OPTICAL AND THERMOLUMINESCENCE PROPERTIES OF SAMARIUM OR
DYSPROSIUM DOPED LITHIUM BORATE GLASS

RAGHDA SAIFEDDIN SAID DAWAUD

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Master of Science (Physics)

Faculty of Science
Universiti Teknologi Malaysia

MAY 2015
I dedicate this work

To my dear parents
Saifeddin Said Nazzal
Intisar Mohammad Nazzal
Ina'am Yousef Dawaud

To my lovely husband
Dr. Waheeb Abdel rahman Abu-Ulbeh
 To my kids
 Aon and Azm
Whose love, kindness, patience and prayer have brought me this far

To my siblings
For their endless laughs and tears

To my niece and nephew
Whose presence fills my life with joy

To my friends
For their love, understanding and support through my Endeavour
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, Most Merciful. Praise to Allah S.W.T, Peace and blessings of Allah upon His Messenger, Muhammad S.A.W, and all his family and companions.

I would like to express my deepest thanks and gratitude to my supervisor Dr. Suhairul Hashim UTM-Malaysia, for his keen supervision, initiating and planning this study, great help, and scientific guidance.

Sincere thanks and appreciations to all my friends in the Physics Department who are supported me during my study. Many thanks to all people who helped me in my study, in particular Dr. Yasser Alajermi

Last but not least, special thanks to my husband (Dr. Waheeb), my father (Saifeddin) and my mother (Intesar) who supported me with patience and forbearance, to my kids Aon and Azm, and to my brothers and sisters for their encouragement.
ABSTRACT

Borate glass is widely used in many scientific studies. By using melt-quenching technique ten samples of lithium sodium borate (LNB) doped with different concentrations of samarium oxide (Sm\(_2\)O\(_3\)) and dysprosium oxide (Dy\(_2\)O\(_3\)) were prepared. To investigate the influence of dopant on the optical and physical characteristics of the glass, X-ray Diffraction, DTA, FTIR, UV-vis-Spectroscopy and Photoluminescence analyses were performed. The amorphous nature was confirmed by X-ray diffraction technique. The physical parameters involved are density, molar volume, ion concentration, inter-nuclear distance and Polaron radius. The absorption transitions of Sm\(^{3+}\) start from \(6\)\(H_{5/2}\) with hypersensitive transition at 1221 nm and the Dy\(^{3+}\) starts from \(6\)\(H_{15/2}\) with hypersensitive transition at 1256 nm. The photoluminescence emission spectra of LNB:Sm have been associated with the excitation of 544 nm, 600 nm, 613 nm, 720 nm and 747 nm, and generated at \(4\)\(I_{7/2}\) \(\rightarrow\) \(6\)\(H_{5/2}\) (green color), \(4\)\(I_{7/2}\) \(\rightarrow\) \(6\)\(H_{7/2}\) (orange color), \(4\)\(I_{7/2}\) \(\rightarrow\) \(6\)\(H_{9/2}\) (orange color), \(4\)\(I_{7/2}\) \(\rightarrow\) \(6\)\(H_{11/2}\) (red color) and \(4\)\(I_{7/2}\) \(\rightarrow\) \(6\)\(H_{13/2}\) (red color) respectively. LNB:Dy was due to the transition of Dy\(^{3+}\) at \(4\)\(F_{5/2}\) \(\rightarrow\) \(6\)\(H_{15/2}\) and \(4\)\(F_{5/2}\) \(\rightarrow\) \(6\)\(H_{13/2}\), the photoluminescence studies showed two peaks at 479 nm (blue color) and 587 nm (green color) for all samples except the pure glass sample of lithium sodium borate. The glow curve exhibited a single peak at 164 °C. The results show that the appropriate annealing procedure for dysprosium doped LNB is 300 °C for 30 minutes. Regarding the heating rate optimization, it was found that the appropriate heating rate of the proposed dosimeter is 6 °C. s\(^{-1}\). A linear dose response has been observed for photon (\(R^2= 0.998\)) and electron (\(R^2= 0.977\)) irradiation at 6 MV and 6 MeV, respectively. The glass dosimeter showed higher sensitivity for electron compared to photon response. The proposed TL dosimeter with concentration of 0.7 mol% of Dy\(_2\)O\(_3\) has been observed to be 80 times less sensitive than TLD-100.
ABSTRAK

Kaca borat digunakan secara meluas dalam banyak kajian saintifik. Dengan menggunakan teknik sepuh-lindap, 10 sampel litium natrium borat yang telah didopkan dengan kepekatan oksida samarium (Sm$_2$O$_3$) dan oksida dysprosium (Dy$_2$O$_3$) yang berbeza telah disediakan. Untuk mengkaji kesan pendopan ke atas ciri-ciri optikal dan fizikal kaca, pembelauan sinar-X, DTA, FTIR, Spektroskopi UV-vis dan analisis fotoluminesens (PL) telah dijalankan. Sifat amorfus telah disahkan dengan teknik pembelauan sinar-X. Parameter-parameter fizikal yang terlibat adalah ketumpatan, isipadu molar, kepekatan ion, jarak antara nuklear dan jejari Polaron. Peralihan penyerapan Sm$^{3+}$ bermula dari 6H$_{5/2}$ dengan peralihan hipsensitif pada 1221 nm dan Dy$^{3+}$ bermula dari 6H$_{15/2}$ dengan peralihan hipsensitif pada 1256 nm. Spektrum pancaran fotoluminesens daripada LNB:Sm yang berkaitan dengan pengujaan pada 544 nm, 600 nm, 613 nm, 720 nm dan 747 nm, masing-masing dijanakan pada 4I$_{7/2}$ → 6H$_{5/2}$ (warna hijau), 4I$_{7/2}$ → 6H$_{7/2}$ (warna oren), 4I$_{7/2}$ → 6H$_{9/2}$ (warna oren), 4I$_{7/2}$ → 6H$_{11/2}$ (warna merah) dan 4I$_{7/2}$ → 6H$_{13/2}$ (warna merah). LNB:Dy adalah disebabkan oleh peralihan Dy$^{3+}$ ion pada 4F$_{5/2}$ - 6H$_{15/2}$ dan 4F$_{5/2}$ → 6H$_{13/2}$, kajian fotoluminesens menunjukkan dua puncak pada 479 nm (warna biru) dan 587 nm (warna hijau) untuk semua sampel kaca kecuali sampel tulen litium natrium borat. Lengkung berbara menunjukkan puncak tunggal pada 164°C. Dapatan menunjukkan bahawa prosedur sepuh-lindap yang sesuai untuk LNB didopkan dysprosium ialah 300 °C selama 30 minit. Untuk kadar pemanasan optimum, didapat bahawa kadar pemanasan yang bersesuaian bagi dosimeter adalah 6 °C.s$^{-1}$. Sambutan dos linear terhadap penyinaran foton ($R^2 = 0.998$) dan elektron ($R^2 = 0.977$) masing-masing telah dicapai pada 6 MV dan 6 MeV. Dosimeter kaca ini menunjukkan kepekaan yang lebih tinggi untuk elekron berbanding sambutan foton. Dosimeter Luminesens Terma (TL) yang dicadangkan pada kepekatan 0.7 mol% Dy$_2$O$_3$ telah menunjukkan kepekaan 80 kali lebih rendah berbanding TLD-100.
TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xvi
LIST OF SYMBOLS xviii
LIST OF APPENDICES xix

1 INTRODUCTION 1
1.1 Background 1
1.2 Lithium Borate Glass 2
1.3 Modifiers and Activators 4
 1.3.1 Lithium Carbonate and Sodium Carbonate Modifiers 4
 1.3.2 Samarium Oxide and Dysprosium Oxides Activators 5
1.4 Problem Statement 6
1.5 Objectives 7
1.6 Scope of Study 8
1.7 Organization of Study

2 LITERATURE REVIEW
2.1 Introduction
2.2 General Structure of Glass
2.3 Structure of Lithium Borate
 2.3.1 Borate Glass
 2.3.2 Modifiers Borate Glass
 2.3.2.1 Sodium and Lithium
 2.3.2.2 Glass Properties Improvement
 2.3.3 Structure of Lithium Sodium Borate
 2.3.3.1 Lithium Sodium Borate
 2.3.3.2 Samarium and Dysprosium Oxides
2.4 Optical Properties
2.5 Luminescence Dosimetry
2.6 Thermoluminescence
 2.6.1 Thermoluminescence Dosimeter System
 2.6.1.1 Glow Curve
 2.6.1.2 Annealing
 2.6.1.3 Sensitivity
 2.6.1.4 Dose Response
 2.6.1.5 Heating Rate
2.7 Previous Studies
 2.7.1 Related to Optical Properties of Borate
 2.7.2 Thermoluminescence Properties of Borate

3 MATERIAL AND METHODS
3.1 Introduction
3.2 Sample Preparations
3.3 Sample Characterizations 36
 3.3.1 X-ray Diffraction Analysis 37
 3.3.2 Infrared Spectroscopy 37
3.4 Physical Parameters 37
 3.4.1 Density and Molar Volume 38
 3.4.2 Ion Concentration 38
 3.4.3 Reflection measurement 39
 3.4.4 Oscillator Strengths 40
 3.4.5 Differential Thermal Analysis 41
3.5 Optical Properties 42
 3.5.1 UV-Vis-NIR Measurements 42
 3.5.2 Photoluminescence Measurement 42
3.6 Thermoluminescence Measurement 44
 3.6.1 Preparation the chips for (LNB:Dy,Sm) 44
 3.6.2 TLD-Reader Harshaw 45
 3.6.2.1 Dark Current 46
 3.6.2.2 PMT Nose 47
 3.6.2.3 Background Noise 47
 3.6.3 Exposure to Irradiation 47
 3.6.3.1 University of Malaya Medical Center, Clinical Oncology Unit, KL 48
 3.6.3.2 Photons 48
 3.6.3.3 Electrons 49
 3.6.4 Annealing 50
 3.6.5 Heating Rate 52
 3.6.6 Sensitivity 52

4 RESULTS AND DISCUSSION 54
4.1 Introduction 54
 Part A: Li$_2$CO$_3$ – B$_2$O$_3$ – Na$_2$CO$_3$ doped Sm$_2$O$_3$ 55
4.2 X-Ray Diffraction Analysis 55
4.3 Physical Parameters 57
4.4 DTA Analysis 60
4.5 FTIR Analysis 62
4.6 UV-vis-Absorption Spectra 63
4.7 Energy Band Gap 68
4.8 Photoluminescence Spectra 72
4.9 TL Glow Curve 75

Part B : Li$_2$CO$_3$ – B$_2$O$_3$ – Na$_2$CO$_3$ doped Dy$_2$O$_3$ 77
4.2 X-Ray Diffraction Analysis 77
4.3 Physical Parameters 79
4.4 FTIR Analysis 81
4.5 UV-vis-Absorption Spectra 83
4.6 Energy Band Gap 87
4.7 Photoluminescence Spectra 92
4.8 TL Glow Curve 95
4.9 Golden Card 96
4.10 Annealing 98
4.11 Heating-Rate Effect 101
4.12 Linearity 103
4.13 TL – Sensitivity 107

5 CONCLUSION 109
5.1 Introduction 109
5.2 Recommendation and Future Studies 112

REFERENCES 114
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE No.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Raw materials employed in the concentration of each chemical.</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical parameters calculated for LNB doped with Sm$^{3+}$ ions.</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>DTA studies of LNB with different dopants concentrations.</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>The variation between the transition levels and their oscillator strengths of Sm$^{3+}$.</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Optical parameters calculated for LNB doped with Sm$^{3+}$ ions.</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Physical parameters calculated for LNB doped with Dy$^{3+}$ ions.</td>
<td>79</td>
</tr>
<tr>
<td>4.6</td>
<td>The variation between the transition levels and their oscillator strengths of Dy$^{3+}$.</td>
<td>87</td>
</tr>
<tr>
<td>4.7</td>
<td>Optical parameters calculated for LNB doped with Dy$^{3+}$ ions.</td>
<td>91</td>
</tr>
<tr>
<td>4.8</td>
<td>TLD yield obtained after photon irradiation for LNB:Dy.</td>
<td>105</td>
</tr>
<tr>
<td>4.9</td>
<td>TLD yield obtained after electron irradiation for LNB:Dy</td>
<td>107</td>
</tr>
<tr>
<td>4.10</td>
<td>The Sensitivity of the proposed dosimeters and TLD-100 using fixed incident energy and different absorbed dose.</td>
<td>108</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Structure of borate glass network (Bekker et al., 2012).</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Scope of study</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Structural groups postulated for borate glasses (Krogh-Moe, 1965).</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>A schematic diagram of structure for lithium sodium borate glass (Bekker et al., 2012).</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>A schematic diagram of TLD reader (Podgorsak, 2005).</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Glow curve of LiF:Mg,Ti measured with a TLD reader (Podgorsak, 2005).</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>The flow chart of LNB:Sm, Dy glass preparation</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>The steps to calculate the oscillator strength</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>The machines performed to characterize and determine the optical properties of the new glasses (a: XRD; b: FTIR; c: UV-Vis spectrometer; d: PL spectroscopy).</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Preparation of sample LNB:Sm and LNB:Dy, a) sample preparation; b) annealing; c) read out process using TLD-reader.</td>
<td>44</td>
</tr>
</tbody>
</table>
3.5 A Harshaw 4500 TL reader belonging to Physics Department, UTM.

3.6 The position of LINAC and solid phantom for irradiation to determine response of doped optical fibre and TLD-100 for various electron energies at 200 MU min$^{-1}$ dose rate.

3.7 A furnace (Harshaws) used to anneal TL materials.

4.1 XRD pattern obtained for Li$_2$CO$_3$-Na$_2$CO$_3$-B$_2$O$_3$ doped with mol% of Sm$_2$O$_3$.

4.2 The glass density with different concentration of Sm$^{3+}$ ions.

4.3 The refractive index with different concentration of Sm$^{3+}$ ions.

4.4 DTA studies of LNB: (A: 0.0 mol % of Sm$_2$O$_3$ and B: 0.3 mol % of Sm$_2$O$_3$).

4.5 IR spectra of Li$_2$CO$_3$-Na$_2$CO$_3$-B$_2$O$_3$ glasses doped Sm$_2$O$_3$ regions from 0.3 - 1.3 mol% indicate by G2 to G6.

4.6 UV-vis-NIR absorption of Li$_2$CO$_3$ – Na$_2$CO$_3$– B$_2$O$_3$ doped with (0.3, 0.5, 0.7, 1.0, 1.3 mol%) Sm$^{3+}$ ions.

4.7 Absorption spectra of Sm$^{3+}$ ions with (0.3 - 1.3 mol%) doped Li$_2$CO$_3$ – Na$_2$CO$_3$– B$_2$O$_3$.

4.8 Indirect Band Gap of Li$_2$CO$_3$ – Na$_2$CO$_3$ – B$_2$O$_3$ doped with Sm$^{3+}$ ions.

4.9 Indirect Band Gap of Li$_2$CO$_3$ – Na$_2$CO$_3$ – B$_2$O$_3$ doped 0.7 mol% of Sm$_2$O$_3$.

4.10 Direct Band Gap of Li$_2$CO$_3$ – Na$_2$CO$_3$ – B$_2$O$_3$ doped with Sm$^{3+}$ ions.

4.11 Direct Band Gap of Li$_2$CO$_3$ – Na$_2$CO$_3$ – B$_2$O$_3$ doped 0.7 mol% of Sm$_2$O$_3$.

4.12 Emission spectra of Li$_2$CO$_3$–Na$_2$CO$_3$–B$_2$O$_3$ doped with (0.3, 0.5, 0.7, 1.0, 1.3 mol%) Sm$^{3+}$ ions, $\lambda_{\text{exitation}}$ is 400nm.

4.13 Emission energy levels diagram of Li$_2$CO$_3$-Na$_2$CO$_3$-B$_2$O$_3$ glass doped Sm$^{3+}$.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>Optimization of LNB:Sm samples.</td>
<td>76</td>
</tr>
<tr>
<td>4.15</td>
<td>XRD pattern obtained for Li₂CO₃–Na₂CO₃–B₂O₃ doped with mol% of Dy₂O₃.</td>
<td>78</td>
</tr>
<tr>
<td>4.16</td>
<td>The glass density with different concentration of Dy³⁺.</td>
<td>80</td>
</tr>
<tr>
<td>4.17</td>
<td>The refractive index with different concentration of Dy³⁺ ions.</td>
<td>81</td>
</tr>
<tr>
<td>4.18</td>
<td>IR spectra of Li₂CO₃–Na₂CO₃–B₂O₃ glasses doped (1) 0.3, (2) 0.5, (3) 0.7, (4) 1.0, (5) 1.3 mol% of Dy₂O₃.</td>
<td>82</td>
</tr>
<tr>
<td>4.19</td>
<td>UV-vis-NIR absorption of Li₂CO₃–Na₂CO₃–B₂O₃ doped with (0.3, 0.5, 0.7, 1.0, 1.3) mol% of Dy₂O₃.</td>
<td>84</td>
</tr>
<tr>
<td>4.20</td>
<td>Absorption spectra of Dy³⁺ ions with (0.3 - 1.3 mol%) doped Li₂CO₃–Na₂CO₃–B₂O₃.</td>
<td>85</td>
</tr>
<tr>
<td>4.21</td>
<td>Indirect Band Gap of Li₂CO₃–Na₂CO₃–B₂O₃ doped with Dy³⁺</td>
<td>88</td>
</tr>
<tr>
<td>4.22</td>
<td>Indirect Band Gap of Li₂CO₃–Na₂CO₃–B₂O₃ doped 0.5 mol% of Dy₂O₃.</td>
<td>89</td>
</tr>
<tr>
<td>4.23</td>
<td>Direct Band Gap of Li₂CO₃–Na₂CO₃–B₂O₃ doped with Dy³⁺</td>
<td>90</td>
</tr>
<tr>
<td>4.24</td>
<td>Direct Band Gap of Li₂CO₃–Na₂CO₃–B₂O₃ doped 0.5 mol% of Dy₂O₃.</td>
<td>91</td>
</tr>
<tr>
<td>4.25</td>
<td>Emission spectrum of Li₂CO₃–Na₂CO₃–B₂O₃ doped with (0.3, 0.5, 0.7, 1.0, and 1.3 mol%) Dy³⁺ ions, λ_excitation is 380nm.</td>
<td>92</td>
</tr>
<tr>
<td>4.26</td>
<td>Emission energy levels diagram of Li₂CO₃-Na₂CO₃-B₂O₃ glass doped Dy³⁺.</td>
<td>94</td>
</tr>
<tr>
<td>4.27</td>
<td>Optimization of LNB:Dy samples</td>
<td>95</td>
</tr>
<tr>
<td>4.28</td>
<td>Golden Card of LNB:Dy samples (σ represents the standard deviation)</td>
<td>97</td>
</tr>
<tr>
<td>4.29</td>
<td>The behavior of TL response as a function of the annealing temperature.</td>
<td>99</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.30</td>
<td>The behavior of TL response as a function of the annealing time.</td>
<td>100</td>
</tr>
<tr>
<td>4.31</td>
<td>The effect of heating rate (2, 4, 6, 8 and 10 °C.s⁻¹) on glow Curve of Dy³⁺ doped LNB.</td>
<td>102</td>
</tr>
<tr>
<td>4.32</td>
<td>TL photon response of LNB:Dy versus the doses obtained using linear accelerator.</td>
<td>104</td>
</tr>
<tr>
<td>4.33</td>
<td>TL electron response of LNB:Dy versus the doses obtained using linear accelerator.</td>
<td>106</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOHC</td>
<td>Boron Oxygen Hole Center</td>
</tr>
<tr>
<td>B_2O_3</td>
<td>Boron Oxide</td>
</tr>
<tr>
<td>BOO_3</td>
<td>Trigonal Borate</td>
</tr>
<tr>
<td>BOO_4</td>
<td>Tetrahedral Borate</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential Thermal Analysis</td>
</tr>
<tr>
<td>DyO_3</td>
<td>Dysprosium Oxide</td>
</tr>
<tr>
<td>ECC</td>
<td>Elemental Correlation Coefficient</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width at Half Maximum</td>
</tr>
<tr>
<td>GFA</td>
<td>Glass Former Ability</td>
</tr>
<tr>
<td>GeOO_2</td>
<td>Germanium Dioxide</td>
</tr>
<tr>
<td>IR</td>
<td>Infra-Red</td>
</tr>
<tr>
<td>HH_3BOO_3</td>
<td>Boric Acid</td>
</tr>
<tr>
<td>HC</td>
<td>Hole Center</td>
</tr>
<tr>
<td>LiBO_5</td>
<td>Lithium Triborate</td>
</tr>
<tr>
<td>Li2B_4O_7</td>
<td>Lithium Tetraborate</td>
</tr>
<tr>
<td>LiF</td>
<td>Lithium Fluoride</td>
</tr>
<tr>
<td>Li2CO_3</td>
<td>Lithium Carbonate</td>
</tr>
<tr>
<td>Li2B_4O_7:Mn</td>
<td>Lithium Tetraborate Doped with Manganese</td>
</tr>
<tr>
<td>LET</td>
<td>Linear energy transfer</td>
</tr>
<tr>
<td>LINAC</td>
<td>Linear accelerator</td>
</tr>
<tr>
<td>LNB</td>
<td>Lithium Sodium Borate</td>
</tr>
<tr>
<td>MDD</td>
<td>Minimum Detectable Dose</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>Sodium Oxide</td>
</tr>
<tr>
<td>Na$_2$CO$_3$</td>
<td>Sodium Carbonate</td>
</tr>
<tr>
<td>NBO’s</td>
<td>Non-Bridge Oxygen’s</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>Phosphorus Pentoxide</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>PMT</td>
<td>Photomultiplier Tube</td>
</tr>
<tr>
<td>PMMA</td>
<td>Poly Methyl Metha Crylate</td>
</tr>
<tr>
<td>RCF</td>
<td>Read Calibration Factor</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Silicon Dioxide</td>
</tr>
<tr>
<td>STD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Sm$_2$O$_3$</td>
<td>Samarium Oxide</td>
</tr>
<tr>
<td>SSD</td>
<td>Source Skin Distance</td>
</tr>
<tr>
<td>SSDL</td>
<td>Secondary Standard Dosimeter Lab</td>
</tr>
<tr>
<td>TL</td>
<td>Thermoluminescence</td>
</tr>
<tr>
<td>TSL</td>
<td>Thermally Stimulated Luminescence</td>
</tr>
<tr>
<td>TLD</td>
<td>Thermoluminescence dosimetry</td>
</tr>
<tr>
<td>UMMC</td>
<td>University of Malaya Medical Center</td>
</tr>
<tr>
<td>UTM</td>
<td>University Technology Malaysia</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Visible</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha Particle</td>
</tr>
<tr>
<td>b</td>
<td>Weight of glass sample in the toluence</td>
</tr>
<tr>
<td>c</td>
<td>Speed of light</td>
</tr>
<tr>
<td>D</td>
<td>Distance between atomic layers in a crystal</td>
</tr>
<tr>
<td>e</td>
<td>Charge of electron</td>
</tr>
<tr>
<td>E</td>
<td>Activation Energy for Trapped Electron</td>
</tr>
<tr>
<td>E_g</td>
<td>Optical band gap</td>
</tr>
<tr>
<td>eV</td>
<td>Electron Volt</td>
</tr>
<tr>
<td>f_{esp}</td>
<td>Oscillator strengths</td>
</tr>
<tr>
<td>N</td>
<td>Ion Concentration</td>
</tr>
<tr>
<td>r_i</td>
<td>Inter-nuclear distance</td>
</tr>
<tr>
<td>r_p</td>
<td>Polaron radius</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass Transition</td>
</tr>
<tr>
<td>T_m</td>
<td>Maximum Temperature</td>
</tr>
<tr>
<td>T_c</td>
<td>Crystalline Temperature</td>
</tr>
<tr>
<td>V_m</td>
<td>Molar Volume</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>ν</td>
<td>Frequency</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The quantity needed to prepare glass samples</td>
<td>122</td>
</tr>
<tr>
<td>B</td>
<td>The refractive index of samarium and dysprosium with different concentration</td>
<td>148</td>
</tr>
<tr>
<td>C</td>
<td>The oscillator strength of samarium and dysprosium with different concentration</td>
<td>149</td>
</tr>
<tr>
<td>D</td>
<td>List of Energy Band Gaps</td>
<td>154</td>
</tr>
<tr>
<td>E</td>
<td>List of the Optimization of LNB:Dy samples</td>
<td>174</td>
</tr>
<tr>
<td>F</td>
<td>The standard deviation of Golden Card for the samples</td>
<td>175</td>
</tr>
<tr>
<td>G</td>
<td>Rate of annealing for timing and temperature.</td>
<td>178</td>
</tr>
<tr>
<td>H</td>
<td>Rate of heating rate for samples</td>
<td>180</td>
</tr>
<tr>
<td>I</td>
<td>List of Publications</td>
<td>181</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Glass shows various colors in the visible region due to its optical absorption. In the field of communications and optical switching, glasses have been used widely. Borate and silicate glasses contain boron oxide for optical lenses. Such glasses have high indices of refraction and dispersion characteristics. Absorption and transmission in the visible region are important in optical devices. The aforementioned of three areas can be used to examine the structure of glasses. The structural relationship between density and refractive index was first determined by Fanderlik in 1991.

Addition of alkali oxide \(\text{B}_2\text{O}_3 \) shows different behavior from the corresponding silicate glasses. Cohesive structure in borate glass can be observed due to additions of alkali oxide while shattered network is responded by silicate glass. The structure of borate glass can change by the addition of oxygen. The bond structure becomes more stringent due to three dimensional networks. (Anishia et al., 2010; El-Fayoumi et al., 2009; Gaafar et al., 2009; Joseph et al., 2002 and Ratnakaram et al., 2004).
Characteristic of color center in glasses is associated with the rate of gamma rays irradiation. Defects are produced due to color centers. Boron E Center, silicon E Center, nonbridging oxygen holes centers are the types of color centers. These color centers are defined as HC. BOHC1 and BOHC2 includes; single non-bridging oxygen and HC2 hole trapped on two nonbridging oxygen. Other types include center defect (Pb$^{3+}$) and transition metal center defect (ie, Cu, Zn and Mn); (El-Alaily and Mohamed, 2003).

1.2 Lithium Borate glass

The glass preparation without glass network former like boron requires high temperature to soften it for applications of optical fiber. Several companies suggested that the release of carbon dioxide into the atmosphere requires high energy. Various methods can be followed in order to synthesize pure glasses such as silicon glass (SiO$_2$), boron glass (B$_2$O$_3$), phosphorus glass (P$_2$O$_5$) and germanium glass (GeO$_2$). Borate glass was first introduced in the field of thermoluminescence (Schulman et al., 1965). Lithium carbonate (Li$_2$CO$_3$) and boric acid (H$_3$BO$_3$) were prepared by melt quenching technique for the applications of thermoluminscence. In this present study, the focus is on the glasses formation corresponding to boric acid (West, 1989).

In 1965, lithium borate was introduced by Schulman and his colleagues in the dosimetric world. Host glass was doped with manganese to enhance the TL sensitivity. The mixture was prepared based on the glassy formation at 917 °C and was cooled rapidly. The same mechanism caused formation of crystallized material by subsequent and repeated heating at 650 °C (Schulman et al., 1965). Numerous studies confirmed that lithium borate is cost effective, highly sensitive and more precise than lithium fluoride. In 1974, the thermally stimulated luminescence of borate compounds was used by Kazanskaya. Several attractive properties were remarked such as sensitivity, linearity and low fading (Kazanskaya et al., 1974).
From the literature, it can be summarized that variety of atom groups are formed due to the ability of boron atom to link with either three or four oxygen atoms. The structural change between BO$_3$ and BO$_4$ is occurred as a result of adding metal oxides (as shown in Figure 1.1). It is due to transition stage, low cost and relative stability, high transparency, easy preparation and shape, ionic conductivity (Gaafar et al., 2009; Joseph et al., 2002; Mustafa Alajerami et al., 2012a; Alajerami et al., 2012b and Alajerami et al., 2013b). In addition, glass is a good host of different transition metals and rare earths. Borate is considered a good source in the field of industry and medicine. Borate glasses are very helpful in the field of dosimetry due to its effective atomic number which is very close to human body's tissue. Previous studies confirmed that the effect of alkali and alkaline reduced the hygroscopic property of borate. It is known as alkali borate glasses (Anishia et al., 2010; Alajerami et al., 2013b; Rao et al., 2002; Alajerami et al., 2012a and Balaji Rao et al., 2008).

Figure 1.1: Structure of borate glass network (Bekker et al., 2012).
Figure 1.1 displays the structure of BO\(_4\) with different shape, the structural change between BO\(_3\) and BO\(_4\) is occurred as a result of adding metal oxides. In this study the addition of lithium carbonate affects to change the structure of BO\(_3\).

The increment of alkali oxide as a glass modifier causes an obvious change in the characterizations and luminescence properties of borate glass. Balaji Rao et al., 2008 show two considerable states are already identifies as a results of incorporating alkali and alkaline oxide to the boron host. These states are the trigonal and the tetrahedral states which are greatly attributed to the creation of ionic bond with oxygen atom. The modified borate glasses have an amorphous structure close to the binary borate glasses, and all states have large phonon energy.

1.3 Modifiers and Activators

The efficiency of borate glass needs to examine by using the modifiers and activators, the modifiers as lithium carbonate and sodium carbonate to improvement the luminescence intensity and increase the strengthen glass network. The activators as samarium oxide and dysprosium oxide used to increment the luminescence properties.

1.3.1 Lithium Carbonate and Sodium Carbonate Modifiers

Lithium is one of the most suitable modifiers that used to increase/improve the host strengths (mechanical stability), but the energy level of lithium ion is recorded 10 eV. But energy that more than 10 eV is required and it does not show any effect directly in the luminescence. Although it was an activator during the exposing process.
The addition of lithium ions to the glass mixture creates number of non-bridge oxygen’s (NBO’s). These ionic bonds enhance the network, and strengthen the formation of color-center during the excitation process. Furthermore, the addition of Li$^+$ ions leads to support the formation of borate rings by replacing the two BO$_4$ units with one BO$_4$ unit (Ratnakaram et al., 2006; Alajerami et al., 2012a and Alajerami et al., 2013b).

Sodium with symbol Na [3s1] has a free electron in the outer L-shell. This sequence describes the stability of sodium. The addition of sodium on the borate system leads to enhance the luminescence intensity and strengthen its network after the excitation process (Farouk et al., 1995 and Alajerami et al., 2013b).

1.3.2 Samarium Oxide and Dysprosium Oxide Activators

Samarium (4f6) is one of the transition elements that includes in the lanthanides group. Samarium ions (Sm$^{3+}$) usually found in triply ionized Sm$^{3+}$. It has specific advantages. The uses of Samarium in various optical devices such as storage of high optical density, sea contacts and screens, as well as lasers in the solid state devices. Samarium exhibited relatively high quantum efficiency, and showed different emission cooling where they appear, including emissions shining in the orange/red, emitting 4G$_{5/2}$ level (Ratnakaram et al., 2005; Lakshminarayana and Qiu, 2009; Venkateswarlu et al., 2011; Ratnakaram et al., 2012 and Vijaya et al., 2013). The Sm$^{3+}$ ions is important activator for inorganic lattices such as the emission of reddish orange light to electronic transitions 4G$_{5/2}$, 4G$_{3/2}$, 4I$_{7/2}$ and 4I$_{5/2}$.

Sm$^{3+}$ ions as local structure are utilized in condensed matter due to electric dipole 4G$_{5/2}$ and 6H$_{5/2}$ transition. Hypersensitivity of Sm$^{3+}$ ions increases due to reduction in the intensity of luminescence. Although previous researcher have been paid less attention on samarium glasses from other lanthanides.
Dy\(^{3+}\) (4f\(^9\)) ion is one of the best ions in lanthanides group. It plays a great role in the luminescence behaviour and glass configuration. In the visible and NIR regions, the analysis of luminescence of Dy\(^{3+}\) ions from the \(^4\)F\(_{9/2}\) level is very interesting. Previous studies showed difficulties to interpret the spectra of dysprosium (Karunakaran et al., 2010 and Venkateswarlu et al., 2011). These barriers attributed to the approach of a large number of energy levels laying to each other, and the electronic structure of complex configuration of 4f\(^9\) that has limited attention paid to the emission of visible source state \(^4\)F\(_{9/2}\) (Jayasankar et al., 2004 and Lakshminarayana et al., 2008).

The proper selection of the host to facilitate the extraction of the primary colors of yellow transition \(^4\)F\(_{9/2}\) - \(^6\)H\(_{13/2}\) and blue transmission of \(^4\)F\(_{9/2}\) - \(^6\)H\(_{15/2}\) from Dy\(^{3+}\) ions. Although a number of spectral studies on Dy\(^{3+}\) ion doped materials is performed. A systematic analysis of the thermal behaviour of the optical and structural Dy\(^{3+}\) based anaesthetic borate glasses by changing the alkali element has not been published.

The attracted optical properties of Dy\(^{3+}\) ions in solid-state laser increased the optical up transformation emission. Several studies have been reported to identify the emission of Dy\(^{3+}\) doped crystals and glasses (Lakshminarayana et al., 2008 and Rajesh et al., 2012). All these studies recommended the performing of dysprosium oxide as activator to enhance the luminescence.

1.4 Problem Statement

The first TL material based on lithium borate which was introduced in dosimetry was Li\(_2\)B\(_4\)O\(_7\):Mn. Li\(_2\)B\(_4\)O\(_7\):Mn phosphor with low TL sensitivity caused partly by the emission in the 600 nm region. The borate glass has many advantages: low cost, high ionic conductivity, low melting point, high transparency, high thermal stability, however it has some disadvantages such as formation of crystal.
Generally, there are some specific features that should fulfill with the proposed composition to be used as dosimeter i.e. shapes of the glow curve, effective atomic number, linearity, sensitivity. Some of drawbacks are appeared by using the conventional dosimeter TLD-100 (LiF:Mg,Ti). It can be summarize that the disadvantages for TLD-100 (LiF:Mg,Ti) are due to annealing complexity, dose response linearity, and the energy response.

Several studies have been carried to examine the efficiency of lithium borate with different activators (Rare earths or transition metals) to improve the dosimetric properties (Furetta et al., 2000; Prokic, 2002; Sangeeta and Sabharwal, 2004) and glass preparation (Pontuschka et al., 2001; Venkateswara et al., 2002; Rojas et al., 2006).

In the present study we attempt to prepare new dosimeter by using borate glass modified with lithium carbonate and sodium carbonate and activated by samarium and dysprosium oxides.

1.5 Objectives

The objectives of this study are:

I. To fabricate new glass composition of lithium sodium borate glass undoped and doped with different concentration of samarium and dysprosium.

II. To determine the optical and the thermoluminescence properties of the doped and undoped lithium sodium borate glass with different concentration of samarium and dysprosium samples.
III. To investigate relationship between the optical and thermoluminescence properties of the doped and undoped lithium sodium borate glass with different concentration of samarium and dysprosium samples.

1.6 Scope of Study

In order to achieve the above mentioned objectives the study will be focused on the following scopes as being summarized in Figure 1.2:

i. Preparation of glass samples from lithium sodium borate doped different concentration of samarium and dysprosium by using melt quenching technique.

ii. The used of X-ray diffraction to identify the amorphous phase.

iii. The used of UV-vis-NIR spectroscopy to investigate the absorption properties of the obtained glass.

iv. The used of Photoluminescence spectroscopy to determine the excitation and emission spectra of the samples.

v. Irradiation of TL materials in order to investigate the thermoluminescence characteristics
The optical and thermoluminescence Properties of new Borate Glass

Lithium Sodium Borate Glass

Modifiers

Activators

Na₂O and LiO₂

Sm₂O₃

Dy₂O₃

- Improvement of the luminescence intensity.
- Strengthen glass network after the excitation process.
- Increase/improve the host strengths (mechanical stability)

The environment of rare earth ions gives sensitive transition bands, and certain positions of these transitions are more intense than others. This transition is well known as hypersensitive transitions and it obeys the rule $|\Delta S| = 0, |\Delta L| \leq 2, |\Delta J| \leq 2$

Literature review

Research Objectives

Characterization

Optical properties

Thermo luminescence properties

Conclusion

Figure 1.2: Scope of Study
1.7 Organization of study

The thesis is organised to five chapters. Chapter one has the background of borate glass, describes the significant of the proposed samples in term of its optical and thermoluminescence properties. Lithium sodium borate glass doped with samarium and sodium is to introduce a new thermoluminescence material. Three main objectives are listed in this chapter to be accomplished.

In chapter two, general descriptions will be reported regarding the glass structure and lithium sodium borate by using dysprosium and samarium oxide as rare earth activators. The optical and thermoluminescence properties also will be discussed.

In chapter three, the glass preparation process and the methodology used to investigate the optical properties (UV and PL) and physical properties are described in details. The techniques that are being used for the characterization are XRD, FTIR and DTA. The thermoluminescence studies will be carried out using ionizing radiation.

In chapter four, a full analysis and discussion of the optical, physical and TL results are presented.

Finally, chapter five conclude the obtained results and suggests some recommendations for the future studies.
References

Lakshminarayana, G., and Qiu, J. (2009). Photoluminescence Of Pr$^{3+}$, Sm$^{3+}$ And Dy$^{3+}$: SiO$_2$–Al$_2$O$_3$–LiF–GdF$_3$ Glass Ceramics And Sm$^{3+}$, Dy$^{3+}$: GeO$_2$–B$_2$O$_3$–ZnO–LaF$_3$ Glasses. *Physica B Condensed Matter*, 404, 1169-1180.

Ramasamy, V.V.; Anishia, S. R.; Jose, M. T.; Ponnusamy, V.V. (2011). Synthesis And TL Emission Properties Of RE$^{3+}$ (Tm, Tb, Ce, Gd And Dy) Doped Lithium Based Alkaline (Ca, Mg) Earth Metal Borates. Archives of Physics Research, 2 (2), 1-8.

