STRENGTH CHARACTERISATION OF SHALE USING MOHR-COULOMB
AND HOEK-BROWN CRITERIA

NURIHAN BINTI MOHD FAUZI

UNIVERSITI TEKNOLOGI MALAYSIA
STRENGTH CHARACTERISATION OF SHALE USING MOHR-COULOMB AND HOEK-BROWN CRITERIA

NURIHAN BINTI MOHD FAUZI

A project report submitted in partial fulfilment of the requirements for the award degree of Master of Engineering (Civil-Geotechnics)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JUNE 2015
Thank you

Allah S.W.T for your blessing,

My beloved parent, the symbol of love and giving,

My whole family who encourage and support me,

My friends who always have my back,

All the people in my life who touch my heart.
ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah the Almighty for His guidance and help in giving me the strengths to complete this report. I would like to express my special appreciation and thanks to my advisor Dr. Rini Asnida Binti Abdullah, you have been a tremendous mentor for me. I would like to thank you for your encouragement, knowledge, motivation, patience and time in helping me along the preparations of this report. Your time and dedication to my project is highly appreciated.

I would also like to thank my lectures and laboratory assistance in UTM who have assist and taught me a lot during the period of completing the report. All of your encouragement, technical advice, support and guidance are priceless.

A special thanks to my family. Words cannot express how grateful I am to my parent, Mohd Fauzi Bin Awang, Waebida Pohsumah and sisters for all of the sacrifices that you’ve made on my behalf. Your prayer for me was what sustained me thus far. I would also like to thank all of my friends who supported me directly and indirectly in writing, and incented me to strive towards my goal. Last but not least, deepest thanks go to all peoples who took part in helping me complete this project report.
ABSTRACT

Strength parameters of rock material are usually determined from laboratory test on intact rock samples. Uncertainties arise in predicting the behaviour of a rock mass under confinement due to the presence of discontinuous. Compared with the intact rock, discontinuity such as joint induces inhomogeneous and anisotropic behaviour in the rock mass. Several empirical approach such as Rock Mass Rating (RMR) is available to classify and evaluate the strength of rock mass. However, the RMR method is not suitable to be applied for the very poor quality of rock such as shale, due to its limitation. This study attempts to verify the strength parameters of intact rock using Hoek-Brown (H-B) and Mohr-Coulomb (M-C) failure criterion. The RocData software is utilised to evaluate and assess the strength parameter of the shale. Result obtained indicates that H-B criterion, which describe a non-linear increase of strength compared to M-C. Hence, H-B criterion shows better presentation of shale under field condition in comparison to M-C method.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 4
1.3 Objectives of the Study 4
1.4 Scope of the Study 5
1.5 Significance of the Study 5

2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Sedimentary Rock
 2.2.1 Shale Rock

2.3 Rock Mass Classification System
 2.3.1 Rock Quality Designation Index (RQD)
 2.3.2 Subtitle Rock Mass Rating (RMR) System
 2.3.3 Rock Tunnelling Quality Index
 2.3.4 Subtitle Geological Strength Index (GSI) System
 2.3.5 Determining the Geological Strength Index Value (GSI)

2.4 Rock Strength

2.5 Definition of Shear Strength Parameter

2.6 Failure Mode of Shale Under Compression

2.7 Strength Theories of Rock
 2.7.1 Mohr-Coulomb Strength Criterion
 2.7.2 Hoek-Brown Failure Criterion
 2.7.3 Original Hoek-Brown Criterion
 2.7.4 Generalized Hoek-Brown Criterion
 2.7.5 Relationship between Hoek-Brown and Mohr-Coulomb Criteria

2.8 Confining Pressure

2.9 Triaxial Compression Test
 2.9.1 Mode of Failure

2.6 Brazilian Test

3 METHODOLOGY

3.1 Introduction
3.2 Data Collection 36
3.3 Compilation of Data 38
3.4 Data Analysis 38
 3.4.1 Uniaxial Compression Test 39
 3.4.2 Triaxial Test 41
 3.4.3 Brazilian Test 44
3.5 Result Analysis 45
3.6 Conclusion and Recommendation 45

4 RESULTS AND DISCUSSION
4.1 Uniaxial Compression Test 46
4.2 Triaxial Test Result 49
4.3 Tensile Strength Result from Brazilian Test 55
4.4 Measurement of Mohr-Coulomb Strength Parameter 56
4.5 Derivation of Hoek-Brown Strength Parameter 58
4.6 Summary of Result 59
4.7 Discussion of the Result Analysis 63

5 CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion 65
5.2 Recommendation for future work 67

REFERENCES 68
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Rock mass quality classification according to RQD (Deere et al. 1968)</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Guidelines for estimating disturbance factor (Hoek et al., 2002)</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Triaxial Test Result</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Brazilian Test Results</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Group Result</td>
<td>20</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of Result</td>
<td>63</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.1</td>
<td>Location of the Twelve Dams planned under SCORE (www.sarawaksynergy.com)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Baram Dam expected flooded area (www.sarawaksynergy.com)</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Flowchart to aid identification of fine-grained sedimentary rocks (Merriman, Highley et al.)</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The GSI value selected from the chart built into the RocData for general types of rock</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>The GSI value selected from the chart built into the RocData for Flysch type of rock.</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Idealized diagram showing transition from intact rock to jointed rock mass with increasing sample size (C.W Duncan, W.M Christo, 2005)</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Variation of σ_1 at constant σ_3 with angle β (Jian and Zhao, 2005)</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Stress condition on strength envelope a-b and tangent point on Mohr circle (Jian and Zhao, 2005)</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Relationship between major and minor principal stresses for Hoek-Brown and equivalent Mohr-Coulomb criteria (Duncan and Christopher)</td>
<td>26</td>
</tr>
</tbody>
</table>
Different of pressure direction between confining pressure, tension, compression and shear

Increasing confining pressure reduces volume of the rock (Haywick, 2008)

Increased confinement around well-design civil excavation

Relaxation or confinement loss (shaded areas) due to complex mining geometries (Diederichs, 2003)

The different of unaxial, triaxial and direct shear test

Triaxial test (www.gdsinstruments.com)

Mohr-Coulomb, Johnston and Hoek-Brown’s failure envelope to estimate the ultimate strength under triaxial compression (Kaiser et al., 2000: Diederich, 2003)

Failure mode in triaxial compression test

Methodology Framework of the Study

Sample of BH MD 26 before test

Sample of BH MD 26 after test

Selected core sample from site before trimming process

Disc cut-off machine

Lapping machine

Triaxial test apparatus

Prepared core sample of Group 1

Prepared core sample of Group 2

Prepared core sample of Group 3

Prepared core sample of Group 4

Prepared core sample of Group 5

Sample used in Brazilian test

Brazilian test in progress

Sample BH MD02 from Group 1 (after test)

Sample BH MD04 from Group 2 (after test)
4.3 Sample BH MD04 from Group 3 (after test) 48
4.4 Sample BH MD04 from Group 4 (after test) 48
4.5 Sample BH MD04 from Group 5 (after test) 49
4.6 Sample BH MD02 of Group 1 after triaxial test 50
4.7 Sample BH MD04 of Group 2 after triaxial test 51
4.8 Sample BH MD25 of Group 3 after triaxial test 51
4.9 Sample BH MD25 of Group 4 after triaxial test 52
4.10 Sample BH MD26 of Group 5 after triaxial test 52
4.11 Samples of Shale after Brazilian test 56
4.12 (a) Projection of a Mohr-Coulomb curve fit on the data pairs, \(\sigma_1, \sigma_3 \) for Group 1 57
4.12 (b) The resulting M-C envelope for sample Group 1 57
4.13 (a) Projection of Hoek-Brown curve fit on the data pairs, \(\sigma_1, \sigma_3 \) for Group 1 58
4.13 (b) The resulting M-C envelope for sample Group 1 59
4.14 (a) Summary of Mohr-Coulomb curve fit on the data pairs, \(\sigma_1, \sigma_3 \) for all samples 60
4.14 (b) Summary of M-C envelope for all samples 60
4.15 (a) Summary of Hoek-Brown curve fit on the data pairs, \(\sigma_1, \sigma_3 \) for all samples 61
4.15 (b) The resulting M-C envelope 61
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>Rock mass constant</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Inclination angle</td>
</tr>
<tr>
<td>(c)</td>
<td>Interlocking</td>
</tr>
<tr>
<td>(c_w)</td>
<td>Interlocking of weakness plane</td>
</tr>
<tr>
<td>(D)</td>
<td>Rock mass disturbance factor</td>
</tr>
<tr>
<td>(Q)</td>
<td>Tunnelling Quality Index</td>
</tr>
<tr>
<td>(J_n)</td>
<td>Joint set number</td>
</tr>
<tr>
<td>(J_r)</td>
<td>Joint roughness number for critical joint set</td>
</tr>
<tr>
<td>(J_a)</td>
<td>Joint alteration number (weathering) for critical joint set</td>
</tr>
<tr>
<td>(J_w)</td>
<td>Joint reduction factor due to presence of water</td>
</tr>
<tr>
<td>(M)</td>
<td>Material constant</td>
</tr>
<tr>
<td>(m_i)</td>
<td>Intact rock constant</td>
</tr>
<tr>
<td>(\sigma_1)</td>
<td>Peak stresses/axial stress</td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td>Intermediate principal stress</td>
</tr>
<tr>
<td>(\sigma_3)</td>
<td>Confining pressures</td>
</tr>
<tr>
<td>(\sigma_c)</td>
<td>Compressive strength</td>
</tr>
<tr>
<td>(\sigma_t)</td>
<td>Tensile strength</td>
</tr>
<tr>
<td>(\sigma_n)</td>
<td>Normal stress</td>
</tr>
<tr>
<td>(\sigma_{cm})</td>
<td>Global rock mass strength</td>
</tr>
<tr>
<td>(\sigma'_1)</td>
<td>Effective peak stresses/axial stress</td>
</tr>
<tr>
<td>(\sigma'_3)</td>
<td>Effective confining pressures</td>
</tr>
<tr>
<td>(\sigma'_{ci})</td>
<td>Effective uniaxial compressive strength of intact rock</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Angle of failure plane under compression</td>
</tr>
<tr>
<td>(s)</td>
<td>Intact rock material constant</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Rock failure has been studied in a co-ordinate way since the 1960s. The way in which rock fails can be studied by examination of natural rock formations that have been stressed and strained over geological time, by laboratory experiments on rock samples, through in situ experiments, and by observing the result of rock excavation and loading during engineering construction. It is very difficult to visualize the rock failure under confinement deep below the ground surface, and it almost impossible to test a rock mass. Hence it is vital to study the strength criteria of rock with a precise test such as triaxial test. The conventional triaxial strength criterion is the basis of all true criteria, and is on the safe side for rock engineering after neglecting the effect of intermediate stress.

The Baram Dam, also known as Baram 1 Dam (Baram Hydroelectric Dam Project) is a proposed gravity dam on the Baram River in the Malaysian state of Sarawak. The site of the Dam is 250 kilometers inland from Miri, the second largest city in Sarawak. The proposed Baram Hydroelectric Project (HEP) with a
capacity of 1,200MW is located on the stretch of the Baram River between Long Naha’a and Long Keseh, subject to confirmation of the site investigations and the SEIA study, which are now being carried out. An earlier feasibility study carried out by an independent consultant (Fichtner GmbH & Co KG) commissioned by Sarawak Energy estimates that 6,000 to 8,000 people will be directly affected by the Baram dam from 32 longhouses. This number has also been verified by the Miri Resident’s office (sarawaksynergy.com.my).

Figure 1.1 Location of the Twelve Dams planned under SCORE (www.sarawaksynergy.com)
The development of the Baram HEP gives a direct benefit to the people in the interior of Baram. The project is set to spur the overall development of Baram with a focal administrative township of Bandar Baru Telang Usan. The township will be a landing point for development, economically and socially. In a nutshell, the Baram HEP will be a catalyst for development in Baram and will provide the local communities with benefits that include work opportunities, new and better homes, roads, schools and infrastructure development. Few borehole explorations has been done at the located area to determine the condition of the foundation. It has been discovered that underneath the dam location is shale. Hence, it is crucial to determine the shear strength of shale as it is known to be very poor in term of quality.
1.2 Problem Statement

Strength envelope should describe failure of rock under common stresses in construction. For instance, tensile, uniaxial compression and triaxial compression. So, this study embark at producing strength for shale in Baram, Sarawak. There are two failure criteria namely Mohr-Coulomb and Hoek-Brown. With regard to failure criterion, these are 2 common approaches used namely Mohr-Coulomb and Hoek-Brown. This study will look into strength envelope produces by each criterion.

Uncertainties arise in predicting the behaviour of a rock mass under confinement due its discontinuities nature. Discontinuity such as joint induces inhomogeneous and anisotropic behaviour in the rock mass, in contrast to the behaviour of intact rock samples used in the lab tests. Several empirical approach such as Rock Mass Rating (RMR) are available to classify and to evaluate the mass strength of discontinuous rock. However RMR suffers from several limitations for it is not suitable for very poor quality rock mass such as shale. For this reason, it is vital to evaluate strength parameter through analysis of Hoek-Brown and Mohr-Coulomb.

1.3 Objective of the Study

This study attempts to verify the strength parameters of the rock using different failure criterion. The objective of the study comprises of the following:

(i) To study the strength envelope and failure criterion of shale using Mohr-Coulomb and Hoek-Brown.

(ii) To determine engineering properties of shale from the laboratory test
(iii) To compare the rock behaviour under Mohr-Coulomb and Hoek-Brown method failure criteria.

1.4 Scope of the Study

Generally, this study focuses on highly laminated rock known as shale which was collected from Baram, Sarawak where a dam will be built. To construct a dam above the very weak rock, the shear strength parameter need to be determined carefully to ensure a good design. Basically there are two types of criterion that involve in strength parameter of intact rock which are Hoek-Brown and Mohr-Coulomb criterion. Both criteria are used to describe the failure criteria by using analysis thru RocData software.

In order to gather the data required for analysis purpose, three different laboratory test will be conducted which are uniaxial compression test (UCT), triaxial test and also Brazilian test. Thru these laboratory test, the parameters such as uniaxial compression strength, maximum stress at failure and tensile stress can be determined. All the data then will be use in RocData software and analyze to get the strength parameters.

1.5 Significance of the Study

Parameters on rock material strengths are usually determined from laboratory test on the intact rock samples. It is very difficult to predict the behaviour of rock
mass under confinement due to its discontinuities nature. Therefore, by having a close prediction of Hoek-Brown failure criterion with the laboratory test result, the Geological Strength Index (GSI), which reflect to the rock mass strength can be predicted.
REFERENCES

Jian and Zhao. (2005). "Rock mechanics for Civil Engineers." Swiss Federal Institute of Technology Lausanne, Switzerland.

www.encyclopedia brittania.com

www.sarawaksynergy.com.my
