STUDY OF UREA BASED SELECTIVE NON-CATALYTIC REDUCTION OF NOₓ IN SMALL SCALE COMBUSTION APPLICATIONS

KHANDOKER ABUL HOSSAIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

February, 2004
To my beloved parents, who sacrificed a lot
ACKNOWLEDGEMENT

All praises are for Al-Mighty Allah, who has given me the opportunity to complete this work despite having so many problems.

I would like to thank my supervisors Dr. Nazri Mohd. Jaafar, Prof Farid Nasir Ani and Dr. Azeman Mustafa for their strong supervision, advice and supports throughout my work. They have given me a lot of time indeed.

The financial support of the Malaysian Government for this research work and relevant supports of UTM for completing the studies are greatly acknowledged.

I would also like to thank all the concerned technicians of the Faculty of Mechanical Engineering for their technical assistance and co-operative attitude.

Finally, I am very grateful to my wife and especially to my small kid Khandoker Labib Zawad, who sacrificed his father a lot for the greater interest of mankind.

All useful results of this research are attributed to the blessing of Allah, who is The All Knowing, The All Aware and The Merciful.
ABSTRACT

Selective Non-Catalytic Reduction (SNCR) of nitric oxide was studied experimentally by injecting different concentrations of aqueous urea solution in a pilot-scale diesel fired tunnel furnace at 3-4 % excess oxygen level and with low ppm of baseline NO\textsubscript{x} ranged from 65 to 75 ppm within the investigated temperature range. The furnace simulated small-scale combustion systems such as low capacity boilers, hot water heaters, oil heaters, etc., where the operating temperatures are usually in the range of about 973 to 1323 K and NO\textsubscript{x} emission level remains below 100 ppm. In order to investigate the influence of additive on reduction characteristics, different concentrations of commercial grade sodium carbonate (Na\textsubscript{2}CO\textsubscript{3}) were added to urea solution. The significant aspects of the studies are that it employed commercial grade urea as NO\textsubscript{x} reducing agent and commercial grade Na\textsubscript{2}CO\textsubscript{3} as additive to urea solution to minimize the cost of the SNCR operation. NO\textsubscript{x} reductions were studied with the variation of different parameters such as injection temperature, residence time, Normalized Stoichiometric Ratio (NSR) of the reagent, carrier gas pressure, etc. A significant amount of NO\textsubscript{x} reduction was achieved which was not pronounced by the previous researchers with urea SNCR for this low ppm of NO\textsubscript{x}. With 5% plain urea solution, at an NSR of 4 as much as 54% reduction was achieved at 1128 K, whilst in the additive case the NO\textsubscript{x} reduction was improved to as much as 69% at 1093 K. Apart from this improvement, in the additive case, the effective temperature window as well as peak temperature of NO\textsubscript{x} reduction shifted towards lower temperatures. The ammonia slip measurements showed that in both cases the slip was below 16 ppm at NSR of 3 and optimum temperature of NO\textsubscript{x} reduction. Finally, the investigations demonstrated that urea based SNCR is quite applicable to small-scale combustion applications and commercial grade urea and sodium carbonate are potential NO\textsubscript{x} reducing agent and additive respectively.
ABSTRAK

Satu kajian mengenai Penurunan Bukan Bermangkin Terpilih (SNCR) terhadap nitrik oksida telah dijalankan secara ujikaji dengan menyembur larutan akues urea yang berbeza kepekatan di dalam sebuah terowang relau disel berskala kecil pada paras lebihan oksigen sebanyak 3-4% serta pada nilai emisi NOx yang rendah iaitu antara 67-75 ppm dalam julat suhu yang dikaji. Relau yang digunakan mewakili sebuah sistem pembakaran berskala kecil seperti dandang berkapsasi rendah, permanas air, pemanas minyak dan sebagainya, di mana suhu operasi relau pada kebiasaannya adalah di dalam lingkungan 973-1323 K manakala paras emisi NOx adalah di bawah 100 ppm. Dalam mengkaji kesan penambahan larutan urea bagi mengurangkan emisi, pelbagai kepekatan natrium karbonat (Na2CO3) bergred komersial telah ditambah ke dalam larutan urea tersebut. Aspek-Aspek penting yang difokuskan dalam kajian ini adalah penggunaan Na2CO3, juga bergred komersial, sebagai bahan tambahan kepada larutan urea, untuk mengurangkan kos operasi SNCR. Kajian ke atas pengurangan NOx dijalankan dengan mengubah beberapa parameter seperti suhu sembunan, masa bermastautin, nilai Nisbah Stoikiometri Ternormal (NSR) bagi reagen, tekanan gas pembawa dan sebagainya. Pengurangan nilai NOx yang ketara telah diperoleh dalam kajian ini yang mana belum pernah dilaporkan oleh mana-mana penyelidik sebelum ini bagi bahan urea SNCR untuk kadar ppm NOx yang rendah. Pada nilai NSR bersamaan 4 dengan 5% larutan urea, sebanyak 54% pengurangan NOx telah diperoleh pada suhu 1128 K, manakala bagi kes penambahan bahan penambah pula, pengurangan NOx telah meningkat sehingga 69% pada suhu 1093 K. Selain dari pembaikan ini, bagi kes bahan penambah, julat suhu efektif dan suhu maksimum pengurangan NOx telah berubah ke nilai yang lebih rendah. Dalam kedua-dua kes, didapati nilai ammonia yang tidak bertindakbalas yang telah diuuk menunjukkan satu nilai yang rendah iaitu di bawah 16 ppm pada NSR 3 serta pada suhu pengurangan NOx yang optimum. Akhir sekali, kajian yang telah dijalankan menunjukkan bahawa SNCR berasaskan urea boleh digunakan bagi kegunaan pembakaran berskala kecil, manakala bahan urea serta natrium karbonat yang bergred komersial juga berpotensi sebagai agen pengurangan NOx serta agen penambah.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Detrimental Effects of NO\textsubscript{x}</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Impact of NO\textsubscript{x} on the Environment</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>Photochemical Smog</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1.2</td>
<td>Acid Deposition</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1.3</td>
<td>Global Warming</td>
<td>4</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>Ozone Layer Depletion</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Impact of NO\textsubscript{x} on Health</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Impact of NO\textsubscript{x} on Materials</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>The Importance of the Present Studies</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives and Scope of the Present studies</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Objectives</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Scope of the Studies</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Thesis Outline</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>LITERATURE REVIEW ON NO\textsubscript{x} FORMATION AND CONTROL</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>General Information About Nitrogen Oxides</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Sources of NO\textsubscript{x}</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemistry of NO\textsubscript{x} Formation</td>
<td>17</td>
</tr>
<tr>
<td>2.3.1</td>
<td>The Zeldovich Mechanism</td>
<td>17</td>
</tr>
</tbody>
</table>
2.3.2 The Fenimore Mechanism 19
2.3.3 Fuel NO\textsubscript{x} Formation 21
2.3.4 N\textsubscript{2}O Mechanism 23
2.3.5 The influence of Pressure on the Formation of NO 25
2.3.6 NO Formation in Practical Systems 25
2.3.6.1 NO Formation in Non Premixed Combustion 26
2.3.6.2 NO Formation in Pre Mixed Combustion 26
2.3.7 NO\textsubscript{2} Formation Mechanism 27
2.4 Introduction to NO\textsubscript{x} Control 28
2.5 Pre-Combustion Techniques 29
2.5.1 Fuel Reformulation 30
2.5.2 Fuel Switching 30
2.5.3 Dual Fueling 31
2.6 Process Modification 31
2.6.1 Low NO\textsubscript{x} Burner (LNB) 31
2.6.2 Staged Combustion 32
2.6.3 Flue Gas Recirculation (FGR) 37
2.6.4 Reburning 37
2.6.5 Water or Steam Injection 38
2.6.6 Operational Modifications 39
2.7 Post Combustion Technologies 40
2.7.1 Selective Catalytic Reduction (SCR) 41
2.7.2 Selective Non-Catalytic Reduction (SNCR) 42
2.7.3 Hybrid SCR/SNCR 44
2.7.4 Advanced Reburning 45

3 LITERATURE REVIEW ON SNCR PROCESS 47

3.1 Attractive Features of SNCR 47
3.2 Problems Related to SNCR 48
3.3 NOx Reduction Using Aqueous Urea Solution 49
 3.3.1 NOx Reduction Performance with Urea 50
 3.3.2 Effect of Normalized Stoichiometric Ratio 54
 3.3.3 Ammonia Slip in Urea SNCR 56
 3.3.4 Nitrous Oxide and Carbon Monoxide Formation 59
 3.3.5 Effect of Oxygen 60
 3.3.6 Effect of Additives 61
 3.3.7 Process Mechanism 64
3.4 Parameters Affect the urea Based SNCR in Full Scale Applications 65
 3.4.1 Flue Gas Temperature 68
 3.4.2 Atomization Quality 68
 3.4.2.1 Carrier Gas Pressure 69
 3.4.2.2 Reagent Flow Rate 70
 3.4.2.3 Atomizer Design 70
 3.4.3 Combustor Geometry, Flue Gas Velocity Flow Pattern and Injection Location 71
3.5 NOx Reduction with Liquor Ammonia 72
 3.5.1 Kinetic Modeling 73
 3.5.2 Temperature Window 76
 3.5.3 Effect of Normalized Stoichiometric Ratio 78
 3.5.4 Effect of Residence Time 81
 3.5.5 Effect of Oxygen Content in Flue Gas 81
 3.5.6 Effect of Baseline Concentration of NO 82
 3.5.7 Influence of Water Content 83
 3.5.8 Effect of Additives 84
 3.5.9 Nitrous Oxide Emission 88
 3.5.10 Ammonia and Cyanide Emission 89
 3.5.11 Effect of Sulfur 91
4 EXPERIMENTAL SET UP AND PROCEDURE

4.1 Experimental Set Up
 4.1.1 Burner
 4.1.2 Combustor
 4.1.2.1 Flame Zone
 4.1.2.2 Injection Zone
 4.1.2.3 Reaction Zone
 4.1.2.4 Design Criteria of the Combustor
 4.1.2.5 Determination of Diameter and length of the Flame
 4.1.3 Injection System
 4.1.3.1 The Design Criteria of the Injection System
 4.1.3.2 General Procedure to Run the Injection System
 4.1.3.3 Injector
 4.1.3.4 Pressure Tank
 4.1.3.5 Why Air is Selected as Carrier Gas
 4.1.3.6 Measuring and Controlling Instruments in Injection Systems.

4.2 Baseline Tests
 4.2.1 Determination of the Temperature Profile of the Reactor
 4.2.2 Baseline NO\textsubscript{x} Emitted from the Combustion System
 4.2.3 Emissions of other Gases

4.3 General Experimental Conditions

4.4 General Experimental Procedure

4.5 Data Measurement
 4.5.1 Flue gas Analysis by Kane May Gas Analyzer
 4.5.2 Temperature Measurement by Thermocouple with Recorder
 4.5.3 Ammonia Slip Measurement
4.6 Reproducibility
4.7 Materials and Their Properties

5 RESULTS AND DISCUSSION

5.1 Injection of 5% Aqueous Urea Solution
 5.1.1 Effect of Injection Temperature
 5.1.2 Effect of Normalized Stoichiometric Ratio
 5.1.3 Effect of Residence Time
5.2 Injection of 10% Aqueous Urea Solution
 5.2.1 Effect of Injection Temperature and NSR
5.3 Injection of 25% Aqueous Urea Solution
 5.3.1 Effect of NSR and Injection Temperature
5.4 Effect of Dilution of Urea
5.5 Effect of Carrier Gas Pressure
 5.5.1 Effect on NO_x Reduction
 5.5.2 Effect of Carrier Gas Pressure on NO_x Reduction vs. Residence Time Profiles
 5.5.3 Effect of Temperature on NO_x Reduction vs. Pressure Profile
5.6 Ammonia Slip
 5.6.1 Effect of Injection Temperature on Ammonia Slip
 5.6.2 Effect of Normalized Stoichiometric Ratio on Ammonia Slip
5.7 Injection of Ammonia Liquor
 5.7.1 Effect of Injection Temperature
 5.7.2 Effect of Normalized Stoichiometric Ratio
 5.7.3 Effect of Residence Time
 5.7.4 Comparison Between NO_x Reduction from Ammonia and Urea Injection Based on Injection Temperature
 5.7.5 Comparison Between NO_x Reduction from
5.7.6 Comparison Between Urea and Ammonia Based on the Their Residence Time Profiles 150

5.8 Experiment with 10% Na₂CO₃ of Urea in 5% Aqueous Urea Solution
5.8.1 Effect of Injection Temperature 151
5.8.2 Effect of NSR on NOₓ Reduction 152
5.8.3 Effect of Residence Time 153
5.8.4 Comparison Between Additive and Plain Urea in Terms of Reduction vs. Injection Temperature Profile 154
5.8.5 Comparison Between Additive and Plain urea in Terms of Reduction vs. Residence Time Profile 155

5.9 Experiment with 5% Na₂CO₃ of Urea in 5% Aqueous Urea Solution.
5.9.1 Effect of Injection Temperature 156
5.9.2 Effect of NSR on NOₓ Reduction 157
5.9.3 Effect of Residence Time 157
5.9.4 Comparison Between Additive and Plain Urea in Terms of Reduction vs. Injection Temperature Profile 158
5.9.5 Comparison of Reaction Profiles Obtained and Without Additives 160

5.10 Experiment with 1% Na₂CO₃ of Urea in 5% Aqueous Urea Solution
5.10.1 Effect of Injection Temperature 161
5.10.2 Effect of Residence Time 162
5.10.3 Comparison Between Additive and Plain Urea in Terms of Reduction vs. Injection Temperature Profile 163
5.10.4 Comparison of Reaction Profiles Obtained Using Additive and Without Additive 164

5.11 Effect of Concentration of Additives 165
5.11.1 Effect of Concentration of Additives on NO_x Reduction and Temperature Window 165
5.11.2 Effect of Concentration of Additives on Reaction Profile with Residence Time 167
5.12 Effect of Additive on Ammonia Slip 168

6 CONCLUSIONS AND FUTURE WORK 198

6.1 Conclusions 198
6.2 Recommendations for Future Work 200

REFERENCES 202
Appendices A-H 215-230
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Oxides of nitrogen</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Numerous sources of NO\textsubscript{x}</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>NO\textsubscript{x} emission regulation for industrial sources</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>NO\textsubscript{x} control technologies and potential emission reductions</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>SCR DeNO\textsubscript{x} catalyst types</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>Capacity and number of electricity generating units projected to be retrofitted with SCR and SNCR by 2003 with associated NO\textsubscript{x} reduction achieved</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of the urea SNCR in different full-scale applications</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>General performance of ammonia SNCR reported in literature</td>
<td>77</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Global NO\textsubscript{x} emissions</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Reaction path diagram illustrating the reaction steps in Fenimore NO formation</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Overview of different NO\textsubscript{x} reduction technologies</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic diagram of a staged air low NO\textsubscript{x} burner</td>
<td>35</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagram of a staged fuel low NO\textsubscript{x} burner</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of conventional burner and burner with staging operation</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Reaction Path diagram describing the major steps in gas phase NO removal by reaction with urea</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Layout of the experimental set up</td>
<td>117</td>
</tr>
<tr>
<td>4.2</td>
<td>Practical test to determine the spray length</td>
<td>118</td>
</tr>
<tr>
<td>4.3</td>
<td>Typical photograph of the flame in open air to determine the flame length</td>
<td>119</td>
</tr>
<tr>
<td>4.4</td>
<td>Schematic diagram of the injection system</td>
<td>120</td>
</tr>
<tr>
<td>4.5</td>
<td>Installation of dual phase injector on the combustion chamber</td>
<td>121</td>
</tr>
<tr>
<td>4.6</td>
<td>A typical temperature profile of the reactor</td>
<td>122</td>
</tr>
<tr>
<td>4.7</td>
<td>Emission characteristics of NO with injection temperature in the combustion system</td>
<td>123</td>
</tr>
<tr>
<td>4.8</td>
<td>Emission characteristics of CO with injection temperature in the combustion system</td>
<td>124</td>
</tr>
<tr>
<td>4.9</td>
<td>Emission characteristics of CO\textsubscript{2} with injection temperature in the combustion system</td>
<td>124</td>
</tr>
<tr>
<td>4.10</td>
<td>Emission characteristics of SO\textsubscript{2} with injection temperature in the combustion system</td>
<td>124</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.11</td>
<td>Mean emission probe for gas sampling</td>
<td>125</td>
</tr>
<tr>
<td>4.12</td>
<td>Relationship between single point and multiple point emission data</td>
<td>126</td>
</tr>
<tr>
<td>4.13</td>
<td>Reproducibility of the pilot scale SNCR system at an NSR of 3 in three different tests performed at an interval of 3 days</td>
<td>127</td>
</tr>
<tr>
<td>4.14</td>
<td>Reproducibility of the pilot scale SNCR system at an NSR of 4 in three different tests performed at an interval of 7 days</td>
<td>127</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of injection temperature and NSR on NO\textsubscript{x} reduction</td>
<td>170</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of injection temperature and NSR on final NO\textsubscript{x} concentration</td>
<td>170</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of NSR on NO\textsubscript{x} reduction for 5% urea solution</td>
<td>171</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of residence time on NO\textsubscript{x} reduction at NSR of 4</td>
<td>171</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of residence time on NO\textsubscript{x} reduction at NSR of 4</td>
<td>172</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of injection temperature and NSR on NO\textsubscript{x} reduction for 10% urea solution</td>
<td>172</td>
</tr>
<tr>
<td>5.7</td>
<td>Effect of injection temperature and NSR on final NO\textsubscript{x} concentration for 10% urea solution</td>
<td>173</td>
</tr>
<tr>
<td>5.8</td>
<td>Effect of injection temperature and NSR on NO\textsubscript{x} reduction for 25% urea solution</td>
<td>173</td>
</tr>
<tr>
<td>5.9</td>
<td>Effect of dilution of urea solution (NSR = 3 and O\textsubscript{2} = 3-4%)</td>
<td>174</td>
</tr>
<tr>
<td>5.10</td>
<td>Effect of pressure on NO\textsubscript{x} reduction for 5% urea solution at 1128 K and NSR of 3</td>
<td>174</td>
</tr>
<tr>
<td>5.11</td>
<td>Effect of pressure on final NO\textsubscript{x} concentration for 5% urea solution at 1128 K and NSR of 3</td>
<td>175</td>
</tr>
<tr>
<td>5.12</td>
<td>Effect of pressure on NO\textsubscript{x} reduction vs. residence time profiles of 5% urea solution at 1128 K and NSR of 3</td>
<td>175</td>
</tr>
<tr>
<td>5.13</td>
<td>Effect of pressure on NO\textsubscript{x} concentration vs. residence time profile (NSR =3, Temp = 1128 K)</td>
<td>176</td>
</tr>
<tr>
<td>5.14</td>
<td>Effect of temperature on reduction vs. pressure profile for 5% urea solution at NSR of 3</td>
<td>176</td>
</tr>
<tr>
<td>5.15</td>
<td>Effect of temperature on NO\textsubscript{x} concentration vs. pressure profile for 5% urea solution at NSR of 3</td>
<td>177</td>
</tr>
<tr>
<td>5.16</td>
<td>Ammonia slip vs. injection temperature profile at the exhaust with 5% urea solution at NSR of 3</td>
<td>177</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.17</td>
<td>Effect of NSR on ammonia slip for 5% urea solution at 1128 K.</td>
<td>178</td>
</tr>
<tr>
<td>5.18</td>
<td>Effect of injection temperature on NO\textsubscript{x} reduction for 5% ammonia liquor at NSR of 4</td>
<td>179</td>
</tr>
<tr>
<td>5.19</td>
<td>Effect of NSR on NO\textsubscript{x} reduction for 5% ammonia liquor at 1093 K</td>
<td>179</td>
</tr>
<tr>
<td>5.20</td>
<td>Reaction profile of NO\textsubscript{x} concentration for 5% ammonia liquor at 1093 K and NSR of 4</td>
<td>180</td>
</tr>
<tr>
<td>5.21</td>
<td>Reaction profile of NO\textsubscript{x} reduction for 5% ammonia liquor at 1093 K and NSR of 4</td>
<td>180</td>
</tr>
<tr>
<td>5.22</td>
<td>Comparison of reduction characteristics of urea and ammonia liquor at NSR of 3</td>
<td>181</td>
</tr>
<tr>
<td>5.23</td>
<td>Comparison of reduction characteristics of urea and ammonia liquor with respect to baseline value at NSR of 3</td>
<td>181</td>
</tr>
<tr>
<td>5.24</td>
<td>Comparison of reduction vs. NSR profile between aqueous urea and ammonia liquor at 1093 K</td>
<td>182</td>
</tr>
<tr>
<td>5.25</td>
<td>Comparison between aqueous urea and ammonia liquor in terms of NO\textsubscript{x} reduction vs. residence time profiles at 1093 K and NSR of 4</td>
<td>182</td>
</tr>
<tr>
<td>5.26</td>
<td>Comparison between aqueous urea and ammonia liquor in terms of reaction profiles at 1093 K and NSR of 4</td>
<td>183</td>
</tr>
<tr>
<td>5.27</td>
<td>Reduction vs. injection temperature profile for 10% Na\textsubscript{2}CO\textsubscript{3} of urea in 5% urea solution at NSR of 4</td>
<td>184</td>
</tr>
<tr>
<td>5.28</td>
<td>Reduction vs. NSR profile for 10% Na\textsubscript{2}CO\textsubscript{3} of urea in 5% urea solution at 1128 K</td>
<td>184</td>
</tr>
<tr>
<td>5.29</td>
<td>Effect of temperature on NO\textsubscript{x} reduction vs. residence time profiles for 10% Na\textsubscript{2}CO\textsubscript{3} of urea in 5% urea solution at NSR of 4</td>
<td>185</td>
</tr>
<tr>
<td>5.30</td>
<td>Effect of temperature on reaction profiles for 10% Na\textsubscript{2}CO\textsubscript{3} of urea in 5% urea solution at NSR of 4</td>
<td>185</td>
</tr>
<tr>
<td>5.31</td>
<td>Comparison of reduction vs. injection temperature profiles between plain urea and 10% additive cases</td>
<td>186</td>
</tr>
<tr>
<td>5.32</td>
<td>Comparison of NO\textsubscript{x} reduction vs. residence time profiles between 5% additive and without additive cases at</td>
<td>186</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.33</td>
<td>Reduction vs. injection temperature profile for 5% Na₂CO₃ of urea in 5% urea solution at NSR of 4</td>
<td>187</td>
</tr>
<tr>
<td>5.34</td>
<td>Reduction vs. NSR profile for 5% Na₂CO₃ of urea in 5% urea solution at 1128 K</td>
<td>187</td>
</tr>
<tr>
<td>5.35</td>
<td>Effect of temperature on NOₓ reduction vs. residence time profiles for 5% Na₂CO₃ of urea in 5% urea solution at NSR of 4</td>
<td>188</td>
</tr>
<tr>
<td>5.36</td>
<td>Effect of temperature on NOₓ concentration vs. residence time profiles for 5% Na₂CO₃ of urea in 5% urea solution at NSR of 4</td>
<td>188</td>
</tr>
<tr>
<td>5.37</td>
<td>Comparison of reduction vs. injection temperature profiles between plain urea and 5% additive cases</td>
<td>189</td>
</tr>
<tr>
<td>5.38</td>
<td>Comparison of NOₓ concentration vs. injection temp profiles between plain urea and 5% additive cases</td>
<td>189</td>
</tr>
<tr>
<td>5.39</td>
<td>Comparison of NOₓ reduction vs. residence time profiles between 5% additive and without additive cases at 1093 K and NSR of 4</td>
<td>190</td>
</tr>
<tr>
<td>5.40</td>
<td>Comparison of NOₓ reaction profiles between 5% additive and without additive cases at 1093 K and NSR of 4</td>
<td>190</td>
</tr>
<tr>
<td>5.41</td>
<td>Reduction vs. injection temperature profile for 1% Na₂CO₃ of urea in 5% urea solution at NSR of 4</td>
<td>191</td>
</tr>
<tr>
<td>5.42</td>
<td>Effect of temperature on NOₓ reduction vs. residence time profiles for 1% Na₂CO₃ of urea in 5% urea solution at NSR of 4</td>
<td>191</td>
</tr>
<tr>
<td>5.43</td>
<td>Effect of temperature on reaction profiles for 1% Na₂CO₃ of urea in 5% urea solution at NSR of 4</td>
<td>192</td>
</tr>
<tr>
<td>5.44</td>
<td>Comparison of reduction vs. injection temp profiles between plain urea and 1% additive cases</td>
<td>192</td>
</tr>
<tr>
<td>5.45</td>
<td>Comparison of NOₓ concentration vs. injection temp profiles between plain urea and 1% additive cases</td>
<td>193</td>
</tr>
<tr>
<td>5.46</td>
<td>Comparison of NOₓ reduction vs. residence time profiles between 1% additive and without additive cases at 1093 K and NSR of 4</td>
<td>193</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.47</td>
<td>Comparison of reaction profiles between 1% additive and without additive cases at 1093 K and NSR of 4</td>
<td></td>
</tr>
<tr>
<td>5.48</td>
<td>Comparison among different concentration of additives (at NSR of 4 and 5% urea solution)</td>
<td></td>
</tr>
<tr>
<td>5.49</td>
<td>Comparison among different concentration of additives to 5% urea solution with respect to the base line NO(_x) (NSR=4)</td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>Comparison among different concentration of additives to 5% urea solution in terms of reaction profiles (At 1093 K and NSR=4)</td>
<td></td>
</tr>
<tr>
<td>5.51</td>
<td>Comparison among different concentration of additives to 5% urea solution in terms of NO(_x) reduction vs. residence time profiles (At 1093 K and NSR=4)</td>
<td></td>
</tr>
<tr>
<td>5.52</td>
<td>Effect of additives on ammonia slip at an NSR of 3 (Na(_2)CO(_3) is used as additive to 5% urea solution)</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>°F</td>
<td>Degree Fahrenheit</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>CN</td>
<td>Cyanide</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon oxide</td>
</tr>
<tr>
<td>d</td>
<td>Diameter</td>
</tr>
<tr>
<td>FGR</td>
<td>Flue Gas Recirculation</td>
</tr>
<tr>
<td>gm</td>
<td>Gram</td>
</tr>
<tr>
<td>GPH</td>
<td>Gallon per Hour</td>
</tr>
<tr>
<td>H₂</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>HCN</td>
<td>Hydrogen cyanide</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kJ</td>
<td>Kilo Joule</td>
</tr>
<tr>
<td>kmol</td>
<td>Kilo mole</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>LNB</td>
<td>Low NOₓ Burner</td>
</tr>
<tr>
<td>m³</td>
<td>Cubic meter</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>Sodium carbonate</td>
</tr>
</tbody>
</table>
\[NH_3 \] - Ammonia
\[NO \] - Nitric oxide
\[NO_2 \] - Nitrogen dioxide
\[NO_x \] - Nitrogen oxides
\[NSR \] - Normalized Stoichiometric Ratio
\[O_2 \] - Oxygen
\[O_3 \] - Ozone
\[OFA \] - Over Fire Air
\[ppm \] - Parts Per Million
\[SCR \] - Selective Catalytic Reduction
\[SNCR \] - Selective Non-Catalytic Reduction
\[SO_2 \] - Sulfur dioxide
\[T \] - Temperature
\[VOC \] - Volatile Organic Compound
\[vol \] - Volume
\[wt \] - Weight
<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Typical calculation for the volumetric flow rate of the flue gas at experimental operating conditions</td>
<td>215</td>
</tr>
<tr>
<td>B</td>
<td>Typical calculation of flow rate of the flue gas</td>
<td>218</td>
</tr>
<tr>
<td>C</td>
<td>Typical calculation of residence time of the flue gas</td>
<td>219</td>
</tr>
<tr>
<td>D-1</td>
<td>Typical calculation of the amount of urea flow</td>
<td>221</td>
</tr>
<tr>
<td>D-2</td>
<td>Typical calculation of the amount of ammonia flow</td>
<td>222</td>
</tr>
<tr>
<td>E-1</td>
<td>Typical calculation of volumetric flow rate of flue gas using MS-Excel</td>
<td>223</td>
</tr>
<tr>
<td>E-2</td>
<td>Typical calculation of residence time using MS-Excel</td>
<td>224</td>
</tr>
<tr>
<td>E-3</td>
<td>Typical calculation of the reagent flow rate using MS-Excel</td>
<td>225</td>
</tr>
<tr>
<td>E-4</td>
<td>Flow meter calibration for 5% urea solution</td>
<td>226</td>
</tr>
<tr>
<td>F</td>
<td>Composition of diesel fuel and different reagents used</td>
<td>227</td>
</tr>
<tr>
<td>G</td>
<td>Flow diagram of general experimental procedure</td>
<td>229</td>
</tr>
<tr>
<td>H</td>
<td>Schematic diagram of lance type injector mounted in a boiler</td>
<td>230</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Over the past 150 years, the emissions of nitrogen oxides have been increasing steadily throughout the globe. Their growing presence in the atmosphere has tremendous impact on earth’s ecology and affects human health. The origin of these emissions is mostly anthropogenic and mainly attributed to the combustion of fossil fuels and biomass. Continuing industrial revolution and growing numbers of traffics increase the use of fossil fuels and as a result, these oxides are becoming increasing. Rapid increases in global air travel are also a concern with great potential for increased emission of nitrogen oxides directly to the troposphere. All oxides of nitrogen are commonly referred as NOx but most common are NO, NO2 and N2O. Among the nitrogen oxides, emission of nitric oxide (NO) is the most significant. Over 90% of the NOx from the combustion sources is in the form of NO and eventually it forms NO2 reacting with atmospheric oxygen and only for this reason most of the NOx reduction efforts are related to the abatement of NO produced during combustion. Concerns for protecting the environment from pollutants emissions have set some stringent regulations to limit the nitrogen oxides emissions in many countries.

This chapter initially provides a brief overview of the environmental and health concerns of NOx. This is followed by the importance of the present studies. Finally, the objectives and scopes of the present work and the thesis layout are described at the end of the chapter.
1.1 Detrimental Effects of NO$_x$

Concerns related to NO$_x$ emissions are becoming increasing because of their tremendous adverse effect on health and environment. NO$_x$ are directly involved in producing photochemical pollutants and acid rain. Besides, N$_2$O is regarded as greenhouse gas, which causes global warming.

1.1.1 Impact of NO$_x$ on the Environment

1.1.1.1 Photochemical Smog

Photochemical smog is a condition, which develops when the primary pollutants such as oxides of nitrogen and volatile organic compounds (VOC) interact under the influence of sunlight at a temperature greater than 291 K (Grennfelt et al., 1984). Development of photochemical smog is typically connected with the particular climatic conditions and most likely to occur in the cities of high population density. Cities like Los Angeles, New York, Vancouver, Sydney and London frequently experience the episodes of photochemical smog. Photochemical smog consists of hundreds of different hazardous chemicals. It reduces the visibility due to its glowing brown colour (Elsom, 1992). The major constituents of photochemical smog are NO$_x$, volatile organic compounds, ozone and peroxyacetyl nitrates (PAN). Nitrogen oxides might be formed by one of the following reactions:

\[\text{O}_3 + \text{NO} = \text{NO}_2 + \text{O}_2 \] \hspace{1cm} (1.1)

\[\text{NO} + \text{RO}_2 = \text{NO}_2 + \text{other products} \] \hspace{1cm} (1.2)
R is the hydrocarbon radical that is produced from volatile organic compounds. Sunlight can break down the nitrogen dioxide (NO₂) to form nitrogen oxide (NO).

\[
\text{NO}_2 + \text{Sunlight} = \text{NO} + \text{O}
\]
(1.3)

The atomic oxygen of the above equation reacts with atmospheric oxygen and eventually forms ozone (O₃).

\[
\text{O} + \text{O}_2 = \text{O}_3
\]
(1.4)

NO₂ also reacts with the hydrocarbon radicals in a series of reaction and forms PAN.

All the components of photochemical smog have harmful impact on environment and human health. NO and NO₂ are harmful if inhaled in high concentration. NO₂ can reduce the photosynthesis and CO₂ fumigation and thus suppresses the plant growth (Hill and Bennett, 1970). Volatile organic compounds (VOC) causes eye irritation, respiratory irritation and decreases visibility due to it’s blue-brown-haze. Ozone has numerous detrimental effects on human health such as it causes bronchial constriction, coughing, wheezing, respiratory irritation and eye irritation. It has also bad impact on environment as it retards plant growth, damages plastics and breaks down rubber. Peroxyacetyl nitrates (PAN) cause eye irritation, respiratory irritation and damages proteins. Like other constituent of photochemical smog it is also toxic to plants.

1.1.1.2 Acid Deposition

Acidic deposition, or "acid rain," describes any form of precipitation, including rain, snow, and fog, with a pH of 5.5 or below. Two common air pollutants are responsible for acid rain: sulfur dioxide (SO₂) and nitrogen oxides (NOₓ). When
nitrogen oxides dissolve in water and decompose with water they form nitric acid (HNO₃) and nitrous acid (HNO₂). Acid rain causes damages to plantation and vegetation. It increases the acidity of lake water and severely affects the aquatic species. Acidification can also affect vertebrate species other than fish. For example, studies show acidic deposition can affect the diet, foraging, distribution, and reproduction of bird species that depend on the aquatic environment (Longcore et al., 1993). Acidic deposition affects terrestrial wildlife species by damaging habitat or contaminating food sources (Schreiber and Newman 1988).

1.1.1.3 Global Warming

Global warming is a consequence of green house effect, however, green house effect is due to the effect of some trace gases in the atmosphere such as nitrous oxide, carbon dioxide, ground level ozone and methane. They absorb the longer wavelength of heat energy or reflect it back to earth surface and thus provide resistance to heat energy to be radiated to the space. As a consequence the globe is getting heated gradually. If such trend is allowed to continue then forests, agriculture, water resources, natural ecosystem and human as well as animal health will be severely affected. Besides, sea level is predicted to rise, which will submerge plenty of low lands.

\[\text{N}_2\text{O} \text{ contributed about 6\% of the green house effect in 1980s. Between 1880 and 1980, the concentration of N}_2\text{O was changed from 285 to 300 ppb, which was theoretically responsible for 0.02 K temperature change (Houghton et al., 1990). Although NO and N}_2\text{O are not directly related to the green house effect, they contribute indirectly in producing the ground level ozone.} \]
1.1.1.4 Ozone Layer Depletion

Stratospheric ozone is found in a broad band, usually extending from about 15 to 35 kilometers above the earth. Although it makes up to one-millionth of the volume of the atmosphere, ozone plays a very important role to absorb the UV-B and UV-C rays from the sun, so it is essential to the existence of most life on earth (Hengeveld, 1995). Ultraviolet radiation is extremely harmful to living tissue and UV-B and UV-C rays are particularly damaging. Ozone absorbs almost all of the UV-C and prevents more than 70% of the UV-B radiation from entering into the earth's surface (Hengeveld, 2000). The ozone layer is continuously depleting by some direct or indirect effects of some substances such as chlorine (Cl), bromine (Br), nitrogen oxides (NOx), and hydrogen oxide radicals (HOx). Among these only direct as well as indirect activity of NOx has been attributed to contribute to almost half of the stratospheric ozone layer depletion (Sloss et al., 1992).

The Aircrafts are the major sources of nitrogen oxides’ emissions to the stratosphere. For instance, nitrogen oxide emissions (NOx) from aircraft account for around 3% of anthropogenic NOx emissions, however 25-30% of total NOx in the upper troposphere is due to aircraft emissions (Lamarque et al., 1996). Ultraviolet ray splits relatively unstable O3 molecules into O2 and atomic O. Most of the time, the O atom created by ozone break up and recombines with one of the plentiful O2 molecules to form O3 again. This ozone-creation process is constantly at work and producing more ozone. But N2O reacts with that free O atom to form NO. Ozone then oxidizes the NO to form NO2 that further reduces by the O atom and eventually forms more NO. So, plenty of ozone atoms are destroyed by this chain reaction. If N2O is made double it could result in a 12% increase in total stratospheric ozone (Sloss et al., 1992).
1.1.2 Impact of NO$_x$ on Health

The oxides of nitrogen have severe adverse effect on human as well as animal health. Both NO and NO$_2$ contribute to heart and lung problems. Exposure of low levels of NO$_2$ can affect the function of kidneys, liver, spleen, red blood cells and cells of the immune system (Sloss et al., 1992). Besides, NO and NO$_2$ may encourage the spread of cancer. Most common disease related to NO$_2$ exposure is respiratory illness. An intensive survey conducted in some areas in USA showed that an increase in respiratory illness occurred after six months for an average concentration of NO$_2$ from 0.109 to 0.062 ppm. The same survey reported that the infant acute bronchitis cases also increased for NO$_2$ concentrations in the range from 0.063 to 0.083 ppm over a six-month period (Shy et al., 1970).

NO$_x$ have severe bad impact on animal health as well. It was observed to be fatal to most exposed mammals at a concentration higher than 100 ppm (US EPA, 1993). Short-term non-lethal exposure of NO$_2$ can change the pulmonary function in the lungs of monkey (Henry et al., 1965). Exposure of 15 to 50 ppm for two hours caused damage to lungs, heart, liver, kidneys and pulmonary changes of monkeys (US EPA, 1993). A 12-minute exposure of mice to 2500 ppm of NO was observed to be lethal (Flury and Zernick, 1931).

1.1.3 Impact of NO$_x$ on Materials

The effects of air pollution are also extended to man made items such as fabrics, metals and cultural properties. Loss of color has been observed in cotton as well as rayon fabrics due to the effect of only 0.6 to 2 ppm of NO$_x$ generated from natural gas heated domestic dryers (McLendon and Richardson, 1965). Cotton and nylon textile fibers can deteriorate from exposure to elevated ambient NO$_x$
concentrations (Morris et al., 1964). Increased metal failures might occur due to the elevated particulate nitrate and NO\textsubscript{x} concentrations (Hermance et al., 1970). Nitrogen oxides can also accelerate corrosion to nickel, aluminum and pewter.

1.2 The Importance of the Present Studies

Today, control of NO\textsubscript{x} emission is becoming increasingly important because of their tremendous adverse effect on health and environment as mentioned in Section 1.1. The industrial revolution is the central cause for the increase of NO\textsubscript{x} in the atmosphere. All types of combustion sources are contributing the NO\textsubscript{x}. Boilers, furnaces and industrial burners are the major combustion sources. The continuous rising trend of NO\textsubscript{x} is becoming increasingly alarming for the human health and environment. Due to the growing concerns of the NO\textsubscript{x} some stringent regulations have been applied to limit the NO\textsubscript{x} emission and as a result, emission from the developed world is remained relatively constant over the last few years. So application of NO\textsubscript{x} abatement technologies is very important for developing countries. A great numbers of researches are required to develop suitable NO\textsubscript{x} abatement technologies in perspective of these areas.

In order to reduce NO\textsubscript{x}, both primary and secondary measures are employed. (Sarofim and Flagan, 1976; Rosenberg et al., 1980). Primary measures modify the combustion conditions by employing different techniques, such as fuel rich combustion, lowering the primary air temperature, multistage combustion, flame cooling, flue gas recirculation etc. However, such measures tend to produce undesirable levels of nitrous oxide and carbon monoxide and their NO\textsubscript{x} reduction efficiency is not so remarkable. There is no known primary method that can reduce both NO\textsubscript{x} and carbon monoxide to an acceptable level without serious economic drawbacks.
As a consequence of continuous extensive investigations, some economically attractive as well as efficient methods in aspect of NO\textsubscript{x} reduction have come in to face and among these most common and widely accepted methods are Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR). Both are involved in combustion gas treatment before it comes out to atmosphere (Lyon, 1975; Bowman, 1992).

Despite the fact that SCR has higher NO\textsubscript{x} reduction efficiency, it has several disadvantages as well, which include high capital investment cost, higher operating cost than most other options, limited catalyst life, catalyst poisoning, large space requirement to install and required higher upstream pressure to enable the exhaust gas flow through the catalyst (Caton et al., 1995). In contrast, SNCR has minimized all the problems of SCR. Moreover, it can be used in dirty and fouling services (Particulates and/or high sulfur) and it is easier to retrofit. For this, nowadays a number of SNCR installations have been adopted in coal, oil and gas fired power station boilers, industrial boilers, refineries and waste incinerators (Rentz et al, 1996). As it requires little capital cost and easy to retrofit, it is best suited to the developing countries. Recently, SNCR has been adopted in different industries in South Korea, China, Taiwan and the Czech Republic (Redojevic, 1998).

So many researches based on urea SNCR are already conducted by different researchers, which demonstrates that NO\textsubscript{x} reduction performance and effective temperature window vary depending on the geometry of combustion chamber, geometry and performance of the atomizer and types of fuels used. (Mansour et al., 1987; Abele et al., 1991; Nylader et al. 1989) Most of the researches were related to the coal and gas burning exhaust and especially with high initial ppm of NO\textsubscript{x}. As far as diesel exhaust is concerned, no document has been documented using urea SNCR yet. As most of the small-scale combustion facilities still use the diesel fuel, so to fill up the large gap, research is strongly required in this area.
As for low value of base line NO$_x$, Teixeira et al. (1991) observed that below 125 ppm of base line NO$_x$ the performance of NO$_x$ reduction was very insignificant. In their studies, they used a pilot scale combustor and natural gas as fuel. So, further studies are required with low initial value of NO$_x$ employing different types of fuels' exhaust to get the distinct idea about the performance of urea SNCR as for low ppm of base line NO$_x$.

In all the previous studies, where urea SNCR was concerned, were conducted using laboratory grade urea. So far, no document is available using the commercial grade urea. Laboratory grade is much more expensive than commercial grade. So, in order to make the urea SNCR cheaper and acceptable to all levels it is essential to conduct some researches to investigate the performance of commercial grade urea in reducing NO$_x$.

It is already demonstrated in a number of researches that additives in urea solution have some significant roles in improving the NO$_x$ reduction performance as well as shifting or widening the effective temperature window of reduction. A lot of studies were conducted in order to find some suitable additives for urea SNCR application, which demonstrated that certain organic and inorganic compounds could be used as additives. The organic compounds are commonly methane, various combinations of hydrocarbons, ethylene glycol, furfural, series of sodium acrylamide co-polymers and alkaline oxide co-polymers, while inorganic compounds are hydrogen, carbon monoxide, hydrogen peroxide, calcium phosphate, sodium nitrate etc. (Daniel et al., 1996; Lyon and Hardy, 1986; Burton, 1989). In a recent study, Zamansky et al. (1999) demonstrated the sodium carbonate (Na$_2$CO$_3$) to be a very effective inorganic additive. However, they used laboratory grade Na$_2$CO$_3$, so, in order to reduce the operating cost of the SNCR process more, further researches are essential to investigate the reduction performance of the commercial grade Na$_2$CO$_3$.
In these perspectives, the present studies are aimed to investigate the NO\textsubscript{x} reduction characteristics of commercial grade urea in reducing NO\textsubscript{x} from a diesel burning exhaust that is containing low ppm of base line NO\textsubscript{x} and also to study the effect of commercial grade additive such as Na\textsubscript{2}CO\textsubscript{3} on the urea based SNCR process.

1.3 Objectives and Scopes of the Present Studies

1.3.1 Objectives

1) To study the NO\textsubscript{x} reduction behavior of urea based SNCR in diesel burning exhaust gas containing low ppm of initial NO\textsubscript{x}.

2) To study the effect of inorganic additives on the urea based SNCR in terms of NO\textsubscript{x} reduction performance.

1.3.2 Scope of the Studies

1) Design and fabrication of a pilot-scale combustion chamber for a small capacity industrial diesel burner in order to study the urea based SNCR.

2) Design and fabrication of an injection system for the aforesaid combustion chamber, which is capable of producing a wide range of droplet sizes varying the injection pressure and flow rate of the NO\textsubscript{x} reducing agent.
3) Experimental studies so as to know the effect of commercial grade urea instead of laboratory one on the NO\textsubscript{x} reduction characteristics with varying injection temperatures, atomizing pressures, concentrations of reagent, reagent injection rate and residence time.

4) Study the performance of the urea SNCR in the diesel burning exhaust and comparing the results obtained by previous researchers for the different fuels exhaust.

5) Study the performance of the urea SNCR in the diesel exhaust containing low value of initial NO\textsubscript{x}.

6) Experimental studies to understand the effect of commercial grade inorganic additives such as Na\textsubscript{2}CO\textsubscript{3} on the NO\textsubscript{x} reduction performance of urea SNCR with varying concentrations of Na\textsubscript{2}CO\textsubscript{3} in aqueous urea solution, temperatures of injection and residence time.

7) Determination of the level of ammonia slip formed as a byproduct during the SNCR application.

1.4 Thesis Outline

The thesis is completed in subsequent five chapters, which are organized as follows.

Chapter two gives a literature review, which includes the information about different NO\textsubscript{x} formation mechanisms and different pre-combustion and post combustion technologies of NO\textsubscript{x} control, while chapter three provides a review of present status of Selective Non-Catalytic Reduction of NO\textsubscript{x} using urea and ammonia as NO\textsubscript{x} reducing agents, effect of different operating parameters on NO\textsubscript{x} reduction
efficiency and temperature window of SNCR and review of the effect of additives on NO\textsubscript{x} reduction characteristics of SNCR process. Chapter four describes the details of the experimental set up and test procedures adopted. Results of the present studies are plotted in chapter five. This chapter also includes elaborate discussion of all the results comparing with the work of previous researchers. Finally, in chapter six, the conclusions of the findings of present studies are provided along with the proposal for future work necessary to be investigated in this particular area of research.
should be studied. This could be carried out by developing a kinetic modeling employing CHEMKIN or SENKIN chemical kinetic code.

Reagent-flue gas mixing has a significant effect on the NO\textsubscript{x} reduction performance. In the present studies no such investigation was carried out. In the future some studies could be conducted in this potential area of SNCR application.

The present studies were concerned with low ppm of baseline NO\textsubscript{x}, however the performance of commercial grade urea should also be studied in the effluent containing high ppm of baseline NO\textsubscript{x}.

N\textsubscript{2}O emission is a harmful byproduct of SNCR operation, which is usually more while urea is injected as reducing agent. In present studies it could not be studied due to the limitation of the gas analyzer, however in future it is strongly recommended that such test could be carried out in the present investigated conditions.
REFERENCES

Melick, T. A. and Payne, R. (1997). *Advances in NOx Control through burner Modifications in Practical Combustion Systems*. Western States Section. The Combustion Institute. WSS/CI 97 Figure - 147.

The SFA Quarterly Report. (1994), SFA Pacific, Inc., Mountain View, California,

