ELECTRIC FIELD DISTRIBUTION IN NANOCOMPOSITES CONTAINING ONE-DIMENSIONAL NANOFILLER

MOHD RIDHUAN BIN MOHD SHARIP

UNIVERSITI TEKNOLOGI MALAYSIA
ELECTRIC FIELD DISTRIBUTION IN NANOCOMPOSITES CONTAINING
ONE-DIMENSIONAL NANOFILLER

MOHD RIDHUAN BIN MOHD SHARIP

A project report submitted in partial fulfilment of the
requirements for the award of the degree of
Master of Engineering (Electrical-Power)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2015
This project report is dedicated to,

my beloved wife, Dyg Norkhairunnisa binti Abg Zaidel,

my beloved son, Muhammad Qaiser Harraz bin Mohd Ridhuan

my beloved parent, Mohd Sharip bin Abd Talib and Norma Ab Rahman

my beloved parent-in-law, Abg Zaidel bin Abg Pauzi and Siti Aishah Abdullah @Alice Bong Mun Jin,

and

all my siblings and in-laws

for their patience, love, cares, encouragements and endless full support over the entire period of my master study.
ACKNOWLEDGEMENT

In the name of ALLAH, The Most Gracious and The Most Merciful...

First and foremost, I would like to express my utmost gratitude to my supervisor, Dr. Lau Kwan Yiew for his support, time and dedication in guiding me towards the completion of this master project work.

I would also like to thank all my fellow classmates MEP/MKEP program for their valuable time to help and assists me during my hard time doing my project. Greatful acknowledges to Universiti Malaysia Sarawak and High Education Ministry for their financial support.

Last but not least, special appreciation goes to my wife, Dyg Norkhairunnisa binti Abg Zaidel and my son, Muhammad Qaiser Harraz bin Mohd Ridhuan for always being there for me through thick or thin, my family and my family-in-laws for their support, love, and prayers.
The need of having novel insulation systems that are capable to operate in the long term is arising due to their promising features that can significantly improve the electrical, mechanical, thermal and chemical properties in high voltage equipment. In this, polymers show signs of improvement in dielectric properties with the addition of nano-filled materials. The unique dielectric properties of nanocomposites as insulators are closely related to the presence of the interphase, i.e., an interaction zone between the nanoparticle and the polymer matrix. In this study, one-dimensional (1D) nanofillers and their interphases were modeled and analyzed using the Finite Element Method Magnetics (FEMM) 4.2 software. Two possible models of the interphase structure surrounding a nanoparticle were analyzed, i.e., one with rectangular-shaped interphase and the other with circularly-shaped interphase. While the polymer and the nanoparticle were assumed to have fixed permittivity values, different values of the thickness and the permittivity of the nanofiller interphase were assigned to determine their effects on the electric field distribution within nanocomposites. The results showed that the presence of the interphase affected the electric field intensity of the nanocomposites. As adjacent nanoparticles displaced further away from each other, the electric field intensity between the nanoparticles reduced. An attempt was made to relate the presence of the interphase with the breakdown behavior of nanocomposites.
ABSTRAK

Keperluan untuk sistem penebatan baru yang mampu beroperasi dalam jangka masa yang panjang semakin meningkat disebabkan ciri-ciri mereka yang menjanjikan dalam aspek elektrikal, mekanikal, haba dan kimia untuk digunakan dalam peralatan voltan tinggi. Dalam hal ini, polimer menunjukkan tanda-tanda peningkatan dalam sifat penebatan elektrik dengan penambahan bahan nano. Sifat unik penebat elektrik komposit nano berkait rapat dengan kehadiran interfase, iaitu lapisan interaksi antara partikel nano dan matriks polimer. Dalam kajian ini, partikel nano satu dimensi (1D) dan interfasanya telah dimodelkan dan dianalisa dengan menggunakan perisian Finite Element Method Magnetics (FEMM) 4.2. Dua model struktur interfase sekitar partikel nano telah dianalisis, iaitu, yang pertama dengan interfasa berbentuk segi empat tepat dan yang kedua dengan interfasa berbentuk bulatan. Nilai-nilai permittiviti polimer dan partikel nano ditetapkan, manakala nilai-nilai ketebalan dan permittiviti interfase partikel nano dipelbagai untuk menentukan kesannya terhadap pengagihan medan elektrik dalam komposit nano. Hasil kajian menunjukkan bahawa kehadiran interfase menjejaskan keamatan medan elektrik dalam komposit nano. Jika partikel nano bersebelahan berada lebih jauh antara satu sama lain, keamatan medan elektrik antara partikel nano berkurang. Percubaan telah dibuat untuk mengaitkan kehadiran interfase dengan sifat kekuatan medan elektrik komposit nano.
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Polymer Nanocomposites 1

1.1.1 One-dimensional (1-D) Nanofiller 2

1.2 Background of Study 2

1.3 Problem Statement 4

1.4 Objectives of Research 5

1.5 Scope of Research 5

1.6 Thesis Outline 6

2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Nanocomposites 8
 2.5.1 Nanofiller 9
 2.5.2 Nanoclays 10
2.3 Breakdown Strength 13
2.4 Interphase 14
 2.4.1 Interphase Model 16
2.5 Permittivity 19
 2.5.1 Dielectric Constant of Composite System 22
 2.5.2 Nanodielectric Permittivity Behavior 23
2.6 Literature Review on the Simulation Modeling Nanocomposites 26

3 RESEARCH METHODOLOGY
3.1 Introduction 29
3.2 Methodology 29
 3.2.1 Literature Review 29
 3.2.2 Design, Simulation and Measurement 30
3.3 Simulation Tools 30
 3.3.1 Introduction of Finite Element Method Magnetics (FEMM) 4.2 30
 3.3.2 Calculating Electrostatic Problems 31
 3.3.3 Mesh Analysis 33
 3.3.4 Post Processing and Display Results 33
 3.3.5 Summary 34
3.4 Simulation using FEMM 4.2 34

4 RESULTS AND DISCUSSION
4.1 Introduction 40
4.2 Modeling 40
4.3 Results 44
 4.3.1 Effects of the Rectangular-shaped Interphase 46
 4.3.1.1 Influence of the Interphase on Nanocomposites Properties 47
4.3.1.2 Influence of the Interphase Thickness 49
4.3.1.3 Summary of the Rectangular-shaped Model 52

4.3.2 Effects of the Circularly-shaped Interphase 52
4.3.2.1 Influence of the Interphase Permittivity 53
4.3.2.2 Influence of the interphase Thickness 56
4.3.2.3 Summary of the Circularly-shaped Model 58

4.3.3 Effects of the nanocomposite containing neighboring particles 59
4.3.4 Effects of the re-structure of the nanoparticles in nanocomposite systems 67

4.4 Discussion 69

5 CONCLUSION AND FUTURE WORKS 78
5.1 Conclusion 78
5.2 Future Work 79

REFERENCES 81
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Common Values for the Dielectric Constant</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Details of the polyethylene (PE), the montmorillonite nanoclays (MNT) and the interphase properties</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Details of the permittivity model</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Triboelectricity series of the several materials</td>
<td>70</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Platelets nanoparticle dispersion in the polymer matrix</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Platelets nanoparticle dispersion in the polymer matrix</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Dimension of the platelet nanoclay of montmorillonite</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure formations of the platelet nanoclays</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Diagram to illustrate three main components in polymer nanocomposites materials</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Two composition of spherical nanofiller particle (3D) with radius, r and each of particle surrounded by an interphase region with thickness, t</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Formation interphase model for platelet (1D) nanofiller particle</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Formation interphase model for spherical (3D) nanofiller particle</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Illustration of lamellar particle dispersion in polymer matrix</td>
<td>18</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Two charged plates are separated in certain distance with same and opposite charges on either side</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Illustration of molecules align themselves by their dipole moment and the electric field when the material is placed between the charged plate</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Dielectric response of TiO$_2$-Real parts of permittivity</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Real part of permittivity for micro-composite, untreated and surface-treated nano-composite and base resin composite</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Real part of permittivity for nanocomposite obtaining by wet and dry fluorohectorite filler</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Illustration a physical property, the permittivity within nanocomposites change proportional as function of distance to a particle</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>Modeling of the interphase layers around a nanoparticle</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Mesh size of the material properties for each block (This value are fixed for the all model in this research)</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Finite Element Method Magnetic (FEMM) 4.2 interface</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Defining a new problem</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Choose coordinates window</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Nanocomposites model</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Define of the material property</td>
<td></td>
</tr>
</tbody>
</table>
3.7 Boundary property definitions 38

3.8 Results window 38

4.1 A two dimensional slab with thickness 1 µm and width 2 µm 41

4.2 Zoom-in view of (a) rectangular-shaped (b) circularly-shaped interphase model with interphase permittivity value of 1.5 in FEMM 4.2 interface 43

4.3 The electric field profile for polymer with unfilled nanofiller 45

4.4 The electric field profile for polymer filled with the nanoparticles without interphase 45

4.5 Electric field distribution of the nanocomposites visualization of zoom-in view for rectangular-shaped interphase model with interphase permittivity value of 1.5 46

4.6 Effect of nanoparticle with rectangular-shaped interphase on the plots of electric filed intensity along (a) line AB, (b) line AC, from the center of the nanoparticle. 48

4.7 Electric field distribution of the nanocomposites visualization of zoom-in view with rectangular-shaped interphase (t= 40 nm) 50

4.8 Effect of nanoparticle with rectangular-shaped interphase model with thickness (t = 40 nm) on the plots of electric filed intensity along (a) line AB, (b) line AC, from the center of the nanoparticle 51
4.9 Electric field distribution of the nanocomposites visualization of zoom-in view for rectangular-shaped interphase model with interphase permittivity value of 1.5

4.10 Effect of nanoparticle with circularly-shaped interphase model on the plots of electric filed intensity along (a) line AB, (b) line AC, from the center of the nanoparticle

4.11 Electric field distribution of the nanocomposites visualization of zoom-in view with circularly-shaped interphase model ($r = 80\text{nm}$)

4.12 Effect of nanoparticle with circularly-shaped interphase model with radius ($r = 80 \text{ nm}$) on the plots of electric filed intensity along (a) line AB, (b) line AC, from the center of the nanoparticle

4.13 Effect of neighboring nanoparticle within nanocomposite (with separated 100 nm apart) to the electric field distribution. Line AB from the origin indicates where the data recorded

4.14 Effect of (a) nanoparticle (with separated 0 nm apart) on the (b) plots of the electric field intensity along the line AB from the origin

4.15 Effect of (a) nanoparticles (with separated 40 nm apart) on the (b) plots of the electric field intensity along the line AB from the origin

4.16 Effect of (a) nanoparticle (with separated 80 nm apart) on the (b) plots of the electric field intensity along the line AB from the origin

4.17 Effect of (a) nanoparticle (with separated 100 nm...
apart) on the (b) plots of the electric field intensity along the line AB from the origin

4.18 Effect of (a) nanoparticle (with separated 180 nm apart) on the (b) plots of the electric field intensity along the line AB from the origin

4.19 Illustration of the electric field distortion within the nanocomposites with different position of nanocomposites (a) position A (b) position B

4.20 Model of diffuse double layer produced by nanoparticle within an nanocomposite systems

4.21 Weibull probability plot of the breakdown behavior of XLPE blends with various types filler

4.22 Breakdown voltages of different thickness samples

4.23 Breakdown strength of the nano-Ag blends with epoxy resin

4.24 Weibull probability plot breakdown strength of the polyethylene-MNT composites

4.25 Illustrate of charge carrier path when interphase region (water shells) overlapping for silica nanoparticle

5.1 Re-organization of the nanoparticles within the nanocomposites
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>Partial Discharge</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>1-D</td>
<td>One-dimensional</td>
</tr>
<tr>
<td>2-D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>FEMM 4.2</td>
<td>Finite Element Magnetics Method 4.2</td>
</tr>
<tr>
<td>MNT</td>
<td>Montrimontrille nanoclays</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium Dioxide</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silica Dioxide</td>
</tr>
<tr>
<td>PCNs</td>
<td>Polymer Nanoclay Nanocomposites</td>
</tr>
<tr>
<td>3-D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>kHz</td>
<td>Kilohertz</td>
</tr>
<tr>
<td>mHz</td>
<td>Milihertz</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>XLPE</td>
<td>Cross-linked Polyethylene</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethylene-viny-acetate</td>
</tr>
<tr>
<td>nm</td>
<td>Mirometre</td>
</tr>
<tr>
<td>μm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>QDC</td>
<td>Quasi Direct Current</td>
</tr>
<tr>
<td>Nano-Ag</td>
<td>Nano silver powder</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt%</td>
<td>Weight percentage</td>
</tr>
<tr>
<td>(V_b)</td>
<td>Breakdown voltage</td>
</tr>
<tr>
<td>(E_b)</td>
<td>Breakdown strength</td>
</tr>
<tr>
<td>(\varepsilon_0)</td>
<td>Permittivity of vacuum</td>
</tr>
<tr>
<td>(\varepsilon_r)</td>
<td>Dielectric constant</td>
</tr>
<tr>
<td>(\varepsilon')</td>
<td>Real permittivity</td>
</tr>
<tr>
<td>(\varepsilon'')</td>
<td>Imaginary permittivity</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>(kV , m^{-1})</td>
<td>Kilo Volts per metre</td>
</tr>
<tr>
<td>(kV , mm^{-1})</td>
<td>Kilo Volts per milimetre</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Polymer Nanocomposites

Polymer nanocomposites are defined as a small amount of inorganic particles with the range of 1-100 hundred in nanometer size (nm), homogenously dispersed in a polymer matrix [1, 2]. The method to produce polymer nanocomposites plays an important role in the dispersion of the nanoparticles. There are four different methods in producing the polymer nanocomposites, which includes, in situ polymerization, melt blending, solvent method and sol-gel method [1, 3]. However, the most common methods used for manufacturing purposes are in situ polymerization and melt bending. The addition of only a few percentage of the nanoparticles in the polymer matrix system has given a very great impact to the polymer nanocomposites in terms of electrical, mechanical, physical and chemical properties [1, 4]. This phenomenon of nanotechnology has provided a path of improvement for electrical insulation systems.
1.1.1 One-dimensional (1D) Nanofiller

There are many types of nanofillers (or nanoparticles) available in the market that can be used to blend with polymer matrix to improve the materials properties. However, in order to produce the desirable nanocomposites, suitable nanofiller property and nanofiller concentration in the polymer matrix need to be chosen and it is depends on the perfect combination. In the nanofiller, dispersion of platelet (1-dimensional) nanofillers in the polymer matrix plays an important role on the materials properties as illustrated in Figure 1.1. These types of nanofillers are offering low-cost material and the gentlest nanofiller to disperse in the polymer matrix [5]. Therefore, it is suitable for large range applications such as in nanocomposites application.

![Figure 1.1 Platelets nanoparticle dispersion in the polymer matrix](image)

1.2 Background of Study

The most important thing in the engineering field is the proper selection of materials to create products that can function optimally for long time service. The insulation system plays an important role in electrical engineering in providing a medium without allowing current through itself. Thus, in high voltage engineering, effective operation of high voltage equipment is mostly dependent on the correct
choice of electrical insulation for medium, high and extra high voltage level operation. However, most of the electrical insulators are made of glass, porcelain and ceramic. These types of insulators frequently failed to operate under large electrical fields due to electrical properties breakdown. Furthermore, the use of these types of insulators are no longer profitable as the glass, porcelain and ceramics density are too large, long, fragile and have high loss which will lead to higher cost of construction and maintenance for electric insulation application [6].

Therefore, many attempts have been done to explore other new alternatives as insulation materials in order to attain better insulation properties. Polymer materials exhibit good property as a new insulating material compared to the traditional insulators as aforementioned before. Polymers have several advantages such as lightweight, low cost, flexible and have good resistivity as electrical insulator. Since 1990s, the nanotechnology has provided many applications to produce new component as electrical insulator based on the polymer materials known as polymer nanocomposites [7].

Recently, the research on the polymer nanocomposites using the nanometric sizes of filler materials (nanoparticle) blended with the polymer materials have led to the initiative to develop novel insulation properties [8]. On the other hand, the combination of the polymer materials and the nanoparticles (nano-composite) provides advantages such as improved resistance to degradation, thermal, electrical and mechanical properties compared to micro-composite [9, 10]. The addition of nanoparticles in polymer matrix systems has been recognized to change in particular characteristics in terms of non-electrical and electrical properties. A range of investigations clarifies in improving the dielectric properties such as improving resistive due to partial discharge (PD), DC breakdown strength, high voltage arcing, water treeing and electric insulation properties [1, 8, 11, 12]. Appreciation of nanocomposites with high and good quality is a part of insulation field configuration.

A polymer nanocomposite also exhibits breakdown mechanism, which is the similar mechanism that leads to failure in the pure polymer. As a consequence, similar research claimed that interphases region-a layer between the polymers matrix and the nanofiller are able to increase and improve the material properties. This will
not only contribute to the electrical properties such as increasing the value of the breakdown strength, but may also lead to positive electric field stresses.

In order to clearly understand the role of the interphase in the nanocomposites, it is important to study the influence of the interphase behavior in the nanocomposite materials. In this research the analysis of the effect of interphase on the electric field distribution on electric performance by modeling one-dimensional (1D) nanofiller as nanoparticle filler in polymer matrix is presented.

1.3 Problem Statement

As mentioned earlier in the introduction part, the addition of nanoparticle filler into polymer matrix can contribute to materials properties in term of mechanical and electrical performance. However, most of the work focused on only on polymer matrix and nanoparticle, with the interphase region ignored. The electric field distribution in nanocomposites is depending on the type of nanofillers particle. By introducing interphase region between it, the material properties will be varied, thus affecting the electric field distribution. Consequently, the modeling of polymer containing one-dimensional (1D) nanofillers is challenging as the influence of interphase may alter the electric field distribution.

This study focused on a polymer nanocomposite containing one-dimensional (1D) nanofillers. As the influence of their interphase with finite thickness may alter various properties already figure out in nanocomposite as dielectric focus the electric field distribution. On the other hand, the permittivity effect of the nanofillers interphase can vary the electric field distribution in the nanocomposites. It is believed that the electric field distribution will vary as well as the influence interphase due to the content of its permittivity.
1.4 **Objective of the Research**

The objectives for this research are:

i. To model nanocomposite systems containing one-dimensional (1D) nanofillers.

ii. To analyze the effect of one-dimensional (1D) nanofillers and their interphases on the electric field distribution of the resulting nanocomposites.

1.5 **Scope of the Research**

This project focuses on the effect of one-dimensional (1D) nanofillers (e.g., clay) and their interphases on the electric field distribution of the resulting nanocomposites. The modeling of the 1D nanofillers and their interphases will be performed using the Finite Element Method Magnetics (FEMM) 4.2 software. Two different structures of the nanofillers will be introduced in this project; with and without interphases. Then, the permittivity of the nanofiller interphase will be varied in order to examine its effect on the electric field distribution in the resulting nanocomposites.
1.6 Thesis Outline

This thesis is organized into five chapters. In Chapter 1, an overview of the project is given. This includes the project background, problem statement, research objectives, explanation on the research scope and thesis organization.

Chapter 2 focuses on the literature reviews. An introduction and basic concepts of nanocomposites, nanofiller, nanoclays (MNT), breakdown strength, interphase and permittivity are further discussed in this chapter. The theory of the interphase model is introduced. Available models of the interphase region are described in this chapter.

Chapter 3 discusses the methodology of this research project. The research workflows of the whole research are presented in this chapter. The simulation software, Finite Element Magnetics Method (FEMM) 4.2 is utilized to get a clear visualization of overall design. In addition, the analyzed process including the step of modeling using Finite Element Magnetics Method (FEMM) 4.2 is explained.

In Chapter 4, the design and modeling the one-dimensional (1D) nanofillers and their interphases for this research are presented. The design parameters and specifications are also introduced in this chapter. The results of the two possible models of the interphase structure surrounding a nanoparticle were analyzed; one with rectangular-shaped interphase and the other with circularly-shaped interphase are explained in this chapter. The simulation and measurement results for all designed nanocomposites are discussed and analyzed on the parametric study of the interphase including the shape of interphase analysis and thickness of interphase analysis are explained. Elaboration on the effect of neighboring particles results are also discussed in this chapter.

In the last chapter, i.e., Chapter 5, this research work is concluded. In addition, the finding of the project and recommendations for future work are proposed and described in this chapter.
REFERENCES

44. Lewis, T. J. Interfaces are the dominant feature of dielectrics at the nanometric level. *IEEE Transactions on Dielectrics and Electrical Insulation*. 2004. 11(5): 739-753.

