EVALUATION OF Acalypha indica EXTRACTS FOR ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES

NUR FATHIN BINTI RUSLAN
A dissertation submitted in partial fulfilment of the Requirements for the award of Masters of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

OCTOBER, 2015
DEDICATION

To

ADABI

As the main sponsor of UTM-ADABI Cat Food project

MINISTRY OF HIGHER EDUCATION MALAYSIA and MARA

for providing scholarship and financial support for my study

&

FAMILY and FRIENDS
ACKNOWLEDGEMENT

This work would never be accomplished without the support and help from many people as indeed, this thesis completion has taken a lot of effort and focus throughout the study. I thank upon Allah The Almighty that with the blessings, wisdom and power from Him, would I have accomplished all the work.

This study was carried out at the Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia as attribute to ADABI-UTM Cat Food Project. Financial support was a crucial variable that open doors to the ability to execute this research. Financial support was provided by MARA and my study was supported with scholarship from the Ministry of Higher Education (MyMaster Scholarship). To both of the party, I am very grateful.

I would like to convey sincere appreciation to my supervisor, Dr. Razauden Mohamed Zulkifli and my co-supervisor Dr Amir Husni Mohd Shariff for their kind and generous support throughout the study, as well as the academic advices, patience, understanding and expertise in helping me to complete the study.

A special appreciation to my family whom supported and encouraged me until the end. I also would like to show my appreciation to labmate in Nutritional Biochemistry Lab, Wan Nur Atiqah for support and guidance. I am deeply indebted to my friends in the same journey, walking together to the end of the study, Nurun Nabilah Baharum.
ABSTRACT

For centuries, medicinal plants are being used as remedy for various ailments throughout the globe. The study was conducted emphasizing on the antibacterial and antioxidant activities of several Acalypha indica extracts. The plant was divided to leaves and stem, whole plant and roots and extracted with hexane, methanol and ethanol by successive method. Antioxidant activity was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging assay and found to be highest in the ethanolic root extract with IC₅₀ of 206 µg/ml. The antibacterial activity screening of different extracts was conducted by using disc diffusion, minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis. Hexane extracts from leaves and stem, whole plant and roots showed promising results against Enterococcus faecalis with high inhibition zone at 10 to 12 mm as compared to standard antibiotics, 6 to 10 mm. All extracts showed antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values in the range from 60 to 15 mg/ml. This study concludes that A. indica explicit antioxidant and antibacterial activities may be potential for pharmaceuticals, cosmeceuticals, nutraceuticals, medical and food industry.
ABSTRAK

Selama berabad, herba telah digunakan sebagai penawar pelbagai penyakit di seluruh dunia. Kajian ini dijalankan dengan menekankan aktiviti antioksidan dan antimikrob oleh beberapa ekstrak Acalypha indica. Tumbuhan tersebut dibahagikan kepada beberapa bahagian iaitu batang dan daun, keseluruhan pokok dan akar. Aktiviti antioksidan diukur menggunakan kaedah pemerangkapan radikal bebas 2,2-diphenyl-1-picrylhydrazyl (DPPH) dan menunjukkan ekstrak akar menggunakan ethanol mempunyai aktiviti antioksidan tertinggi dengan IC\textsubscript{50} 206 ug/ml. Penilaian aktiviti antimikrobial oleh pelbagai ekstrak dijalankan dengan cakera resapan, kepekatan perencatan minimum (MIC) dan kepekatan bakterisidal minimum (MBC) merencat pertumbuhan Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa dan Enterococcus faecalis. Ekstrak menggunakan pelarut heksana menunjukkan hasil yang memberansangkan menentang Enterococcus faecalis dengan zon perencatan yang tinggi (10 hingga 12 mm) berbanding antibiotik standard (6 hingga 10 mm). Semua ekstrak menunjukkan nilai kepekatan perencatan minimum (MIC) dan kepekatan bakterisidal minimum (MBC) sekitar 60 hingga 15 mg/ml. Kesimpulannya, A. indica mempamerkan potensi aktiviti antioksidan dan anti-mikrob dan sesuai untuk penggunaan dalam industri farmaseutikal, nutraseutikal, kosmeseutikal, perubatan dan makanan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 General Introduction 1
1.2 Problem Statement 2
1.3 Research Objectives 3
1.4 Research Scope 3
1.5 Significance of Research 4
2 LITERATURE REVIEW

2.1 Natural Product Approach in Drug Discovery 5
2.1.1 An Outlook on Plant Derived Drugs 6
2.1.2 Natural Product Trending 7

2.2 Acalypha indica, herb in grasp 8
2.2.1 Origin, Taxonomy and Morphology 8
2.2.2 Traditional Uses 10
2.2.3 Bioactive Compounds and its Applications 11
2.2.4 Potential use of A. indica Extracts in Industry 20

2.3 The Ground Knowledge of Extraction Methods 21
2.3.1 Synergism between Extraction Solvent and Bioactive Compounds 23

2.4 The science behind antioxidants from herbs 24
2.4.1 Natural Antioxidants: An Overview 25

2.5 Exploring Antimicrobial Properties of Natural Products 28
2.5.1 Targeted Microbes 29

3 METHODS 33

3.1 Materials 33
3.1.1 Samples 33
3.1.2 Chemicals and Reagents 34
3.1.3 Equipments 34

3.2 Extraction 34

3.3 Analysis of Extracts Bioactivities 35
3.3.1 Preparation of Extract 35
3.3.2 Screening of Antioxidant Activity 35
3.3.3 Antibacterial Activity Test 36

3.4 Statistical Analysis 39

4 RESULT AND DISCUSSION 40

4.1 A. indica Natural Products Extraction Yield and Efficiency 40
4.2 Efficiency of *A. indica* Extracts as Natural Antioxidants

4.3 Potential Aspect of *A. indica* in Microbial Growth Inhibition

5 CONCLUSION AND FUTURE RECOMMENDATIONS

5.1 Conclusion

5.2 Future Recommendations

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of various A. indica traditional uses.</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Preliminary phytochemical constituents of A. indica various extracts from previous works</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>List of bioactive compounds found in A. indica and their structure.</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Classification of E. coli</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Classification of S. aureus</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Classification of P. aeruginosa</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Classification of E. faecalis</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>Extraction yield (%) per solvent used for extraction of different parts of A. indica</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Concentration at IC(_{50}) of A. indica extracts and ascorbic acid as standard</td>
<td>46</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.3</td>
<td>Diameter of inhibition zones (mm) of hexane extracts against four test organisms</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Diameter of inhibition zones (mm) of methanol extracts against four test organisms</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Diameter of inhibition zones (mm) of ethanol extracts against four test organisms</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>MIC values of plant extracts against four test organisms</td>
<td>53</td>
</tr>
<tr>
<td>4.7</td>
<td>MBC values of plant extracts against four test organisms</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Acalypha indica</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Soxhlet Extractor unit</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>The basic chemical structure of flavonoids</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Scavenging effect of hexane extracts from different parts of A. indica and ascorbic acid on DPPH radical.</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Scavenging effect of methanol extracts from different parts of A. indica and ascorbic acid on DPPH radical.</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Scavenging effect of ethanol extracts from different parts of A. indica and ascorbic acid on DPPH radical.</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.C.</td>
<td>Before Centuries</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>50% inhibitory concentration</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient agar</td>
</tr>
<tr>
<td>NB</td>
<td>Nutrient broth</td>
</tr>
<tr>
<td>rpm</td>
<td>Round per minute</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

For thousand years, medicinal plants have been used as traditional remedies to treat numerous human illnesses in many different parts of the world. In the developing world, particularly in rural areas, herbal remedies continue to be an essential source of medicine. Scientifically, medicinal plants have been demonstrated as a numerous source of biologically active compounds, majority of them have already been formulated into beneficial therapeutic substances.

Acalypha indica belongs to *Euphorbiaceae*, a large family of flowering plants. Majority of the species is distributed in the Indo-Malayan region and tropical America (Charles et al., 2007) is an annual herb, about 80 cm high, a wild plant and commonly found in waste places or fields. It is locally known as “kucing galak” or “rumput lis-lis”, “kuppaimeni” in India and “t’ie han tsai” in China (Kirtikar & Basu, 1975). For a long time, *A. indica* has been used as traditional medicines of various countries and they are also reported to possess diuretic, purgative and anthelmintic properties, and also being used for bronchitis, asthma, pneumonia, scabies and other cutaneous diseases (Kirtikar & Basu, 1999).
Solvents selection have vital role in absorbing various bioactive compounds from plants. Polar solvent able to dissolve hydrophilic compounds, semi polar solvent able to dissolve both hydrophilic and lipophilic compounds while non-polar solvent absorbs lipophilic compounds. The usage of different solvents increase the possibilities to dissolve various different compounds (Charmi et al., 2011) which in turn will affect the bioactivities such as antioxidant and antibacterial activities.

This experiment was conducted to evaluate the antioxidant activity of *A. indica* extracts using three different solvent by successive method. Next, the leaves and stem, roots and whole plant extract were screened on antioxidant and antibacterial properties to support the conventional therapeutic claim and to provide base line data for the scientific communities to conduct further study.

1.2 Problem Statement

For decades, *A. indica* has been used as traditional remedies to treat various ailments such as skin diseases. However, there are still limited publications on the plants’ biological activities such as antioxidant and antibacterial activity of *A. indica*, which might contribute to its various medicinal properties.

Nowadays, synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are often used in the food industries to prevent or inhibit the oxidative deterioration in foods. However, there are a few health and safety concerns in use of synthetic antioxidants due to their potential toxicity and carcinogenic (Izreen & Noriham, 2011). Thus, there is increasing importance to search the natural antioxidants from plants as an alternative to synthetic antioxidant. Besides, the knowledge on the potential of antioxidant properties of *A. indica* are still not well understood. Therefore, it is worthwhile to study the antioxidant activity of *A. indica* based on its medicinal benefits.
There have been an increase in bacterial resistance to antibacterial agents which in turn cause difficulties to treat infectious diseases (Prashanth, Asha & Amit, 2001). Thus, there is a need to search for new antibacterial agent specifically from plants as an alternative to synthetic antibiotics. This prompted the evaluation of A. indica as source of potential natural antibacterial agent by testing against human pathogens such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis.

1.3 **Research Objectives**

1.3.1 To extract the leaves and stem, roots and whole plant of A. indica using various solvents by successive method.

1.3.2 To evaluate the antioxidant activity of the crude extracts.

1.3.3 To screen the antibacterial activities of the crude extracts.

1.4 **Research Scope**

This research focuses on the study of the A. indica various extracts, its antioxidant activities and antibacterial activities. The fresh A. indica was extracted by using soxhlet extractor with hexane, methanol and ethanol. The biological activities such as antioxidant and antibacterial will be carried out on the crude extracts. 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were conducted to assess the antioxidant activity. The antibacterial activity were evaluated by disc diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).
1.5 **Significance of Research**

Even though the research of antibacterial agents towards important bacterial pathogens have increased throughout the world, it is well known that the number of new antibacterial agents being brought to the market has undergone a steady decline in the past several decades. Since antiquity, human has used plants to treat common infectious diseases and some of these traditional medicines are still included as part of the habitual treatment of various diseases (Rios & Recio, 2005). The antibacterial compounds from plants may inhibit bacterial growth by different mechanisms than antibiotics and may have a significant clinical value in treatment of resistant microbial strains (Eloff, 1998). This study contributing the overview of *A. indica* on antibacterial activities against common pathogenic bacteria.

Worldwide, there has been growing trend and interest in plants’ natural antioxidants as natural additives in food and cosmetics. Plants are one of the most important targets to search for natural antioxidants as it is known safer compared to synthetic antioxidants (Yanislieva *et al.*, 2006). This study will contribute towards the growing database of knowledge on herbal medicines and help to advocate the safe and effective use of *A. indica* as traditional herbal remedies.
REFERENCES

atrosanguinea Lodd. and Quantification of Its Phenolic Constituents by RP-HPLC. Journal of agricultural and food chemistry, 56(21), 10129-10134.

