ANALYSIS OF *Acalypha indica* EXTRACTS FOR ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES

NURUN NABILAH BINTI BAHRUM

A dissertation submitted in partial fulfilment of the requirements for the award of Masters of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2015
Special dedicated to

ADABI CONSUMER INDUSTRIES SDN BHD

As the main sponsor of UTM-ADABI Halal Cat Food Project

MINISTRY HIGHER EDUCATION MALAYSIA and MARA

As provider for financial support

My beloved FAMILIES and FRIENDS

For unwavering love, support and encouragement
ACKNOWLEDGEMENT

بسم الله الحمدلله على كل حال

Praise be to ALLAH for HIS merciful and gracious. For the hands that reached out for me in the time of need, I sincerely in debt on this.

I gratefully acknowledge the support and guidance from my supervisor, Dr Razauden Mohamed Zulkifli, and my co-supervisor PM Dr Amir Husni Mohd Shariff. Without their endless guidances, advices, thoughtful encouragement and careful supervisions, this thesis would never have taken shape.

My thanks and appreciation special dedicated for my partner, Nur Fathin Ruslan, for always being there through high and low tides. The loyal listener, Fathin Asila Mohd Pabli and also the best laboratory tutor, Wan Nur Atiqah Wan Hassan. For the endless support, pray, motivation, laughter and tears through my ups and downs from my beloved family. Thank you for always being there for me through and through.

Last but not least, thank you for those who have been involved either directly or indirectly; teammate of UTM-Adabi Halal Cat Food Project, friends of Nutritional Biochemistry Laboratory, Faculty of Chemical Engineering, Mr Nuzul and Mrs Athirah from Faculty of Science, laboratory staff of Faculty Bioscience and Medical Engineering (FBME), my fellow coursemates of Master of Biotechnology and many more. For all those assist and care, I would say zillions of thank you. May Allah bless us all and only HIM will ever repay for all your good deeds.

NURUN NABILAH
29 SEPTEMBER 2015
ABSTRACT

Herbal medicines are made from herbs to treat or prevent disease which has been used since ancient. This present study was undertaken to investigate antioxidant and antibacterial activity of leaf-stem, root and whole plant of *Acalypha indica* by using aqueous-ethanol, aqueous-vinegar and water as solvents. Soxhlet apparatus was utilized in preparing the extracts by using fresh sample. All samples were evaluated for antioxidant activity by using DPPH assay and antibacterial activity, which assessed through disc diffusion method. *Staphylococcus aureus*, *Enterococcus faecalis*, *Escherichia coli* and *Pseudomonas aeruginosa* were used to analyze the antibacterial activity at different concentration of the extracts. Aqueous-ethanol extract of leaf-stem was found possessing highest activity of antioxidant with IC$_{50}$ at 21 µg/mL. Meanwhile, all parts of aqueous-ethanol and aqueous-vinegar extracts were susceptible against all those bacteria whilst water extracts were resistance. Presence of bioactive compounds such as flavonoids, phenolic compounds and alkaloids would be the vigor core of those activities. This study suggests the latent potential of *Acalypha indica* to be used as natural source for herbal medicine or any industrial related applications.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS/ABBREVIATION</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Statement of Problem 2
1.3 Specific Objective of Study 3
1.4 Significance of Study 3
1.5 Scope of Research 3
2 LITERATURE REVIEW

2.1 An Overview of Herbal Utilization
 2.1.1 Fusion of Traditional and Modern Medicine
 2.1.2 Bioactive Compounds
 2.1.2.1 Phenolic Compound
 2.1.2.2 Terpenoid
 2.1.2.3 Alkaloid
 2.1.3 Effect of Extraction Methods on Compound Retain
 2.2.1 Factors Affecting Extraction
 2.2.2 Importance of Solvents Used on Extract Yield
 2.3 Acalypha indica- Target Plant in Limelight
 2.3.1 Distribution, Taxonomy and Characteristics
 2.3.2 Active Constituents and Usage
 2.4 Antioxidant Properties for Medicinal Purposes
 2.4.1 Antioxidant Protection System: Body Self-defense against Free Radical
 2.4.2 Categorization and Basic Application
 2.5 Morphology and Pathogenicity of Bacteria
 2.5.1 Bacteria in Features- Gram-Negative Bacteria
 2.5.2 Bacteria in Features- Gram-Positive Bacteria
3 MATERIAL AND METHODS
3.1 An Overview on Methods Applied 36
3.2 Plant Material and Preparation 37
3.3 Antioxidant Analysis: DPPH Radical and Antioxidant Scavenging Assay 37
 3.3.1 Preparation of Reagents and Samples 38
 3.3.2 Assay Procedure 38
3.4 Antibacterial Analysis 39
 3.4.1 Preparation of Material, Samples and Bacteria 39
 3.4.2 Disc Diffusion Analysis 40
3.5 Data Analysis 40
3.6 Work Flow-Chart 41

4 RESULT AND DISCUSSION
4.1 Yield of Acalypha indica Extracts by Aqueous-ethanol, Aqueous-vinegar and Water Solvents 42
4.2 Antioxidant Activity Analysis 45
4.3 Antibacterial Activity Analysis 48

5 CONCLUSION AND FUTURE WORK
5.1 Conclusion 51
5.2 Future Work 51

BIBLIOGRAPHY 52
APPENDICES 60
<table>
<thead>
<tr>
<th>TABLES NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Widespread system of traditional Medicine</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>The modern drugs derived from herbal</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Terpenoid classification</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Effects of solvents used on constituent retain</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Preliminary phytochemical constituents of A. indica</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Phytochemical in Acalypha indica</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Estimation concentration of extracts at IC$_{50}$</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Inhibition zone of bacteria</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Phenolic compound classification</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Alkaloid classification</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Soxhlet apparatus</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Distribution of A. indica worldwide</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Work-flow Chart</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Chart of Yield Extraction</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Graph of concentration towards percentage of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inhibition</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absorbance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>etc</td>
<td>Et cetera</td>
</tr>
<tr>
<td>FRIM</td>
<td>Forest Research Institute of Malaysia</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>NHCP</td>
<td>National Health Care Programmes</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>R</td>
<td>Resistant</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary tract infection</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violent</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>=</td>
<td>Equal to</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Acalypha indica herb plant</td>
<td>60</td>
</tr>
<tr>
<td>B</td>
<td>Active strain of bacteria prior on analysis</td>
<td>61</td>
</tr>
<tr>
<td>C</td>
<td>Test of Normality for Antioxidant Activity</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Independent-Samples Kruskal Wallis Test for Antioxidant Activity</td>
<td>63</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>Inhibition zone of E. coli towards extracts</td>
<td>66</td>
</tr>
<tr>
<td>E2</td>
<td>Inhibition zone of P. aeruginosa towards extracts</td>
<td>67</td>
</tr>
<tr>
<td>E3</td>
<td>Inhibition zone of S. aureus towards extracts</td>
<td>68</td>
</tr>
<tr>
<td>E4</td>
<td>Inhibition zone of E. faecalis towards extracts</td>
<td>69</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Malaysia is bestowed with botanical wealth and diverse types of herbs. Those herbs possess medicinal properties which give enough purpose for people to utilize them since ancient. In these recent years, healthcare industry started diverting their heed towards the application of plant-based product as organic care products to meet the growing demands. People globally much perceive that organic product such plant-based product is safer to use than synthesized chemical-based product.

Acalypha indica known as ‘Kucing Galak’ in Malaysia, commonly treated as noxious weed which usually found in roadsides and low altitude of agricultural lands. This herb belongs to Euphorbiaceae family, also called as Ceka Emas, Cika Mas and Rumput Lis-lis by local (Forest Research Institute Malaysia [FRIM], 2013). This plant has been applied in alternative medicine in the Indian, and useful in treating many diseases like pneumonia, asthma, rheumatism and use as ailments (Jagatheeswari *et al.*, 2013). Poultice of this herb is applied to treat bedsore and wound and its leaves reported to possess contraceptive activity (Bourdy & Walter, 1992).
Relatively, herbal medicine has been a part of human evolution and still applied till nowadays. Herbal extracts are used for many purposes, including stress reliever, muscle relaxer, anti-venom, remedy for infection and many more, depending on type of plants used. Hence, possess important properties such as antioxidant and antibacterial would be a remarkable characteristic for a best extract. Antioxidant, compound capable of inhibit or delay the oxidation by neutralizing free radicals toxic effects (He et al., 2012). Acalpha indica is one of the plants that believed possessed such properties which may help fill up the needs of interest both in industry and scientific research towards application of medicinal herbs (Sanseera, 2012; Shanmugapriya, 2011).

1.2 Statement of Problem

Acalypha indica is well-known herbs use by traditional medicine practitioner as one of strong herbs that successively help in curing and used as preventive measures in many diseases. Using vinegar or aqueous-ethanol for extraction considered as a new thing since researchers commonly used solvents such as methanol, ethanol and acetone in extraction of this plant. On the side of sample preparation, researchers commonly chose dried over fresh samples. In addition, most of previous study focusing on leaf instead of whole plant or other part such roots and stem. Thus, some lingering question to be answer including, does A. indica extract is a worth useful product to use? Which solvent likely the best to use, in term of its part or sample chosen based on antioxidant activity and antimicrobial activity?
1.3 Specific Objective of Study

1. To extract *Acalypha indica* leaf-stems, roots and whole plants using aqueous ethanol, aqueous vinegar and water as solvents
2. To analyze the antioxidant activity of *Acalypha indica* extracts
3. To evaluate the antibacterial activity of *Acalypha indica* extracts using disc diffusion method

1.4 Significance of Study

Acalypha indica is believed possessing potent ability in matter of preventive as well as curative. This study is conducted to investigate the potential antioxidant properties and its antimicrobial activity against some common bacterial. This finding would be beneficial and help contributing for the better development in healthcare indirectly.

1.5 Scope of Research

The study focuses on the extraction of *Acalypha indica* using aqueous-ethanol, aqueous-vinegar and water as solvents by using Soxhlet apparatus. This study also involved on assessing the antioxidant and antimicrobial activities of the mentioned plant.
BIBLIOGRAPHY

Journal of Research in Biological Sciences. 3(4).

