Fuel Cell Operation**
- **3.5 Analytical Techniques**
 - **3.6 Biochemical Tests**
 - **3.6.1 Gram Staining Technique**
 - **3.6.2 Catalase Test**
 - **3.6.3 Triple Sugar Iron Agar (TSI) Test**
 - **3.6.4 Simmons Citrate Agar Test**
 - **3.6.5 Motility Test (Motility Medium)**
 - **3.6.6 Gelatin Test**
 - **3.6.7 Urease Test**
 - **3.6.8 Starch Hydrolysis Agar Plate**
 - **3.6.9 OF (Oxidation-Fermentation) Test**

4 RESULTS AND DISCUSSION
- **4.1 Data Analysis**
4.1.1 Acidification of Anode and Cathode Chamber

4.1.2 General vitality (Biomass Production)

4.2 Biochemical Test Outcome Analysis

4.2.1 Colony Morphology of Isolated Bacteria

4.2.2 Microscopic Observation Results

4.2.3 Catalase Test Results

4.2.4 Triple Sugar Iron Agar (TSI) Test Results

4.2.5 Simmons Citrate Test Results

4.2.6 Motility Test Results

4.2.7 Gelatin Test

4.2.8 Urease Test Results

4.2.9 Starch Agar Test Results

4.2.10 OF Test Results

5 CONCLUSION

5.1 Conclusions

5.2 Future Works

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of the Sediment-MFCs Researches</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of Nutrient Solution for Hoagland</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Composition of micronutrient solution</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Composition of Iron Stock</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Composition of motility test medium</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Composition of Gelatine test medium</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Composition of Urease test medium</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>Composition of OF test medium</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of colony morphology of isolated bacteria</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Biochemical test results summary</td>
<td>63</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic (a) and photograph (b) of the dual chamber Plant Microbial Fuel Cell: two compartments are separated by salt a bridge and plant and graphite felt are placed in the anode compartment</td>
<td>2</td>
</tr>
<tr>
<td>3.1</td>
<td>Graphite felt attached to the copper rod</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Photograph of the Epipremnum aureum</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Plants before placing into the P-MFC</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Set-ups of Plant microbial fuel cell in the laboratory</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>P-MFC connected to the multimeter in the greenhouse</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>Research methodology flow</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Plant microbial fuel cell voltage (mV). The arrow indicate 2 mL phosphate buffer (1M) addition to the cathode chamber</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>(a) Polarization curve with cell voltage, (b) with Plant MFC</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Photograph of the plant in the set up. The figure (a) reperesents the initial number of plant leaf, photograph b), displays the new buds after 2day of operation, photograph c), demonstrates the final condition of plant leaf growth</td>
<td>47</td>
</tr>
</tbody>
</table>
4.4 Photograph of the isolated bacteria on the NA petri dishes. a) BF1 strain, b) BF2 strain, c) BF3 strain, d) BF4 strain, e) BF5 strain

4.5 Observation of isolated bacteria shape under the light microscope after gram staining. a) BF1, b) BF2, c) BF3, d) BF4, e) BF5

4.6 Catalase test, after adding the H₂O₂ 3% on each single isolate colony

4.7 Triple sugar iron agar results (TSI) photograph (a) displays the result after 48 hours of incubation; photograph (b) displays the result after 7 days, for isolates BF3 and BF5

4.8 Citrate metabolism pathways

4.9 Simmons citrate test results photograph

4.10 Motility test results

4.11 Gelatin hydrolysis test outcome

4.12 Urease test results, BF3 strain revealed the pink color after inoculating in the urease test medium

4.13 Starch agar test results after the addition of Gram Iodine reagent

4.14 OF test outcome, (a) anaerobic and (b) aerobic condition
LIST OF ABBREVIATION AND SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Centigrade Celsius</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>hr</td>
<td>Hours</td>
</tr>
<tr>
<td>H₂O</td>
<td>Dihydrogen oxide</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram/Liter</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient Agar</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Ω</td>
<td>Ohm</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>M</td>
<td>Molarity</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>P-MFC</td>
<td>Plant microbial fuel cell</td>
</tr>
<tr>
<td>MFCs</td>
<td>Microbial fuel cells</td>
</tr>
<tr>
<td>Pₜ</td>
<td>Platin</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>mA.m⁻²</td>
<td>Mili ampere per square meter</td>
</tr>
<tr>
<td>mV/m²</td>
<td>Mili volt over per square meter</td>
</tr>
<tr>
<td>HG</td>
<td>Hoagland solution</td>
</tr>
<tr>
<td>S-MFC</td>
<td>Plant-assisted Sediment-MFCs</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RPF</td>
<td>Rice Paddy Field</td>
</tr>
<tr>
<td>DGGE</td>
<td>Denaturating gradient gel electrophoresis</td>
</tr>
<tr>
<td>T-RFLP</td>
<td>Restriction fragment length polymorphism</td>
</tr>
<tr>
<td>W.m²</td>
<td>Watt over square meter</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Iron(III) oxide</td>
</tr>
<tr>
<td>CE</td>
<td>Columbic efficiency</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>RVC</td>
<td>Reticulated vitreous carbon</td>
</tr>
<tr>
<td>CoTMPP</td>
<td>Cobalt tetramethylphenylporphyrin</td>
</tr>
<tr>
<td>FEPC</td>
<td>Iron phthalocyanine</td>
</tr>
<tr>
<td>PbO₂</td>
<td>Lead dioxide</td>
</tr>
<tr>
<td>CEM</td>
<td>Cation exchange membrane</td>
</tr>
<tr>
<td>PEM</td>
<td>Proton exchange membrane</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>H⁺</td>
<td>Proton</td>
</tr>
<tr>
<td>mV</td>
<td>Milli Volt</td>
</tr>
<tr>
<td>mA</td>
<td>Mill ampere</td>
</tr>
<tr>
<td>mW/m²</td>
<td>Milli watt per square meter</td>
</tr>
<tr>
<td>W.m²</td>
<td>Watt per square meter</td>
</tr>
<tr>
<td>KNO₃</td>
<td>Potassium nitrate</td>
</tr>
<tr>
<td>NH₄H₂PO₄</td>
<td>Ammonium dihydrogen phosphate</td>
</tr>
<tr>
<td>Ca(NO₃)₂</td>
<td>Calcium nitrate</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>Magnesium sulfate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>FeSO₄.7H₂O</td>
<td>Ferrous Sulfate Heptahydrate</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>Boric acid</td>
</tr>
<tr>
<td>MnCl₂.4H₂O</td>
<td>Manganese(II) Chloride Tetrahydrate</td>
</tr>
<tr>
<td>ZnSO₄.7H₂O</td>
<td>Zinc Sulfate Heptahydrate</td>
</tr>
<tr>
<td>CuSO₄.5H₂O</td>
<td>Copper(II) Sulfate Pentahydrate</td>
</tr>
<tr>
<td>H₂MoO₄. H₂O</td>
<td>Molybdic Acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>kΩ</td>
<td>Kilo Ohm</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient agar</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen sulphide</td>
</tr>
<tr>
<td>TSI</td>
<td>Triple sugar iron</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>μA/cm²</td>
<td>Micro ampere per square centimeter</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Excessive emission of greenhouse gases is one of the most critical and important issues in the world. Generation of power with less emission and high efficiency is highly demanding. Introducing sustainable, new and renewable energy could be the best solution to reduce emission of greenhouse gases. Furthermore this is a new challenge between nations to exploit. Recently, fuel cells are considered as a high potential clean energy technology, due to the high energy conversion efficiency through the chemical degradation process. Microbial fuel cells are one of the most studied fuel cells, due to its potential application to generate electricity from wastewater treatment processes. Various types of bacteria and yeast involved in the system have been investigated. The electron transformation mechanism and microorganism behavior have been studied in some articles. (Timmers et al., 2013, Huggins et al., 2014, Xiao et al., 2014, Chen et al., 2014 and, Zhoua et al., 2014).

The plant microbial fuel cell (P-MFC) is a bioreactor that generates green electricity from the interaction between microorganisms of rhizosphere and root organic which released compounds such as sugars, organic acids, polymeric
carbohydrates, enzymes, dead cell materials and etc (Strik et al., 2008). Some parts of these organic compounds are then oxidized; donated electrons are then transferred to suitable electrodes which are located at the anode compartment (Yolina et al., 2012). On the other hands, protons are transferred through the membrane and undergo reduction in the cathode chamber producing water. The P-MFCs was primarily implemented by Strik et al., in (2008), and they achieved maximum power production of 67 mV.m$^{-2}$ anode surface area. They designed dual-chamber set up for P-MFC which were connected by a membrane (proton exchange membrane), while De Schanphelire, (2008) represents sediment P-MFC without employing membrane between cathode and anode compartments. The scheme of the microbial plant fuel cells in this project is presented in Figure 1.1.

![Figure 1.1](image)

Figure 1.1 Schematic (a) and photograph (b) of dual-chambers Plant Microbial Fuel Cell: two compartments are separated by a salt bridge. Plant and graphite felt placed in the anode compartment.
1.2 Statement of Problem

Although electricity generation by MFCs has increased indefinably at lab scale, scaling up this system is still a big problem. In addition high cost of proton exchange membrane and its fouling problem is a vital upcoming problem which could lead to the increase of the internal resistance and reduction of power output as well (Hu.,2008). From the energy demand and cost aspect, providing external artificial illumination increase the cost of constructing this system as well (Strik et al., 2008 and He et al., 2009). The biggest disadvantage of MFCs is that based on the constructing condition such as electrode material, configuration design, and temperature and most crucially the feeding substrate the operation period is various (Wang et al., 2009).

This technology besides non compatibility with food production could be united with agricultural products (Helder et al., 2012, Deng et al., 2012 and Hubenova et al., 2012). Therefore this system has the potential to be implemented in inappropriate locations such as green roofs and wetlands for crop production. One of the biggest disadvantages in applying this system is the request for large surface area of electrodes. On the other hand topsoil excavation for integration of this system could hinder the fertility of the soil. Therefore in order to remain the top soil from weakening and also remaining soil fertility aquatic plant could be the better option (Timmers et al., 2013).

A usual problem which normally happens in the MFCs is the pH gradient between the membranes. Due to the degradation of substrates in the anode the pH in the anode convert to the acidic. While in the cathode alkaline by oxygen reduction as well as non-specific permeability of PEM is produced (Harnisch et al., 2009). This problem could be overcome by applying different techniques such as utilizing buffers (Sleutels et al., 2009) and membraneless microbial fuel cell (Hu et al., 2008). However these methods dramatically decline the fuel cell energy recovery
(Rozendalet al., 2008). Therefore further developments need to be achieved in order to reduce the pH gradient (Harnisch et al., 2009).

1.3 Objectives of Study

Based on Hubenova et al. (2012), microorganisms which inhabit around the rhizosphere of plant roots, are considered to have significant importance to interact with anode in the aquatic MFCs operation. The objectives of this research are:

1) To utilize Epipremnum aureum plant to generate electricity.
2) To observe current generation by different resistors.
3) To characterize immobilized bacteria attached on the anode surface.

1.4 Scope of Study

Through this study graphite felt was used as an electrode material in the P-MFC due to its good electrical conductivity, chemical stability, relatively cheap and availability. In addition to graphite felt, other carbon-like materials to improve the efficiency of P-MFCs could also be used. Also, optimizing the cathode and anode chamber pH media to improve the performance of P-MFCs was expected. This aim was achieved by applying various concentration of phosphate buffer. Monitoring current generation between bacteria and plant interaction could achieved by applying various resistors. Presence and activating various species of bacteria with specific characteristics during highest OCV achievement was expected. According to (De Schamphelaire et al., 2010), microbial biofilm on the anode are responsible for the current generation. Characterization of anode attached biofilm by biochemical tests
was done. These bacteria have specific optimum growth temperature. Highest current generation is usually possible when quite a number of bacteria species are available in the form of biofilm on the electrode surface.
REFERENCES

Clauwaert, P., Rabaey, K., Aelterman, P., De Schamphelaere, L., Pham, T.H., Boeckx, P.,

Finegold S. M. and Baron E. J. (1986). Bailey and Scotts Diagnostic Microbiology, 7th Ed, the C.V. Mosby Co, St. Louis.

