TENSILE, THERMAL AND FLAMMABILITY PROPERTIES OF DATE PALM FIBER FILLED RECYCLED TERNARY BLENDS AND COMPOSITES

KHADIJA MORAD SHIKH ZADEH

UNIVERSITI TEKNOLOGI MALAYSIA
TENSILE, THERMAL AND FLAMMABILITY PROPERTIES OF DATE PALM FIBER FILLED RECYCLED TERNARY BLENDS AND Composites

KHADIJA MORAD SHIKH ZADEH

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Polymer)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

MARCH 2015
To my beloved husband Nassir Hamid
ACKNOWLEDGEMENTS

First and foremost, I would like to acknowledge my profound gratitude to my abled supervisor, Prof. Azman Hassan, for their encouragement, guidance, support and inspiration throughout this research work. My deep appreciation also goes to my co-supervisors, Prof. Mariam Al-Maadeed and Dr. Zurina for their guidance, suggestions and motivation. I wish to express my gratitude to Dr. Ibrahim Inuwa who have directly contributed towards the success of my research project. I also wish to thanks all staff in Center for Advanced Material in Qatar University. Last not least my family for their encouraging me and the most wonderful children Hamid and Maryam.
ABSTRACT

High density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene (PP) are olefinic thermoplastics polymers that are most commonly found as municipal solid waste in many countries. Their accumulation has become a major concern to world agencies and environmental conservationists due to their harmful effect on environment. The objective of this study is to develop a mechanically strong, and thermally insulating, flame retardant, date palm leaf fibre (DPLF) filled composites based on recycled HDPE, LDPE and PP. Maleated polypropylene (MAPP) and maleated polyethylene (MAPE) were compared as coupling agents for the HDPE/LDPE/PP system. The effects of addition of MAPE and MAPP at 1, 3 and 5 wt% content were investigated. The addition 1 wt% MAPE acted as nucleating agent by increasing the crystallinity of the blends, resulting in improvement of the tensile strength from 20 to 22.7 MPa of the blend. On the other hand addition of 1 wt% MAPP marginally increased the tensile strength of the blend to 21 MPa from 20 MPa. The addition of 5, 10, 20 and 30 wt% DPLF fibre to the 1 wt% MAPE compatibilized ternary blend yielded composites with improved tensile properties. The composites with 10 wt% DPLF content showed the highest tensile strength of 25 MPa. Above 10 wt% DPLF content, agglomeration of the fibre in the matrix was noticed resulting in a decrease in the tensile strength. No improvement in the tensile strength was achieved with addition of 5 wt% DPLF loading in the composite. Additionally, 11% reductions in the effective thermal conductivity of the composites with 10 wt% DPLF was observed. This was attributed to low thermal conductivity of the DPLF compared to the matrix. The flame retardancy of the developed composites was significantly improved with the addition of magnesium hydroxide (Mg (OH)₂). However, the tensile strength of the composites was reduced. It was observed that addition of 10 wt% of Mg (OH)₂ led to improvement in the limiting oxygen index (LOI) by 22% compared with the composite without Mg (OH)₂. The developed composites have potential applications in low heat conducting roofing materials for the building construction industry.
Polietilena berketumpatan tinggi (HDPE), polietilena berketumpatan rendah (LDPE) dan polipropilena (PP) adalah polimer olefin yang paling banyak ditemui sebagai sisa pepejal perbandaran di kebanyakan negara. Pengumpulan mereka telah menjadi perhatian utama kepada agensi-agensi dunia dan pemuliharaan alam sekitar disebabkan oleh kesan berbahaya terhadap alam sekitar. Objektif kajian ini adalah untuk menghasilkan komposit HDPE, LDPE dan PP kitar semula berpengisi gentian daun pokok tamar (DPLF), bersifat mekanikal yang kuat dan berpenebat haba serta mempunyai sifat rencatan nyalaan. Polipropilena maleat (MAPP) dan polietilena maleat (MAPE) telah dibandingkan sebagai ejen pengserasi untuk sistem HDPE/LDPE/PP. Kesan penambahan MAPE dan MAPP pada kepekatan 1, 3 dan 5 wt% telah dikaji. Penambahan 1 wt% MAPE bertindak sebagai ejen penukleusan dengan meningkatkan penghabluran adunan. Hasilnya, peningkatan dalam kekuatan regangan daripada 20 kepada 22.7 MPa terhadap adunan itu telah dicapai. Bagi penambahan 1 wt% MAPP, hanya sedikit peningkatan dalam kekuatan regangan adunan, iaitu kepada 21 MPa daripada 20 MPa. Penambahan 5, 10, 20 dan 30 wt% gentian DPLF ke dalam adunan pertigaan yang diserasikan oleh 1 wt% MAPE menghasilkan komposit dengan peningkatan sifat-sifat regangan. Komposit dengan 10 wt% kandungan DPLF menunjukkan kekuatan regangan yang tertinggi, iaitu pada 25 MPa. Apabila kandungan DPLF adalah melebihi 10 wt%, aglomerasi gentian dalam matrik telah berlaku dan menyebabkan pengurangan dalam kekuatan regangan. Tiada peningkatan dalam kekuatan regangan yang dapat dicapai dengan penambahan 5 wt% kandungan DPLF dalam komposit. Pengurangan 11% dalam kekonduksian haba komposit telah diperhatikan dengan 10 wt% kandungan DPLF. Ini disebabkan oleh kekonduksian haba DPLF yang rendah berbanding dengan matrik. Rencatan nyalaan bagi komposit yang dihasilkan bertambah baik dengan penambahan magnesium hidroksida (Mg (OH)₂), namun kekuatan regangan komposit menurun. Penambahan 10 wt% Mg (OH)₂ membawa kepada peningkatan dalam LOI sebanyak 22% berbanding dengan komposit tanpa Mg (OH)₂. Komposit yang dihasilkan berpotensi sebagai bahan untuk membuat bumbung berkonduktif haba yang rendah dalam industri pembinaan.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td></td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Background of Study 1
1.2 Problem Statement 4
1.3 Objectives of Study 5
1.4 Scope of Study 5

2 LITERATURE REVIEW 7
2.1 Polymer Composites 7
2.2 Polymer Matrix 8
2.2.1 Polyethylene 9
2.2.1.1 Low Density Polyethylene 10
2.2.1.2 High Density Polyethylene 11
2.2.2 Polypropylene 11
3 MATERIALS AND METHODS

3.1 Materials

3.1.1 Matrix

3.1.2 Date Palm Fiber

3.1.3 Coupling agents

3.1.4 Flame Retardant

3.2 Methods

3.2.1 Composite Preparation

3.2.1.1 Extrusion

3.2.1.2 Injection Moulding

3.3 Blend and Composite Formulation

3.4.1 Mechanical Analysis

3.4.2 Thermal Analysis

3.4.2.1 Differential Scanning Calorimeter (DSC)

3.4.2.2 Thermogravimetric Analysis (TGA)

3.4.2.3 Thermal Conductivity

3.4.3 Morphology by Scanning Electron Microscope (SEM)

3.4.4 Fourier Transform Infrared Spectroscopy (FTIR)

3.4.5 Flammability Test

4 RESULTS AND DISCUSSION

4.1 Date Palm Leaf Fiber Treatments

4.1.1 FTIR

4.1.2 Tensile Analysis

4.1.3 Thermal Analysis
4.1.4 Morphological Study by Scanning Electron Microscope (SEM) 39

4.2 Effect of Different Compatibilizers on Ternary Blends 41

4.2.1 Thermal Properties 41

4.2.1.1 Differential Scanning Calorimeter (DSC) 42

4.2.1.2 Thermogravimetric Analysis TGA 44

4.2.1.3 Thermal Conductivity 45

4.2.2 Tensile Properties 47

4.2.3 Morphological Analysis 48

4.3 Effect of Date Palm Leaf Fiber DPLF in TB 50

4.3.1 Thermal Properties 51

4.3.1.1 Differential Scanning Calorimetry (DSC) 51

4.3.1.2 Thermogravimetric Analysis (TGA) 52

4.3.1.3 Thermal conductivity 54

4.3.2 Tensile Properties 55

4.3.3 Morphological Analysis 56

4.4 Effect of Flame Retardant on the Composite 57

4.4.1 Thermal Properties 58

4.4.1.1 Differential Scanning Calorimetry (DSC) 58

4.4.1.2 Thermogravimetric Analysis (TGA) 59

4.4.1.3 Thermal Conductivity 61

4.4.2 Mechanical Properties Studies 62

4.4.3 Morphological Analysis by Scanning Electron microscope (SEM) 64

4.4.4 Flammability Properties 65

5 CONCLUSION AND RECOMMENDATION FOR FUTURE STUDIES 67

5.1 Conclusion 67

5.2 Future Works 68

REFERENCES 69
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Common polymer matrix or resins classified to thermosets and thermoplastics [16]</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Physical properties of PP, HDPE and LDPE [22].</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanical properties of some species of date palm leaf fiber [55]</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Limit oxygen indices (LOI) of selected polymers and heat release rates obtained by cone calorimeter [67, 68]</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Blend and Composite Formulation</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Characterizations of DPLF treated and untreated</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Thermal properties of ternary blends with addition of two types of compatibilizer</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Tensile properties of ternary blend with and without compatibilizer</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Thermal properties of the composite</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Mechanical properties of composite with and without date palm leaf fiber</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Thermal decomposition temperature and char residues of different composites with and without fire retardant</td>
<td>59</td>
</tr>
<tr>
<td>4.7</td>
<td>Tensile properties of composites</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structure of PE</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Percentage of plastic waste in Qatar 2010 based on obtained date from General Cleaning Project of Qatar GCPQ [26]</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Illustrates heat flow through (a) homogenous medium and (b) through heterogonous medium</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Temperature across a contact resistance [34]</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>The active sides of compatibilizer agent that adhesive both polymers A and B.</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>The reaction mechanism of maleic anhydride grafted polypropylene (MAPP) and the cellulose fiber [40]</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Structure of cellulose</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Setting of twin screw extruder zones temperatures</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>FTIR spectra of DPF (A) untreated (B) treated with 1%NaOH for 1hr</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Thermogravimetric curves of a) treated b) untreated DPLF</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Date palm leave fiber (a) Un-treated (b) treated with NaOH 1%.</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Cross section of (a) untreated and (b) treated SEM photos of date palm fiber.</td>
<td>40</td>
</tr>
<tr>
<td>4.5</td>
<td>DSC traces for blends containing different weight percentage of compatibilizers</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>TGA thermogram of ternary blend with different concentrations of compatibilizer concentrations.</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>TGA derivative thermogram of the two pure compatibilizers.</td>
<td>45</td>
</tr>
</tbody>
</table>
4.8 Thermal conductivity of TB and compatibilized blends.

4.9 Fractured tensile samples showing the ductility and brittle behavior of the sample with addition coupling agent to ternary blend. (a) Uncompatibilized TB, (b) with addition of MaPP1%, (c) with addition of 1% of MaPE, (d) with addition of 5% of MaPE, (e) with addition of MaPP5%.

4.10 Compatibilizers within matrix (a) with addition of 5% of MAPE illustrated the coalescence of excess MAPE within the TB matrix (b) With addition of MaPP5% illustrating the coalescence of the excess compatibilizer within TB matrix.

4.11 TGA Thermograms for different composites referring to the matrix MAPE1.

4.12 TGA derivative thermograms for different composites

4.13 Thermal conductivity for different composites compared with ternary blends.

4.14 Composite groups of fractured of tensile sample under SEM. (a) group C1 with 5% DPLF content (b) group C2 with 10% of DPLF (c) group C3 with 20% of DPLF (d) group C4 with 30% DPLF content

4.15 DSC traces of different composites with and without Mg(OH)$_2$.

4.16 Thermal decomposing of composite with different concentration of flame retardant illustrating char residues.

4.17 Thermal decompositions steps for different composite with and without flame retardant.

4.18 Thermal conductivity of the composites with flame retardant.

4.19 (a) MG(OH)$_2$ particles (b) Addition of 10% Mg(OH)2 in C2 (c) Addition of 20% of MG(OH)$_2$ in C2 (d) Fibber damage in C2-FR20%.

4.20 LOI test of the composites with and without flame retardant.
LIST OF SYMBOLS

\[\Delta G_m \quad - \quad \text{Gibbs free energy change in mixture} \]
\[\Delta H \quad - \quad \text{Enthalpy} \]
\[T_c \quad - \quad \text{Crystallization temperature} \]
\[\chi_c \quad - \quad \text{Degree of Crystallinity} \]
\[\kappa \quad - \quad \text{Thermal conductivity} \]
\[Q \quad - \quad \text{Quantity of heat passing through a base area of the sample} \]
\[E\% \quad - \quad \text{Percent elongation at break} \]
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE</td>
<td>Low Density Polyethylene</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>DSC</td>
<td>Different scanning calorimetry</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>HFM</td>
<td>Heat Flow Meter</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared spectroscopy</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Polyolefin such as polyethylene (PE) and polypropylene (PP) have been used extensively for making composite materials due to their interesting physical and mechanical properties. PE is one of the most versatile and widely used thermoplastics in the world because of its near zero moisture absorption, excellent chemical inertness, low coefficient of friction and ease of processing. Polyethylene is classified into different categories based on its density, such as low-density polyethylene (LDPE) and high-density polyethylene (HDPE) [1, 2]. PP is another type of polyolefin with excellent properties such as low cost, light weight, process ability higher modulus than PE and tough [1, 2].

These polyolefin represent the majority of commodity thermoplastics that are currently used in several applications. Since the production and consumption of these polymers is persistently increasing, the environmental impacts of polymer wastes have become an important problem for the society, governmental and non-governmental agencies [2].
Recycling of polymer waste has recently attracted attention mainly due to environmental concerns and the depletion of petroleum resources. According to the data obtained from General cleaning Project of Qatar GCP of waste production2011 [3], the municipal plastics waste consist of HDPE, LDPE and PP with 50%, 25% and 25% by weight respectively. Usually, the plastics waste end up in landfill which accumulates annually and an effective recycling program is necessary to address this issue [4].

Polymer blending has become an important field in polymer research and especially in the area of recycling. Therefore, blending of recycled polymers is considered as useful route for the development of new polymeric materials with wide range of properties [5].

The improvement in mechanical and physical properties of recycled materials depends on the adhesion of one phase into another. From the economic point of view, blending process is far less costly and less time consuming than producing new materials through synthesis procedures. Therefore adding compatibilizer is essential to improve the adhesion between the matrices. Some compatibilizers act as bonding agents or coupling agents such as maleic anhydride grafted polyethylene and maleic anhydride grafted polypropylene, they improve the adhesion between matrices as well as improve the bonding between filler and matrix [6, 7].

Natural fibers have attracted the attention of researchers as biodegradable reinforcing materials for composites fabrication as an alternative to the synthetic fibers. These natural fibers have several advantages including low cost, low density, biodegradable nature, abundantly available, absence of associated health hazards, easy fiber surface modification, and relatively nonabrasive. A lot of work has been done on the natural fiber reinforced thermoplastic composites which have various applications [8, 9,10].
The date palm trees are important crops in the Middle East generally and Qatar in particular. It plays an important part in the economic and social life of the people and their products are extensively used in daily life. Each year the date palm trees are pruned to remove old dead or broken leaves which are considered as an agricultural waste. The use of date palm fiber from agro waste can reduce waste disposal problems, the addition of date palm fiber to polymer waste with specific limit have improved the mechanical and physical properties of thermoplastic composites. Pre-treatment of hydrophilic DPLF is essential to be more compatible with hydrophobic polymer. Alkali treatment is a common method use to remove hemicellulose which is more susceptible to thermal degradation. It was reported that treatment with 1% NaOH could achieve the maximum tensile strength of single fiber [9, 11].

The weak point of recycle polyolefin composite reinforced by alkali treatment of DPLF is the high flammability of the composite. Enhancing their flame retardancy enlarge the range of their applications. Halogenated flame retardants, such as organic brominated compounds are often used to improve the flame-retarding properties of polymers; but these also increase both the smoke and carbon monoxide yield rates due to their inefficient combustion. The use of halogenated flame retardant has reduced due to their high toxicity. An alternative halogen free flame retardant such as magnesium hydroxide which is highly used in industries as filler due to its adequate endothermic decomposition with polymer composite [8] has been investigated.
1.2 Problem Statement

Commodity thermoplastics such as polyolefin which include all the different types of polyethylene and polypropylene are the most versatile and widely used thermoplastics due to their excellent properties, low cost and ease of production. These thermoplastics find a range of applications in everyday life from simple bread wraps to medical replacements. Due to their versatility of applications, enormous amount of plastic waste is generated daily. This plastics waste is not biodegradable and hence caused environmental problems. World conservationists and governmental agencies are becoming increasingly alerted on the menace of municipal plastics waste. Blending of recycled plastics waste such as HDPE, LDPE and PP could offer a solution to the problems of environmental degradation and to reduce the waste problem by producing material with newly acquired properties at a reasonable cost. However, these plastics limited miscibility and therefore, the use of a suitable compatibilizers required to improve interface adhesion. MAPP and MAPE are the two polymers that have been used as a compatibilizer for the PP and PE blends systems and were proved to be effective as compatibilizers. The mechanical properties of the synthesized blend can be further improved by the incorporation of reinforcing fillers such as date palm fiber. The addition of date palm fiber as a reinforcing filler can improve the mechanical and physical properties of the composites, reduce waste disposal problems and reduce production cost due its availability and low cost. The use of date palm fiber is also expected to reduce the effective thermal conductivity of the composites which may benefit some specific applications such as roofing materials.

Since polymers and natural fiber filled polymer composites have high flammability their applications are limited in some special fields such as oil fields and chemical explosive factories. The use of a flame retardant may improve the flame retardancy properties of the composites and widen their scope of applications. Halogenated flame retardants, such as organic brominated compounds increase both the smoke and carbon monoxide yield rates due to their inefficient combustion and hence their use as flame retardants have been reduced due to toxicity. Halogen free flame retardant such as magnesium hydroxide which release inert gas during thermal
decomposition has been used by industries for many years as a filler. Therefore, magnesium hydroxide was used in this work as flame retardant enhances the flame retardancy of the date palm fiber reinforced HDPE/LDPE/PP composites. To the best of our knowledge no similar study was reported in the open literature.

1.3 Objectives of Study

The overall objective is to develop a green composite based on halogen free flame retarded date palm filled recycled HDPE/LDPE/PP composites. The specific objectives are:

1) To determine the effect of DPLF content on thermal and tensile properties of recycled HDPE/LDPE/PP composites.
2) To investigate the effect of MAPE as coupling agent on DPLF filled recycled HDPE/LDPE/PP composites.
3) To study the effect of magnesium hydroxide on flammability on DPLF filled recycled HDPE/LDPE/PP composites.

1.4 Scope of Research

In order to achieve the objectives of this research the following activities were carried out:

(a) Sample preparation

In this research the blending of the recycled polymers was performed via melt intercalation method which includes optimization of blend ratio using twin screw extruder and the addition of the compatibilizer in the second stage.

The third stage involved the treatment of the fibers with 1% NaOH to remove the amorphous sections. The compounding of the fiber and blend matrix was achieved via melt intercalation using twin screw extruder and test samples were produced by injection molding process.
(b) Testing and Characterizations

Functional groups analysis of the untreated ar was achieved by Fourier Transform Infrared spectroscopy (FTIR). Tensile properties of blends and composites was conducted using an instron tensile tester. Measurement of thermal properties was achieved by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and Thermal conductivity test. The morphological analysis of specimens was done by Scanning Electron microscope type (SEM). The flammability tests was carried out via a limiting oxygen index (LOI).
REFERENCES

