USE OF ESTIDAMA RATING TOOL TO ASSESS EXISTING BUILDING IN HOT DRY CLIMATE

TAREQ H. M. NEMER

A thesis submitted in fulfilment of the requirements for the award of the degree of
Master of Architecture

Faculty of Built Environment
Universiti Teknologi Malaysia

MAY 2015
To my beloved parents, brothers, wife and friends
ACKNOWLEDGMENTS

After thanks and gratitude are expressed to almighty “Allah”, my deepest gratitude goes to my main supervisor, Assoc. Prof. Dr. Eka Sediadi, for his valuable supervision, motivation and friendship throughout the study. Without his support and guidance, this thesis would not have been the same as presented here. I thank him for his continuous support and guidance throughout the years and for the special efforts which helped greatly in my academic and practical attitude.

I would like to thank the staff in the Department of Architecture, Faculty of Built Environment, Universiti Teknologi Malaysia (UTM) for providing the resources, facilities and instruments required for the research. I like to thank the building facility management of AUST for providing the required data and resources about the case study building with special thanks to Eng. Eyad Jumaa for his continuous support. Most of all, many thanks are for my dear friend Hasan Alhajhamad for his friendship, encouragement and the good times I had with him. I also would like to thank and acknowledge my friends in UTM for the support and useful advises they gave me through the years. Many thanks to Waheeb, Tareq Gaber, Hakim, Yunus, Tameem, Abduallah Al-Selwi, Ibrahim Esa, Suahil, Ibrahim Al Namer, Ismail and Muhammad Chiroma for their guidance and help with different aspects of this research. Also, not to forget, I’d like to thank my friends in the UAE for their support and encouragement; especially Dr. Emad Mushtaha, Marwa Ameen, Eng. Mohamed Al Roznamch, Moner, Ayham, Mustafa, Ahmad Mehdi, Jamal, Abdulrahman Hadid, Ahmad Alkhudairy, Ibrahim and Alaa. Thanks are also due to both my examiners, Prof. Dr. Muna Hanim and Dr. Lim Yaik Wah. Finally, my deepest and most heart sincere gratitude and thanks are for my parents, who believed and kept on encouraging and supporting me. Thank you for your endless prayers and love that made me succeed. Many thanks to all my brothers and sisters for their support and love.
ABSTRACT

Energy consumption in buildings has significantly increased over the last two decades in the United Arab Emirates (UAE). Moreover, most of the existing buildings in the region were built without any consideration for energy efficiency. To control this trend, the UAE government adopted green building rating systems for new buildings such as Leadership in Energy and Environmental Design (LEED) and Building Research Establishment Environmental Assessment Method (BREEAM), which were not suitable for countries in a hot dry climate. However, the use of Estidama Pearl Rating System (PRS), developed for Abu-Dhabi emirate, was not adopted by the other emirates. In addition, the retrofitting of existing buildings to green building status has not received adequate attention. Thus, the aim of this study is to reduce environmental impacts that have evolved from the high energy consumption of existing buildings. The study involves an assessment of a case study building located at Ajman University of Science and Technology to simulate retrofitting of the building to become environmental friendly using Estidama PRS points that incorporates cool building strategies, daylighting, and water use reduction, which are appropriate in hot dry climate. The building was assessed using a computer simulation software called Integrated Environmental Solutions Virtual Environment (IES-VE), to compare the actual situation of the building against a new suggested situation. The results show that daylighting retrofitting efforts involving changing of the glass type and adding light shelves failed to achieve any score. However, the retrofitting succeeded in achieving a reasonable rating score in the cool building strategies category by installing aluminium cladding on the external walls. In terms of water usage, new toilet fixtures reduced the amount of internal water usage by almost one-third. Based on these results, major changes to daylighting, and minor changes to cool building strategies and water use reduction are needed to help retrofit buildings to become more environmental friendly.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Problem Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Aim</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Research Questions</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>Research Scope and Limitations</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Significance of the Study</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>Thesis Outline</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Green Concept and Green Building</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Green Concept</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Green Building</td>
<td>10</td>
</tr>
</tbody>
</table>
2.2.2.1 A Brief History of Green Building

2.2.2.2 Historical Green Building in the UAE

2.3 The Needs for Green Building and Sustainable Design

2.3.1 Negative Effects of Buildings on the Natural Environment

2.3.1.1 Energy Consumption

2.3.1.2 Greenhouse Gas Emissions

2.3.1.3 Water Consumption

2.3.2 The advantages of green buildings and sustainable design

2.3.2.1 Environmental benefits

2.3.2.2 Economic benefits

2.3.2.3 Social benefits

2.4 Green buildings assessment tools

2.4.1 Types of Environmental Assessment Methods

2.4.1.1 Environmental, Social and Economic Impact Analysis

2.4.1.2 Strategic Environmental Assessments (SEA)

2.4.1.3 Cost-Benefit Analysis (CBA)

2.4.1.4 Travel Cost Theory

2.4.1.5 Community Impact Evaluation (CIE)

2.4.1.6 Contingent Valuation Method (CVM)

2.4.1.7 Hedonic Pricing Method

2.4.1.8 Multi-Criteria Analysis (MCA)

2.4.1.9 Material Intensity per Service Unit (MIPS)

2.4.1.10 Analytic Network Process (ANP)

2.4.1.11 Life Cycle Assessment (LCA)

2.4.1.12 Sustainability and Environmental Rating Systems

2.4.2 Historical Background of Environmental Rating Systems

2.4.3 Implementation of Green Building Rating Tools
2.4.3.1 Building Design and Construction 21
2.4.3.2 Retrofitting of Existing Buildings 22
2.5 Assessment Tools and Climates 23
2.6 Green movement in the UAE 27
 2.6.1 LEED and Estidama Rating Tools 29
 2.6.1.1 Rating Tools Overview 30
 2.6.1.2 Rating Benchmarks and Classification 33
 2.6.1.3 Assessment Process 33
 2.6.1.4 Environmental Assessment Areas 36
 2.6.2 Building Requirements in UAE Hot Dry Climate 37
 2.6.2.1 Characteristics of the Climate 37
 2.6.2.2 Special Building Requirements in UAE 38
 2.6.3 Retrofitting Strategies 38
 2.6.3.1 Reduction of External Heat Gain 39
 2.6.3.2 Daylighting Performance 40
 2.6.3.3 Water Use Reduction 42
2.7 Summary 43

3 RESEARCH METHODOLOGY 44
 3.1 Introduction 44
 3.2 Research Methodology 45
 3.3 Research Framework 46
 3.4 Review of LEED and Estidama Rating Systems 47
 3.5 LEED and Estidama Similarities and Differences 47
 3.5.1 Environmental Assessment Areas 48
 3.5.1.1 Outdoor Environmental Comfort 49
 3.5.1.2 Indoor Environmental Comfort 50
 3.5.1.3 Water Use 50
 3.5.1.4 Energy Use 51
 3.5.1.5 Materials and Resources 51
 3.5.2 Estidama PRS’s Relative Strengths in a Hot Dry Climate 51
 3.5.2.1 Ecological Enhancement 52
3.5.2.2 Outdoor Thermal Comfort Strategy 52
3.5.2.3 Private Outdoor Space 52
3.5.2.4 Water Use and Conservation 53
3.5.2.5 Cool Building Strategies 53
3.5.2.6 Building Envelope Verification 53

3.5.3 Selecting the Categories 53
3.5.3.1 Cool Building Strategies 54
3.5.3.2 Daylighting 54
3.5.3.3 Water Use Reduction 54

3.6 Assessment of a Case Study Building 55
3.6.1 Computer Simulation Assessment 56
3.6.1.1 Computer Simulation Software Selection 56
3.6.2 Introduction to the Case Study Building 58
3.6.2.1 United Arab Emirates 59
3.6.2.2 Ajman 60
3.6.2.3 Ajman Climate 60
3.6.2.4 Case Study Building Data Gathering 62
3.6.2.5 Building Description 62

3.7 Model Setup and Configuration 64
3.7.1 Model Description 64
3.7.2 Model Generation 66
3.7.3 Weather data selection 67

3.8 Analysis Process of the Case Study Building 68
3.8.1 Cool Building Strategies 70
3.8.1.1 Current Design Input data 71
3.8.1.2 Baseline Model Input Data 72
3.8.2 Daylighting Analysis 73
3.8.2.1 Current Design Input Data 77
3.8.3 Water Use Reduction Analysis 78
3.8.3.1 Current design input data 79

3.9 Summary 79

4 RESULTS, ANALYSIS AND DISCUSSION 81
4.1 Introduction 81
4.2 Assessment of the Current Design 82
 4.2.1 Cool building Strategies 82
 4.2.1.1 Current design Analysis 82
 4.2.1.2 Baseline Building Analysis 84
 4.2.1.3 Comparison and Findings 86
 4.2.2 Daylighting Analysis 88
 4.2.2.1 East Room Assessment results 89
 4.2.2.2 West Room Assessment Results 91
 4.2.2.3 South Room Assessment Results 94
 4.2.2.4 Discussion and Findings 96
 4.2.3 Water Use Reduction 96
 4.2.3.1 Results and discussion 97
4.3 Assessment of the Proposed Design 99
 4.3.1 Cool building Strategies 99
 4.3.1.1 Suggested Improvements 100
 4.3.1.2 Proposed Design Analysis 100
 4.3.1.3 Comparison and Findings 102
 4.3.2 Daylighting Analysis 106
 4.3.2.1 Suggested Improvements 106
 4.3.2.2 East Room Assessment Results 108
 4.3.2.3 West Room Assessment Results 110
 4.3.2.4 South Room Assessment Results 113
 4.3.2.5 Comparison and Findings 116
 4.3.3 Water Use Reduction 122
 4.3.3.1 Suggested Improvements 122
 4.3.3.2 Results and Discussion 124
4.4 Summary 126

5 CONCLUSION AND RECOMMENDATIONS 127
 5.1 Introduction 127
 5.2 Conclusion 128
 5.2.1 Review of Estidama PRS Relative Strength 128
 5.2.2 Assessment of the Case Study Building 129
 5.2.2.1 Current Design of the Case Study Building 129
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Energy rating comparison results between LEED, BREEAM and Green Star (Source: Roderick et al., 2009)</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Approximate rating comparisons of LEED, BREEAM, Green Star and CASBEE ratings for a building constructed in the UK (Source: Saunders, 2008)</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>List of Buildings in the UAE that applied for LEED (Source: USGBC, 2013)</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>General comparison of LEED and Estidama Rating Tools</td>
<td>32</td>
</tr>
<tr>
<td>2.5</td>
<td>Rating Benchmarks and Classification</td>
<td>33</td>
</tr>
<tr>
<td>2.6</td>
<td>LEED and Estidama Environmental Assessment Areas</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of water control categories in LEED and Estidama (Source: Banani et al., 2013)</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Maximum and minimum absolute temperature (C°) by year and month for Sharjah Airport from 2009 to 2013</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>The point achieved by percentage reduction of the annual external heat gain (Source: Estidama, 2010)</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>Simulation inputs for the current design of the case study building (Source: Jumaa, 2013)</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>Simulation inputs for the Baseline model of the case study building (Source: ASHRAE, 2007)</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>The point achieved by minimum daylighting illuminance required in the classroom (Source: Estidama, 2010)</td>
<td>74</td>
</tr>
<tr>
<td>3.7</td>
<td>Input data for the daylighting simulation for the current design of the case study building (Source: Jumaa, 2013)</td>
<td>77</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Plumbing fixtures’ flow rates for the current situation and the baseline model of the case study building (Source: Estidama, 2010)</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Annual heat gain for the different sides of the case study building</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Illuminance Percentage of 300 Lux and above at different times for the East Room in the current situation</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Illuminance Percentage of 300 Lux and above at different times for the West Room in the current situation of the case study building</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Illuminance Percentage of 300 Lux and above at different times for the South Room in the current situation</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Total interior water consumption percentage for the current design compared to the baseline model of the case study building</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Annual External heat gain for the three sides of the case study building</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Percentage improvement of reduction in annual external heat gain for the proposed design against the baseline model of the case study building</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Percentage improvement of reduction in annual external heat gain for the proposed design against the current design of the case study building</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Percentage improvement of reduction in annual conduction gain for the proposed design against the current design of the case study building</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Illuminance Percentage of 300 Lux and above at different times for the proposed design of the East Room</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Illuminance Percentage of 300 Lux and above at different times for the proposed design of the West Room</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Illuminance Percentage of 300 Lux and above at different times for the proposed design of the South Room</td>
<td></td>
</tr>
</tbody>
</table>
4.13 Plumbing Fixtures flow rates for the current design, the baseline model and the proposed design of the case study building (Source: Estidama, 2010)

4.14 Total interior water consumption for the proposed design compared to the baseline model of the case study building
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Annual electricity consumption by agency and years (Source: NBS, 2014), summarised by author</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>A 3-D model of the Fareej house by Professor Elkady in Dubai (Source: Dina ElKady, 2011)</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Ecological Footprint 2007 in different countries, per person (Source: WWF, 2010)</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>LEED and Estidama PRS certification process</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Framework</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Weighting of categories for LEED and Estidama</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Site plan of the university campus showing the case study building</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>United Arab Emirates Map (Source: Google Maps, 2014)</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>Ajman Climate and Weather Summary (IESVE, 2014)</td>
<td>61</td>
</tr>
<tr>
<td>3.6</td>
<td>3D Model of the case study building</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>Ground floor plan analysis for the case study building</td>
<td>63</td>
</tr>
<tr>
<td>3.8</td>
<td>Images of the case study building showing the façade in different directions and its surroundings</td>
<td>64</td>
</tr>
<tr>
<td>3.9</td>
<td>The selected part of the case study building for simulation as shown in the bold line boundary</td>
<td>65</td>
</tr>
<tr>
<td>3.10</td>
<td>The simplified building floor plan in order to perform the simulation</td>
<td>65</td>
</tr>
<tr>
<td>3.11</td>
<td>Model generation in Revit and transfer to IES-VE</td>
<td>67</td>
</tr>
<tr>
<td>3.12</td>
<td>Analysis Process of the Case Study Building</td>
<td>69</td>
</tr>
<tr>
<td>3.13</td>
<td>3D model for the current situation of the case study building</td>
<td>72</td>
</tr>
</tbody>
</table>
3.14 Detailed plan of the case study buildings showing the selected classes for daylighting analysis
3.15 Kelvin campus sun path for the selected case study location
4.1 The percentage of the annual external heat gain for the current design of the case study building
4.2 Monthly external heat gain affecting the current situation of the case study building
4.3 The percentage of the annual external heat gain for the baseline model of the case study building
4.4 Monthly External Heat Gain affecting the baseline model of the case study building
4.5 Comparison of the heat gain between the current design and the baseline model of the case study building
4.6 Illuminance area of 300 lux and above for the East Room in the current situation at three different times on 21st June
4.7 Illuminance area of 300 lux and above for the East Room in the current situation at three different times on 23rd September
4.8 Illuminance area of 300 lux and above for the East Room in the current situation at three different times on 21st December
4.9 Illuminance area of 300 lux and above for the West Room in the current situation at three different times on 21st June
4.10 Illuminance area of 300 lux and above for the West Room in the current situation at three different times on 23rd September
4.11 Illuminance area of 300 lux and above for the West Room in the current situation at three different times on 21st December
4.12 Illuminance area of 300 lux and above for the South Room in the current situation at three different times on 21st June
4.13 Illuminance area of 300 lux and above for the South Room in the current situation at three different times on 23rd September
4.14 Illuminance area of 300 lux and above for the South Room in the current situation at three different times on 21st December
4.15 Interior water consumption ratio and percentage of change for the current design compared to the baseline model of the case study building
4.16 Proposed aluminium cladding design to reduce the conduction gain of the case study building (source: Radhi, 2010b) 101

4.17 3D model shows the proposed aluminium cladding design in the external façade of the case study building 101

4.18 Comparison of the solar gain, conduction gain and infiltration gain between the current situation and the proposed design of the case study building 105

4.19 Proposed design of the light shelf for the case study building 107

4.20 Illuminance area of 300 lux and above for the proposed design of the East Room at three different times on 21st June 108

4.21 Illuminance area of 300 lux and above for the proposed design of the East Room at three different times on 23rd September 109

4.22 Illuminance area of 300 lux and above for the proposed design of the East Room at three different times on 21st December 109

4.23 Illuminance area of 300 lux and above for the proposed design of the West Room at three different times on 21st June 111

4.24 Illuminance area of 300 lux and above for the proposed design of the West Room at three different times on 23rd September 111

4.25 Illuminance area of 300 lux and above for the proposed design of the West Room at three different times on 21st December 112

4.26 Illuminance area of 300 lux and above for the proposed design of the South Room at three different times on 21st June 113

4.27 Illuminance area of 300 lux and above for the proposed design of the South Room at three different times on 23rd September 114

4.28 Illuminance area of 300 lux and above for the proposed design of the South Room at three different times on 21st December 115

4.29 Comparison of daylighting performance between the current situation and the proposed design for the south room of the case study building 116

4.30 Daylighting performance comparison between the current situation and the proposed design for the east room of the case study building 117
4.31 Daylighting performance comparison between the current situation and the proposed design for the west room of the case study building

4.32 Light zoning for the East room at 12:00 pm on 21st June

4.33 Light zoning at 12:00 pm for the South room on 21st December and for West rooms on 21st June

4.34 Light zoning at 02:00 pm for the east rooms on 21st December, at 10:00 am for the West room on 21st December and at 02:00 pm on 21st June for the South room

4.35 Dual flush mechanism (Source: Brewer, 2001)

4.36 Infrared sensor for washbasin (Source: Estidama, 2010)

4.37 Interior water consumption ratio and percentage of change for the proposed design compared to the baseline model of the case study building
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD-UBC</td>
<td>Abu Dhabi Urban Planning Council</td>
</tr>
<tr>
<td>AIA</td>
<td>American Institute of Architects</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigerating, and Air-Conditioning Engineers</td>
</tr>
<tr>
<td>AUST</td>
<td>Ajman University of Science and Technology</td>
</tr>
<tr>
<td>BRE</td>
<td>U.K. Building Research Establishment</td>
</tr>
<tr>
<td>BREEAM</td>
<td>Building Research Environmental Assessment Method</td>
</tr>
<tr>
<td>CIE Clear</td>
<td>Commission Internationale de l’Éclairage: the International Lighting Commission (Clear Sky)</td>
</tr>
<tr>
<td>CIWMB</td>
<td>California Integrated Waste Management Board</td>
</tr>
<tr>
<td>EPA</td>
<td>The Environmental Protection Agency</td>
</tr>
<tr>
<td>FEWA</td>
<td>Federal Electricity and Water Authority</td>
</tr>
<tr>
<td>FTE</td>
<td>Full Time Equivalent</td>
</tr>
<tr>
<td>GBCI</td>
<td>Green Building Certification Institute</td>
</tr>
<tr>
<td>gbXML</td>
<td>Green Building eXtensible Markup Language</td>
</tr>
<tr>
<td>GCC</td>
<td>Gulf Cooperation Council countries</td>
</tr>
<tr>
<td>HK-BEAM</td>
<td>Hong Kong Building Environmental Assessment Method</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IESNA</td>
<td>Illuminating Engineering Society of North America</td>
</tr>
<tr>
<td>IES-VE</td>
<td>Integrated Environmental Solution – Virtual Environment</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt hour</td>
</tr>
<tr>
<td>PRS</td>
<td>Pearl Rating system</td>
</tr>
<tr>
<td>PV</td>
<td>Photo Voltaic</td>
</tr>
<tr>
<td>UAE</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>USGBC</td>
<td>United State Green Building Council</td>
</tr>
<tr>
<td>U-Value</td>
<td>Overall Heat Transfer Coefficient (W/m²K)</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Buildings with Curtain Wall Glazing</td>
<td>141</td>
</tr>
<tr>
<td>B</td>
<td>LEED and Estidama PRS Categories and Scorecard</td>
<td>142</td>
</tr>
<tr>
<td>C</td>
<td>Water and Electricity Consumption for the Case Study Building</td>
<td>147</td>
</tr>
<tr>
<td>D</td>
<td>Maximum and Minimum Absolute Temperature of UAE</td>
<td>149</td>
</tr>
<tr>
<td>E</td>
<td>Solar Shading Report on Solstice and Equinox</td>
<td>154</td>
</tr>
<tr>
<td>F</td>
<td>Estidama Pearl Rating System Water Calculator</td>
<td>157</td>
</tr>
<tr>
<td>G</td>
<td>Heat Gain Calculation for the Case Study Building</td>
<td>158</td>
</tr>
<tr>
<td>H</td>
<td>Glass Type Products for Estidama PRS</td>
<td>170</td>
</tr>
<tr>
<td>I</td>
<td>Estidama Product Database for Water Fixtures</td>
<td>171</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Problem Background

Peoples who live in areas with a hot dry climate sometimes face many difficulties in that environment. Average daily outdoor high temperatures can exceed 38°C. Peak afternoon temperatures can exceed 43°C, with relative humidity levels consequently being less than 30% (Hastbacka et al., 2012). These rates are subjected to significant change due to global warming, which leads to an increase of energy consumption to accommodate the need for a more comfortable environment. The United Arab Emirates (UAE) is considered as one of these countries, and its major cities extend to the coastal areas (Francis, 1995), where the relative humidity is very high, ranging between 60% - 80% in the study area, with low rainfall (less than 100 mm per year), high temperatures and extremely high evaporation rates. The UAE depends mainly on groundwater and desalination as its main sources of drinking water (DSC, 2010).

The UAE has experienced a huge urban, economic and social rise in the last two decades, from 1990 to the present day, covering all the seven emirates. Satellite broadcasting has contributed immensely in marketing these developments of the Emirates. Moreover, many events and activities have emerged during this period, such as the Dubai Air show in 1991, the International Defence Exhibition in 1993, the Dubai Festival in 1996 and the Dubai World Cup in 1996 (Heard-Bey, 2005).
According to the annual report for the year of 2008 issued by the Regional Office for the Eastern Mediterranean Region of the World Health Organization, the annual rate of population growth in the UAE is 6.2%. This increase is because of the high per capita income, which has reached 47,500 US dollar per capita, making it among the ten richest countries in the world. All of these factors have led to the construction boom that is currently taking place (Khalifa, 2009; Pasquali, 2013). In 2011, the cost of construction projects completed over the GCC (Gulf Cooperation Council) countries reached 46.52 US billion dollars. It is expected to increase to 79.7552 US billion dollars in 2012 by a rate of 71%. The UAE, which is a member of the GCC, garnered the largest percentage of the construction projects, accounting for almost half (ME, 2012). Most of these mega constructions in the region have been built without consideration for the environment and green concepts from all clients. For instance, buildings have been designed with large glass openings and a large amount of curtain wall glass, which will cause damage to the environment, since the production of the glass negatively affect the environment through the emission of CO2 (Alnaser, 2008). Moreover, some of these building are considered as iconic towers in the UAE, such as the World Trade Center in Dubai, built in 1971, where 40% of the façade material is glass, the National Bank of Dubai (NBD) built in 1995, where the façade is 80% curtain wall glass and the 21st Century Tower in Dubai, built in 2000, where 90% of the façade is curtain wall glass (Aboulnaga, 2006). Some other examples with images can be seen in Appendix A.

All of these factors are the major causes of high rates of energy consumption, which negatively affect the environment. The energy consumption of the Emirates increased significantly from 2003 to 2012 to meet the demand of the buildings. The following chart (Figure 1.1) shows the increasing electricity consumption in the UAE by agency and years. The amount of electricity consumed has increased by 140% between 2003 and 2012. Data showed that emirate of Abu Dhabi has consumed about 46% of the total consumption in the UAE, while it contributes about 59% of the electricity production, while Dubai in 2012 consumed 35% of the total electricity generated, and produced 34% of the total electricity (NBS, 2014). The increase of usage in electricity is due to the growth in population and the change in consumption patterns, which results from modernity and the increase in economic projects that consume water (NBS, 2014).
Figure 1.1 Annual electricity consumption by agency and years (Source: NBS, 2014), summarised by author)

Electricity consumption in 2012 increased by about 6% from 2011. The data from 2012 also showed that electricity consumption at the Federal Electricity and Water Authority (FEWA) and the Sharjah Electricity and Water Authority was higher than the production from their stations since 2008, so electricity was provided from Abu Dhabi Water and Electricity Authority: this covered about 60% of the electricity consumed in Sharjah and 82% in FEWA (NBS, 2014).

Moving toward the green concept become a very important factor in that region in reducing energy consumption. If they do so, there will be a less need to increase the generation of energy in the long term. For that reason, the UAE has started to move toward renewable energy and implement green building standards in the main cities for all governmental buildings. The emirate of Abu Dhabi has approved a green building assessment system called "Estidama", based on the Pearl Rating System (PRS), and requires all new buildings to be bound by it (Estidama, 2010).

Dubai represents an economic capital of Emirates, and one of the most important tourist destinations in the world, started to develop the Dubai green
structure by applying “Green Building Regulations & Specifications” to all new governmental buildings during 2011, although it was optional for private buildings until 2014 (Saleh, 2012). The problem of new constructions and their effect on the environment in the UAE will be almost solved within the coming years. However, there is no awareness of the effect of the existing buildings on the environment, and how to solve this problem. This problem is highlighted and discussed in this research.

1.2 Problem Statement

In countries like the UAE, the main concern for all the stakeholders (client and policy makers) is to build their buildings quickly and in an aesthetic way. Thus, most of the existing buildings in the region were designed and built without any consideration of energy efficiency, which could create damage to the environment (Alnaser, 2008).

The energy crisis was expected in the area. Therefore, the UAE increased its energy generation in parallel with the new construction. According to statistics provided by the Dubai Statistical Center, the energy consumption of Emirates increased by 140% from 2003 to 2012 to meet the demand of the buildings (NBS, 2014). Moreover, the Emirates will need to increase their energy supply by 71% to match demand by 2019. That demand will be met if they generate annual energy growth of 5.4% every year (Jones, 2010).

A variety of countries worldwide have already registered to submit their projects using foreign green building standards, including the UAE, which has moved toward using foreign green building standards such as American LEED (Leadership in Energy and Environmental Design) and British BREEAM (Building Research Environmental Assessment Method). These standards were developed based on specific climatic conditions, which are not suitable over wide range of countries (Saunders, 2008).
1.3 Research Aim

The aim of this research is to provide a solution to reduce the impact of the existing buildings on the environment in a hot dry climate by emphasizing the importance of developing local green building standards for the region according to the climatic conditions to encourage energy efficient buildings.

1.4 Research Objectives

In order to study the problem highlighted in section 1.2, this study aims to achieve three objectives:

a) To identify the relative strength of Estidama rating assessment tools in a hot dry climate;

b) To assess a case study building in the UAE with Estidama PRS using the points that have more relative strength in a hot dry climate as identified in objective (a); and

c) To propose and evaluate the retrofitting of the case study building into a more environmental friendly building using Estidama PRS.

1.5 Research Questions

a) What are the main points of Estidama rating assessment tools that have more relative strength in a hot dry climate?

b) How can we implement green building concepts on existing buildings in hot dry areas using the region’s green building standard?

c) What are the possible strategies to retrofit existing buildings into green buildings with minor changes?
1.6 Research Scope and Limitations

The study involves review assessment analysis and simulation assessment. The review is between LEED and Estidama in a hot dry climate to find out the elements of Estidama PRS that are more relevant to that climate. The review is based on information and guidance published by Abu Dhabi Urban Planning Council (AD-UBC) and the United States Green Building Council (USGBC) as well as recent articles and papers. This analysis review each system by giving a general overview of the current versions for existing buildings, and is more focused on the environmental assessment area.

The simulation assessment was done by applying IES-VE software (Integrated Environmental Solution – Virtual Environment) to an existing case study building in the UAE. The case study is part of the Sheikh Humid Al-Naimi building (Block J2) located in Ajman University of Science and Technology (AUST). The assessment will concentrate on the points that are more relevant to hot dry climates from the Estidama rating system, which was concluded from the review assessment. The points are Cool Building Strategy, Daylighting and Water Use Reduction. The simulation was run twice: once for the current situation of the case study building and then a second time for the proposed design of the case study building with minor changes in order to provide suggestions and recommendations. Previous studies have shown that the cost of a green building can be the same as that of a non-green building, since the green building considers life cycle costs, unlike conventional buildings (Bartlett and Howard, 2000; Kats et al., 2003; Kats and Capital, 2003). Therefore, this study does not cover the financial consequences of retrofitting existing buildings into green buildings.
1.7 Significance of the Study

The study reviews, compares and analyses current green building standards practiced in the UAE, to find out how effective Estidama PRS is; not only in the emirate of Abu Dhabi but also in the other emirates in the UAE. The outcome of this study provides researchers and professionals interested in green building development with important information on the effectiveness of retrofitting buildings in hot dry climate, such as that of the UAE.

It helps to expose the climate factors in developing green building standards for the UAE. Moreover, it also encourages the use of the local standard of the emirate of Abu-Dhabi, which is Estidama, to the other emirates, instead of using the American LEED, which was not designed for hot dry climates.

1.8 Thesis Outline

The thesis is divided into five chapters with an introduction at the beginning of each chapter. The first chapter is the introduction to the research showing the problem background in the hot dry zone and especially in the UAE. It then goes on to explain the objectives and questions towards the problem statement, and finally shows the importance of this research. The second chapter provides a literature review which describes green building and its rating tools used to assess green buildings, and the effectiveness of these rating tools in different climates. This chapter is divided into three subsections: the first covers generally green building and the green building movement in addition to the importance of developing green building, the second describes the types of green building assessment tools with more focuses on previous studies that shows the relation between the environmental rating tools and the climate, and the third subsection reviews the green movement in the UAE and the buildings’ requirement in the hot dry climate with an evaluation of LEED and Estidama rating tools, and it also covers the possible retrofitting strategies in the UAE that have been implemented by other researchers.
The methods used to review the two rating systems and select additional points to assess a case study building are explained in detail in Chapter Three. It also discusses the results of the review analysis between LEED and Estidama environmental assessment areas and the selection of the points that are relevant to the hot dry climates. The selection of the case study building and the data collection procedure are presented, in addition to the software selection and validation. The analysis process for assessing a case study building on the selected points is discussed in detail in this chapter.

Chapter Four presents the results, analysis and discussion. It covers the analysis of three selected points; heat gain, daylighting and water use, for the current situation and proposed design, starting with the category of cool building strategies, which focuses on the reduction of the annual external heat gain of the building. This is followed by the analysis of the daylighting effecting on three classrooms in the same building in different directions. Finally, it covers the calculation of the water consumption for the case study building, focusing on interior water use reduction.

The last chapter is Chapter Five, which represents the conclusion of the study and assesses whether or not the final findings have met the research objective. It also sets out recommendations and suggestions for retrofitting an existing building into a green building in a hot dry climate and suggests future work that could be done.
REFERENCES

GBES. (2014). *LEED Principles and LEED Green Associate Study Guide*.

IEA. (2014). WORLD ENERGY INVESTMENT OUTLOOK: IEA International
Energy Agency. (IEA o. Document Number)
IES-VE. (2010). IES-VE user guide: Integrated Environmental Solutions
Jones, S. (2010). UAE needs energy supply growth of 71% to match demand by
2019. Paper presented at the Power and Water Middle East, Leaders forum
2010.
United Arab Emirates.
financial benefits of green buildings. A Report to California’s.
Massachusetts Technology Collaborative Boston, MA.
Khalifa, M. (2009). International report: UAE recorded one of the highest population
growth rates in the region. Retrieved 12 August 2013, from
http://www.albayan.ae/across-the-uae/1241103908511-2009-08-12-1.460513
Eurasia Publishing House.
Kim, C.-S., and Chung, S.-J. (2011). Daylighting simulation as an architectural
design process in museums installed with toplights. Building and
Environment, 46(1), 210-222.
variations to building consen. Retrieved. from.
Lee, W., and Burnett, J. (2008). Benchmarking energy use assessment of HK-
BEAM, BREEAM and LEED. Building and Environment, 43(11), 1882-
1891.
Ma, Z., Cooper, P., Daly, D., and Ledo, L. (2012). Existing building retrofits:
Methodology and state-of-the-art. Energy and Buildings, 55(0), 889-902.
of Design History, 6(3), 149-166.
Retrieved 23/11/2013, from

Shahin, S., and Salem, M. (2014). Four reasons will convince the landscape decision makers to go for indigenous plants in the United Arab Emirates (UAE).

