NUMERICAL SIMULATION IN FOUNDATION DUE TO SETTLEMENT PROBLEM

MIMI SULASTRIE BT JEMAN

A project report submitted in partial fulfillment of the requirements for the award of the degree of
Master of Civil Engineering

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JANUARY 2015
Specially dedicated to my

Dearest Husband, Norasman Bin Kadir and my father and mother, Tuan Haji Jeman Bin Harris and Puan Hajjah Salmah Binti Sait, my brothers and sister, all my family members, and friends who helped me accomplish this research. Thank you for all your valuable contributions, patience and love. You are my inspiration.
ACKNOWLEDGEMENT

Praise be to Allah, Lord of the Worlds

In preparing this project report, I was in contact with many people, researchers, academicians and practitioners. They have contributed towards my understanding and thoughts. Thankful to UTM. In particular, I wish to express my sincere appreciation to my supervisor, Associate Professor Dr Nazri Bin Ali for his encouragement, guidance critics, friendship and help during the development of this project report. Without his continued support and interest, this research would not have been the same as presented here.

I am very thankful to who have contributed towards my understanding and thoughts.

My sincere appreciation also extends to my fellow postgraduate course mates for your cooperation and all my friends and others who have provided support at various situations. Their views and tips are useful indeed. Lastly but not least, thanks to all for helping me either directly or indirectly in the completion of this report project, you are still deserved my appreciation.
Kajian ini dijalankan bertujuan untuk mengkaji sifat-sifat tanah terhadap dua jenis cerucuk dengan menggunakan perisian PLAXIS 2D. Ia bagi menentukan asas mana yang sesuai digunakan dimana kriteria beban bangunan, fungsi rekabentuk berdasarkan kepada jenis tanah dan jenis struktur yang akan dibina. Beban bangunan yang besar akan memerlukan saiz asas yang besar juga. Bagaimanapun, ianya tidak ekonomikal dari segi bahan binaan yang banyak akan diperlukan. Jenis asas yang berlainan akan memberi kesan serta impak yang berlainan juga kepada sifat tanah. Ini amat penting di dalam analisis rekabentuk dimana berdasarkan kepada analisis PLAXIS 2D dapat memberi manfaat dari segi gambaran keadaan sebenar tanah dan jangkaan hasil kajian. PLAXIS 2D berpotensidan telah berjaya memberi jangkaan penurunan aras tanah berdasarkan jenis cerucuk yang digunakan pada tanah lembut.
ABSTRACT

This study describes a study on the geotechnical behavior of two different type of footing using finite element code, PLAXIS 2D. In determining the suitable of footing to loadings, design criteria should function according to the soil and types of structures erected on it. Higher loading will require bigger footing as this will give better support. However, this is not economical as more materials will be needed for the construction of the footing. Different type of footing might affect the performance of geotechnical behavior. It is essential since such design analysis, which based on numerical analysis, could have advantages in providing preliminary expected outcomes for the modeling purposes. In conjunction to this matter, the potential of PLAXIS 2D finite element to predict the settlement of soft soil base on different type of footing are performed successfully.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background of the Problem</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Stress, strain and strength in soil</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Shear Strength</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Effective Versus Total Stress Analysis</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Vertical Stress Distribution</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Settlement on soft ground</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Immediate (Distortion) Settlement</td>
<td>13</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Primary Consolidation</td>
<td>14</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Secondary Compression</td>
<td>14</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Normally Consolidated Soils</td>
<td>15</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Over Consolidated (Preconsolidated) Soils</td>
<td>17</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Underconsolidated Soils</td>
<td>18</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Differential Settlement</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Foundation and Footing</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Classification of Piles</td>
<td>22</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Precast Reinforced Concrete Piles</td>
<td>23</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Design Philosophies</td>
<td>23</td>
</tr>
<tr>
<td>2.5.3.1</td>
<td>Global Factor of Safety Approach</td>
<td>24</td>
</tr>
<tr>
<td>2.5.3.2</td>
<td>Limit State Design Approach</td>
<td>25</td>
</tr>
<tr>
<td>2.5.3.3</td>
<td>Recommended Factors of Safety</td>
<td>25</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Pile Capacity</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Simulation PLAXIS 2D</td>
<td>29</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Modeling of Soil Behaviour</td>
<td>31</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Basic Model Parameters in Relation to Real Soil Behaviour</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>RESEARCH METHODOLOGY</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Data Collection</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>PLAXIS 2D Models</td>
<td>34</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Geometry</td>
<td>34</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Material Properties</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Assigning Data Sets to Geometry Components</td>
<td>38</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Distributed Loads</td>
<td>38</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Point Loads</td>
<td>39</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Standard Fixities</td>
<td>41</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Mesh Generation</td>
<td>41</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Initial Condition</td>
<td>43</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Consolidation Analysis During Calculation Stage</td>
<td>44</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Staged Construction</td>
<td>44</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Apply Loading During Calculation Stage</td>
<td>45</td>
</tr>
<tr>
<td>3.2.12</td>
<td>Presentation of Output Results</td>
<td>47</td>
</tr>
</tbody>
</table>

4 DISCUSSION AND RESULTS
4.1 Result Analyze and Discussion | 48 |
4.2 Comparison Foundation Settlement Using Bakau Pile and Reinforced Concrete Pile | 54 |
4.3 Comparison Performance of Shear Forced and Bending Moment | 56 |
4.4 Cost Estimate | 59 |

5 CONCLUSIONS
5.1 Conclusions | 60 |
5.2 Recommendations | 61 |

REFERENCES | 62 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bakau Pile Properties Value, Limitation and Assumption</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Soil Properties</td>
<td>36-37</td>
</tr>
<tr>
<td>3</td>
<td>Pile and Pile Cap Properties</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Pad Footing Loading</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Foundation Settlement Using Bakau Pile</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>Foundation Settlement Using Reinforced Concrete Pile</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Two- Dimensional Stress State</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Total Stress at a Point Diagram</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Graphical Representative of Shear Strength</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Mohr-Coulomb’s Circles and Failure Envelopes</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Components of Total Settlement Versus Log Time</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Typical Consolidation Curve for Normally Consolidated Soil</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Typical Consolidation Curve for Over Consolidated Soil</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Typical Consolidation Curve for Under Consolidated Soil</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>Type of Foundation</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>Position of Nodes and Stress Points in Soil Elements</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>Material Data Sets</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>Generated Mesh</td>
<td>42</td>
</tr>
<tr>
<td>13</td>
<td>Active Pore Pressure at Initial Condition</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>Effective Means Stressess at Initial Condition</td>
<td>44</td>
</tr>
<tr>
<td>15</td>
<td>Consolidation Analysis</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>Loading Apply at Construction Stage</td>
<td>46</td>
</tr>
<tr>
<td>17</td>
<td>Point of Total Displacement for Bakau Pile</td>
<td>50</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>18</td>
<td>Point of Total Displacement for Reinforced Concrete Pile</td>
<td>50</td>
</tr>
<tr>
<td>19</td>
<td>Deformed Mesh For Bakau Pile</td>
<td>51</td>
</tr>
<tr>
<td>20</td>
<td>Deformed Mesh For Reinforced Concrete Pile</td>
<td>51</td>
</tr>
<tr>
<td>21</td>
<td>Total Displacement for Bakau Pile</td>
<td>52</td>
</tr>
<tr>
<td>22</td>
<td>Total Displacement for Reinforced Concrete Pile</td>
<td>52</td>
</tr>
<tr>
<td>23</td>
<td>Total Vertical Stress Displacement for Bakau Pile</td>
<td>53</td>
</tr>
<tr>
<td>24</td>
<td>Total Vertical Stress Displacement for Reinforced Concrete Pile</td>
<td>53</td>
</tr>
<tr>
<td>25</td>
<td>Comparison Settlement Curve of Foundation Using Bakau Pile and Reinforced Concrete Pile</td>
<td>56</td>
</tr>
<tr>
<td>26</td>
<td>Performance of Shear Force Curve Reinforced Concrete Pile and Bakau Pile</td>
<td>57</td>
</tr>
<tr>
<td>27</td>
<td>Performance of Bending Moment Curve Reinforced Concrete Pile and Bakau Pile</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Cohesion</td>
</tr>
<tr>
<td>Cc</td>
<td>Compression Index</td>
</tr>
<tr>
<td>Cr</td>
<td>Recompression Index</td>
</tr>
<tr>
<td>ε_o</td>
<td>Initial Void Ratio</td>
</tr>
<tr>
<td>Ho</td>
<td>Thickness of Soils to Secondary Consolidation</td>
</tr>
<tr>
<td>K</td>
<td>Coefficient of Lateral Earth Pressure</td>
</tr>
<tr>
<td>Pc</td>
<td>Preconsolidation Pressure</td>
</tr>
<tr>
<td>Po</td>
<td>Initial Effective Vertical Stress</td>
</tr>
<tr>
<td>Qb</td>
<td>End Bearing Resistance</td>
</tr>
<tr>
<td>Qs</td>
<td>Shaft Resistance</td>
</tr>
<tr>
<td>Qult</td>
<td>Ultimate Capacity</td>
</tr>
<tr>
<td>S</td>
<td>Shear Strength</td>
</tr>
<tr>
<td>u</td>
<td>Pore Pressure</td>
</tr>
<tr>
<td>σ</td>
<td>Total Normal Stress</td>
</tr>
<tr>
<td>σ'</td>
<td>Effective Stress</td>
</tr>
<tr>
<td>ϕ</td>
<td>Angle of Internal Friction of Soil</td>
</tr>
<tr>
<td>ψ</td>
<td>Angular Distortion</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Site Layout Plan and Position of Boreholes</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Point</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Aerial View of Infrastructure Works at RMR Muara Tebas</td>
<td>66</td>
</tr>
<tr>
<td>C</td>
<td>Soil Investigation Works Report</td>
<td>67</td>
</tr>
<tr>
<td>D</td>
<td>Summary of Boreholes</td>
<td>68</td>
</tr>
<tr>
<td>E</td>
<td>Summary of Laboratory</td>
<td>69</td>
</tr>
<tr>
<td>F</td>
<td>Triaxial Tests Report</td>
<td>70</td>
</tr>
<tr>
<td>G</td>
<td>Reinforced Concrete Pile Detail Plan</td>
<td>71</td>
</tr>
<tr>
<td>H</td>
<td>Bakau Pile Detail Plan</td>
<td>72</td>
</tr>
<tr>
<td>I</td>
<td>Reinforced Concrete Pile Load – Manual Calculation</td>
<td>73</td>
</tr>
<tr>
<td>J & K</td>
<td>Bakau Pile Load – Esteem Software</td>
<td>74</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

Soft soil deposits are generally widespread in the coastal area. The soil possesses low shear strength and high compressibility and thus having low bearing capacity. Due to high compressibility and low shear strength, it may result in high settlement and deformation to the structure, if constructed on soft clay. Stability, deformations and time required for consolidation are the major concerns in the design and construction of building over soft foundations. Therefore it may need improvement to avoid excessive settlement and prevent stability failure.

The problem such as high compressibility and low shear strength usually occur and it is common in the construction at soft soil area. The stress is always acting in the direction of vertical and horizontal, and effective stress is dependent on stability condition during and after construction. Common behavior of foundation soil is like settlement, lateral movement, pore water pressure and total stress. All of these behaviors are related to each other.

Pile foundation is one of the most popular forms of deep foundations. Piles are generally adopted for structures in weak soils, characterized by low shear
strength and high compressibility, as well as in good soils, in cases where structures are subjected to heavy loads and moments. The maximum settlement of the pile and its ultimate load bearing capacity are the governing criterion in the design of vertically loaded piles. These are evaluated by carrying out a number of theoretical and numerical approaches. However, the evaluation of the magnitude of soil movement and settlement, with reasonable confidence and accuracy, is difficult.

Particularly, it is challenging to decide the termination depth. Methods to evaluate the skin resistance for friction piles and socket length for end bearing piles are not well understood. Finite element software, like PLAXIS 2D, are usually used to perform the analysis of piles under different types of loading. Finite element analysis offers an excellent opportunity to study pile-soil interaction, pile response and soil movement under vertical loading in difficult geoenvironments.

1.2 Statement of the Problem

Foundation and footings are crucial to success of a building. At present, there are many different methods of calculation and design available for analyzing soil structures. Because all of these methods are based on simplified analysis, it could not provide the engineer with all desired design information and only provide very limited indications of soil. Therefore, many researchers are motivated to find alternative materials and technique that not contributing too much cost. Simulation or finite element method has proved to be the most of the cheaper, faster and realistic tool of the construction process than performing the multiply test of the design each time. The numerical software is sophisticated, computer hardware and software has resulted in considerable advances in the analysis and design of geotechnical structures and building structures. Therefore, it is of great encouragement to study and understand the use of software in solving practical problem.
1.3 **Objectives of the Study**

The aim of this study is to identify the most suitable footing for soft soil at Rumah Mesra Rakyat (RMR) Muara Tebas. In order to achieve that, four objectives have to be fulfilled in this study:

1. To simulate soil condition at site
2. To propose and model different types of footing using Plaxis 2D
3. To monitor the settlement with different types of foundation
4. To determine the foundation to be used in the soft soil.

1.4 **Scope of the Study**

The study will concern on simulation analysis of soil in two different types of footing on the given condition of soft soil using PLAXIS 2D software. In this regards, PLAXIS 2D will be used to perform two-dimensional analysis of soil. It will concentrate on the earthworks at Proposed Housing Rumah Mesra Rakyat (RMR), Stage 1, Muara Tebas, Kuching, Sarawak. It is only covers about 23.92 acres of land size. The load will be based on actual drawing of detached building calculated using ESTEEM software and manual calculation. Only the heaviest load footing point will analyze in this study. The parameter of the soil on this study is based on the Soil Investigation Works Report by Geological and Geotechnical Specialists consultant, M/s Geospec Sdn Bhd.
1.5 Significance of the Study

The evaluation is made by a comparison of soil displacements using software PLAXIS 2D analysis between different types of loading footing on the given condition of soft soil. Therefore, the settlement of different foundation to be used in soft soil can be satisfy and useful for foundation design. Thus, the comparison of cost effective will be compared to achieve economical development.
REFERENCES

Journal January, 2013. Department of Geotechnical and Transportation, Faculty of Civil Engineering, UTM Skudai, Research Centre for soft soil, Faculty of Civil Environment Engineering, UTHM.

[18] Plaxis Training Course-NUS, The National University of Singapore, Faculty of Engineering, Consoft International Pte Ltd

[24] Yan Jiang, Jie Han, and Gang Zheng.(2013) *Numerical Analysis of Consolidation of*

[26] Zehai Cheng.(2011) Prediction and measurement of settlement of a piled raft foundation over thick soft ground. School of Civil Engineering and Architecture, Zheijiang University of Science and Technology, China.