CATALYST PACK FOR HYDROGEN PEROXIDE MONOPROPELLANT THRUSTER

KHAFRI IZUAN BIN KHANAFIAH

A thesis submitted in fulfilment of the requirement for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

FEBRUARI 2014
To my beloved mother and father
ACKNOWLEDGEMENT

In preparing this thesis, I have been contacting with so many people, researchers, academicians, technicians and other practitioners. All of them have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Professor Subramaniam Krishnan for helping and giving me support, guidance, and critics whenever I needed in order to finish this under graduate project. I am also thankful to my undergraduate project seminar panels Professor Wan Khairuddin Wan Ali, Professor Mohammad Nazri Mohd Jaafar and Professor Shuhaimi Mansor for guiding me towards the completion of my project with their critics, advices, motivation and support. Without them, this project will have a lot of overseen flaws.

I am also indebted to a Research Student Grant (RSG) scheme for funding my Master's study. Without their support, I will not be able to pursue my study in this university. I am also indebted to CICT which has provided good internet facilities in my college. With this facility, I am able to find a lot of information for my research.

My words of appreciation also go to all my friends who have helped me a lot and lent me their vehicles. I will not forget all of your deeds to me. Last but not least, I would like to send my gratitude to my beloved father who gave me strength to pursue this study and gave me guidance along the way when I am here in UTM.
ABSTRACT

Silver is one of the common materials used to decompose hydrogen peroxide but it is heavy and does not last very long while manganese catalyst seems to be lighter and lasts longer, giving it the potential to replace silver. Unfortunately, this is yet to be tested. The configuration to produce 100 N thrust by using silver catalyst needs to be determined, and the feasibility of using manganese calcinated on alumina needs to be verified. With theoretical calculation and several trial and error experiments by varying the catalyst pack compaction pressure, injector and nozzle diameters, catalyst pack heating temperature and propellant tank feeding pressure for silver catalyst, the configuration to produce 100 N thrust has been obtained. For manganese catalyst, assorted combinations of alumina sizes and types were tested to be the catalyst carrier. The method of calcination was also developed in order to get the highest amount of manganese deposited and it was found that Sasol γ-alumina spheres with a diameter of 2.4 mm produce the highest amount of manganese deposition with an average of 42% after three calcinations using potassium permanganate as the precursor solution. This was followed by experimental work which found that the usage of manganese calcinated on the alumina cannot cope with high pressure in the thruster and tends to break into small pieces and wash out of the thruster. Silver configuration for producing 100 N thrust has been obtained in this research. Also, it was found that it is not feasible to use manganese with the method described in this work.
ABSTRAK

Perak adalah salah satu bahan yang biasa digunakan untuk menguraikan hidrogen peroksida akan tetapi ia berat dan tidak kekal lama manakala pemangkin mangan pula adalah lebih ringan dan tahan lebih lama, memberikan ia potensi untuk menggantikan perak. Walau bagaimanapun, ini masih belum diuji. Konfigurasi untuk menghasilkan daya tujah 100 N dengan menggunakan pemangkin perak perlu ditentukan, dan kesesuaian menggunakan mangan yang dikalsinkan pada alumina sebagai pengganti perak perlu disahkan. Melalui pengiraan secara teori dan beberapa ujikaji menggunakan kaedah cuba jaya dengan mengubah tekanan pemadatan pek pemangkin, diameter lubang penyuntik dan nozel, suhu pemanasan pek pemangkin dan tekanan suapan tangki bahan pendorong pemangkin perak, konfigurasi untuk menghasilkan daya tujah 100 N telah diperolehi. Untuk pemangkin mangan pula, pelbagai kombinasi saiz dan jenis alumina diuji untuk menjadi pengangkut pemangkin. Kaedah pengkalsinan juga telah dibangunkan untuk mendapatkan jumlah tertinggi mangan yang berjaya dimendapkan dan didapati bahawa sfera γ-alumina Sasol dengan garis pusat 2.4 mm menghasilkan jumlah tertinggi mendapan mangan dengan purata sebanyak 42% selepas tiga kali pengkalsinan menggunakan kalium permanganan sebagai larutan pendahulu. Ini diikuti dengan uji kaji yang mendapati bahawa penggunaan mangan yang dikalsinkan pada alumina ini tidak dapat menampung tekanan tinggi di dalam pendorong dan cenderung untuk pecah menjadi kepingan kecil dan terkeluar daripada pendorong itu. Konfigurasi perak untuk menghasilkan daya tujah 100 N telah berjaya diperolehi dalam kajian ini. Juga, didapati bahawa adalah tidak sesuai mangan digunakan dengan kaedah yang diperihalkan dalam kajian ini.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Title page</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Declaration of originality and exclusiveness</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Abstract (English)</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Abstrak (Bahasa Melayu)</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>Table of contents</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>List of tables</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>List of figures</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>List of symbols</td>
<td>xiv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Statement of the Problem</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 Objective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4 Scope of Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.5 Outline of Thesis</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MONOPROPELLANT THRUSTER</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.1 History of Rockets</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.2 Rocket Fundamentals</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.3 Thrust</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.4 History of Hydrogen Peroxide Propulsion</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.5 Propellant</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.6 Monopropellant</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.7 Hydrogen Peroxide (H₂O₂)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.7.1 Structure and Properties</td>
<td>13</td>
</tr>
</tbody>
</table>
2.7.2 Reactions 14
2.7.3 \text{H}_2\text{O}_2\text{ Advantages} 16
2.7.4 \text{H}_2\text{O}_2\text{ Characteristic} 17
2.8 Catalyst 19
2.8.1 Types of catalyst 19
2.8.2 Hydrogen peroxide catalyst 20
2.9 Alumina 21

3 METHODOLOGY 23
3.1 Introduction 23
3.2 Experimental Procedure 24
3.3 Thruster 25
3.4 Catalyst Pack Preparation 25
3.4.1 Silver Catalyst 26
3.4.2 Ceramic Catalyst 27
3.4.3 Test Facility 28
3.5 Rocket Performance Calculation 32
3.5.1 Corrected Pressure Plot 32
3.5.2 Estimation of Vacuum Specific Impulse 34
3.5.3 Estimation of Vacuum Thrust 36
3.5.4 Performance Calculation after Burnout 38
3.5.5 Catalyst Pack Pressure Drop and Mass Flux Calculation 41
3.6 Testing 43
3.6.1 Operating Test Rig Procedure 43
3.7 Types of Testing 45
3.7.1 Nitrogen Testing 45
3.7.2 Nitrogen and Water Testing 45

4 THRUSTER DESIGN AND FABRICATION 47
4.1 Introduction 47
4.2 Thruster Design and Fabrication 47
4.2.1 Design Calculation 50
4.2.2 Program 53
4.2.3 Output 54
4.3 Drawings 56
4.4 Fabrication 67
4.5 Finished Product 68

5 RESULTS AND DISCUSSION 71
5.1 Test Runs for Silver catalyst 71
5.2 Calcination Trials for Ceramic catalyst 79
5.3 Test Runs for Ceramic catalyst 80

6 CONCLUSION AND RECOMMENDATION 83
6.1 Conclusions 83
6.2 100N thruster using silver catalyst 83
6.3 Ceramic based catalyst 84
6.4 Recommendations 85

REFERENCES 86
APPENDIX 91
Appendix A – Fortran Programming 91
Appendix B – Hot Test Results of 100N H2O2 95
Monopropellant Thruster Adopting Silver Catalyst Pack
Appendix C – Sasol Alumina MSDS 107
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of oxidation potential of different oxidant</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Uses of Alumina</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>The output values of the program after calculation by using FORTRAN programming</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Designed and actual dimensions of nozzle diameter together with calculated nozzle throat area ratio</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Procedure of preparing calcinated ceramic catalyst using potassium permanganate as a precursor</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Types of ceramic samples with its manufacturer</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>The output values of the program after calculation by using FORTRAN Programming</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of calculated crucial thruster dimensions</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of test runs</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of test results for series I using H$_2$O$_2$ of concentration of 0.88, injector orifice diameter of 0.914mm, and nozzle throat diameter of 10.007</td>
<td>72</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of test results for series II using H$_2$O$_2$ of concentration of 0.90, injector orifice diameter of 1.215mm, and nozzle throat diameter of 10.007</td>
<td>72</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of test results for series III using H$_2$O$_2$ of concentration of 0.90, injector orifice diameter of 1.898mm, and nozzle throat diameter of 6.789</td>
<td>73</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary of calcination trial on several types of alumina</td>
<td>79</td>
</tr>
</tbody>
</table>
5.6 Summary of all the tests using ceramic based catalysts 81
5.7 Summary of successful tests using catalyst pack containing Sasol alumina pellets 82
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pressure balance on chamber and nozzle interior walls</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Molecular Structure of H_2O_2 in gas and solid state</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Circular mesh of 20 x 20 silver mesh</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Rocket thruster test facility</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram of rocket thruster test facility</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Control panel that will be used to control the test facilities at a safe distance</td>
<td>31</td>
</tr>
<tr>
<td>3.5</td>
<td>Typical record of test through LABView software</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Derivatives of injection pressure and nozzle entry pressure</td>
<td>33</td>
</tr>
<tr>
<td>3.7</td>
<td>Plot of corrected absolute pressure</td>
<td>34</td>
</tr>
<tr>
<td>3.8</td>
<td>Example of a complete profile of thrust and mass flow rate from start until burnout</td>
<td>41</td>
</tr>
<tr>
<td>3.9</td>
<td>Example of mass flux and pressure drop across catalyst pack versus time</td>
<td>42</td>
</tr>
<tr>
<td>3.10</td>
<td>Example of mass flux versus pressure drop across catalyst pack graph</td>
<td>43</td>
</tr>
<tr>
<td>3.11</td>
<td>Summary of methodology</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>100N thruster assembly drawing</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Cross section of the 100N thruster with labels drawing.</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>100N thruster injector with cross section drawing</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>100N thruster body details drawing</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>100N thruster nozzle details drawing</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>100N thruster nozzle holder details drawing</td>
<td>62</td>
</tr>
<tr>
<td>4.7</td>
<td>Injector distribution plate details drawing</td>
<td>63</td>
</tr>
<tr>
<td>4.8</td>
<td>Nozzle distribution plate details drawing</td>
<td>64</td>
</tr>
</tbody>
</table>
4.9 100N thruster body with 105mm combustion chamber details drawing 65
4.10 100N thruster body with 155mm combustion chamber details drawing 66
4.11 An illustration of a 100N thruster assembly 68
4.12 Complete 100N thruster after fabrication with labels 68
4.13 Finish product after fabrication 69
5.1 Time differentials of injection pressure \(\frac{dP_i}{dt}\) and nozzle entry pressure \(\frac{dP_4}{dt}\) versus time 75
5.2 Corrected pressures versus time 75
5.3 Calculated thrusts and propellant flow rates versus time 76
5.4 Pressure drop across catalyst pack for two compaction pressures \(P_{cp}\). 76
5.5 Variation of \(\eta^*\) with respect to that \(\frac{T_{cp} \sqrt{\Delta P_{in}}}{\Phi d_i}\). 78
5.6 Variation of ignition delay with respect to \(\frac{T_{cp} \sqrt{\Delta P_{in}}}{\Phi d_i}\). 78
5.7 Time differentials of injection pressure and nozzle entry pressure versus time for first test, Table 5.7 82
5.8 Measured pressure traces versus time for the test 1, Table 5.7. 82
5.9 Calculated thrusts and mass flow rates versus time for test 1 from Table 5.7. 82
5.10 Time differentials of injection pressure and nozzle entry pressure versus time for successful test 2 from Table 5.7 82
5.11 Measured pressure traces of test 2 from Table 5.7 82
5.12 Calculated thrusts and mass flow rates versus time for test 2, from Table 5.7 82
LIST OF SYMBOLS

\[A_{CP} = \text{Cross sectional area of catalyst pack} \]
\[A_e = \text{Nozzle exit area} \]
\[c_d = \text{Coefficient of discharge for the injector orifice} \]
\[c_{exp}^* = \text{Experimental characteristic velocity} \]
\[c_{theo}^* = \text{Theoretical characteristic velocity} \]
\[C_F^0 = \text{Characteristic thrust coefficient} \]
\[C_{F,sl-exp} = \text{Experimental sea level thrust coefficient} \]
\[C_{F,sl-theo} = \text{Theoretical sea level thrust coefficient} \]
\[d_i = \text{Injector orifice diameter} \]
\[D_{CP} = \text{Catalyst pack diameter} \]
\[D_e = \text{Nozzle exit plane diameter} \]
\[D_t = \text{Nozzle throat diameter} \]
\[F = \text{Thrust} \]
\[I_{sp,sl-exp} = \text{Sea level specific impulse} \]
\[L_{CP} = \text{Catalyst pack length} \]
\[\bar{m} = \text{Molar mass of decomposed gas} \]
\(m_p \) = Propellant mass flow rate

\(p_a \) = Ambient pressure at sea level

\(p_e \) = Nozzle exit plane pressure

\(P_{0CP} \) = Catalyst pack entry pressure

\(p_{0i} \) = Injection pressure

\(P_{0n} \) = Nozzle entry stagnation pressure

\(p_{0hp_f} \) = High pressure tank final pressure

\(p_{0hp_i} \) = High pressure tank initial pressure

\(p_{0pt} \) = Propellant tank pressure

\(R_u \) = Universal gas constant, 8314.3 J/kmol-K

\(T_{0ad} \) = Adiabatic flame temperature

\(T_{0n} \) = Nozzle entry stagnation temperature

\(V_{hpt} \) = High pressure tank volume

\(V_{pt} \) = Propellant tank volume

\(\gamma \) = Ratio of specific heats for the neutral gas in the high pressure tank

\(\varepsilon \) = Nozzle area ratio, \(A_e/A_t \)

\(\Delta p_{CP} \) = Catalyst pack pressure drop

\(\Delta p_i \) = Injector pressure drop

\(\Delta p_{oo} \) = On/off valve pressure drop

\(\Delta p_{PR} \) = Minimum pressure difference across pressure regulator
\(\Delta t_F \) = Thrusting time

\(\Delta t_{rt} \) = Residence time in catalyst pack

\(\eta_c^* \) = \(c^* \) efficiency

\(\eta_{CF} \) = \(C_F \) efficiency

\(\rho_{0n} \) = Nozzle entry stagnation density

\(\rho_p \) = Propellant density

\(\phi \) = Gas mass flux through the catalyst pack
CHAPTER 1

INTRODUCTION

Liquid rocket propellant system commonly divided into two types which are monopropellant and bipropellant [1]. In a monopropellant rocket system, a single liquid system is used as propellant. The most commonly used monopropellant is hydrazine (N₂H₄) which is highly toxic and very unstable unless handled in solution [1]. While in bipropellant rockets, two types of liquid system are used. The liquids are categorized into two which are the fuel and the oxidizer. The most common combination of bipropellant are monomethylhydrazine (MMH) and nitrogentetroxide (N₂O₄) both of which are highly toxic and unstable [1-2].

The above propellant mixtures require particular propellant handling and prelaunch preparation. Because of the requirement, hydrazines and nitrogen tetroxide have become less attractive fluid while hydrogen peroxide (H₂O₂) seems better as potential alternative [3-7]. Wernimont E. J. [8] stated that the non-toxic chemical which is rocket grade H₂O₂ (concentration greater than 85%) has a natural familiarity to human chemistry thus it is the best wide-ranging solution for space, land, air and sea applications. When choosing H₂O₂ as a monopropellant, the other benefits are the significant cost saving and simplification of health and safety precautions needed throughout the fabrication, storage and handling of the propellants [2].

The cost of manufacturing and preparing the thruster does not scale down proportionally with the thruster size due to the advantages. These advantages have
special relevance to low or medium thruster. The propulsion mechanism was derived from silver meshes that act as a catalyst for the decomposition of H$_2$O$_2$. Since decomposition products are safe, H$_2$O$_2$ monopropellant also can be considered as safe. The reaction equation for the decomposition process is as per equation (1.1):

$$2H_2O_2(l) \xrightarrow{\text{Catalyst}} 2H_2O(l) + O_2(g) + \text{Heat}$$

Equation (1.1) shows that superheated steam and oxygen with heat are released from the decomposition process. It means that no other lethal gas is released to the atmosphere. Based on this fact, concentration up to 90% of the H$_2$O$_2$ rocket grade was prepared. In order to achieve higher specific impulse which can give more thrust, higher concentrations of H$_2$O$_2$ were needed. Unfortunately, silver catalyst cannot withstand the heat generated by the decomposition process while adopting high concentration of H$_2$O$_2$. By introducing alumina coated with manganese oxide, experiments were conducted in order to validate this catalyst for satellite propulsion usage. These ceramic based catalysts are expected to be lighter, cheaper, and of longer life.

1.2 Statement of the problem

For the improved application of hydrogen peroxide in rocket propulsion, major research activities are presently moving towards indentifying suitable catalyst system to decompose hydrogen peroxide. Traditionally screen of pure silver or silver coated nickel or stainless steel have been adopted. Silver based catalysts are heavy and of short life. Furthermore, when the concentration of hydrogen peroxide increases (to realize higher specific impulse), the silver based system cannot withstand high temperatures (>1000K) of the decomposed products of hydrogen peroxide. In searching for suitable alternative catalyst, manganese oxide calcinated on the substrates of alumina, titanium oxide, or cordierite has been shortlisted as the candidates for the catalyst system. These ceramic based catalysts are expected to be
lighter, cheaper, and of longer life. However, detailed characterization of the system has not been reported.

1.3 Objective

1. To determine the sustainability of the conventional silver catalyst in the development of a H₂O₂ monopropellant rocket engine of 100N thrust.
2. To find out the feasibility of using alumina based catalyst in the development of monopropellant thruster.

1.4 Scope of Project

In order to achieve the objectives of the project, several scopes have been adopted. The scopes include using FORTRAN programming to ease the calculation of the parameters needed for the design, designing and fabricating the thruster using the parameters that have been calculated. It also include preparing silver and ceramic catalyst using methods applied by others and developing own method of preparation for ceramic catalyst.

1.5 Outline of Thesis

This thesis consists of six chapters. In this chapter, introduction, objective, statement of problems, scope of this project and summary of works are reviewed. While in Chapter 2, theory and literature reviews on hydrogen peroxide and its catalyst, thruster, micro thruster and its applications from various resources are summarized.

In Chapter 3, the discussion is on the methods of completing this project using hardware and software implementation together with catalyst preparation and
testing procedures. The design process is elaborated in Chapter 4. The entire experimental results and discussion are described in Chapter 5. Lastly, Chapter 6, encompasses conclusion of this project and future work which can be done hence recommended.
REFERENCES

18. H. Riedl and G. Pfleiderer, U.S. Patent 2,158,525 (October 2, 1936 in USA, and October 10, 1935 in Germany) to I. G. Farbenindustrie, Germany
19. Hydrogen Peroxide MSDS

