MICROCONTROLLER BASED RATIO CONTROL FOR ELECTRO-MECHANICAL DUAL ACTING PULLEY CONTINUOUSLY VARIABLE TRANSMISSIONS

ARIES BUDIANTO

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

APRIL 2014
Dedicated to:

My beloved parents:
Slamet Mudjihardjo
Nur Chofifah

My beloved parents in law:
Alm. Sidiek Rochmanto
Sumiati

My beloved wife:
Septi Dwi Jayanti

My brother:
Hendra Kurniawan
ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah the Almighty, the Benevolent, the Most Gracious and the Most Merciful. His blessings and guidance have given me inspiration and strength to prepare, to complete as well as to submit the thesis properly.

I realize that without the help and support of many people around me, this thesis would not have been possible. I would also like to acknowledge Universiti Teknologi Malaysia, Faculty of Mechanical Engineering and Automotive Laboratory for giving me opportunity to use the research facilities.

I also wish to convey my utmost appreciation and gratitude to my research advisors Assoc. Prof. Dr. Kamarul Baharin Tawi and Assoc. Prof. Dr. Mohamed Hussein. Their continuous advice, motivation and assistance throughout this research have significantly encouraged me in achieving my academic goals. Without their sustained supports and interests, this thesis would not have been possible and appeared the same as it is being presented now.

I would like to acknowledge and extend my heartfelt gratitude to the following persons who have contributed their thought, energy and time to make this work possible: all technicians from Automotive Laboratory for their full cooperation in helping me in carrying out all experimental works; all research and student fellows in Drivetrain Research Goup (DRG) – CVT, FKM, UTM, especially DR. Bambang Supriyo, DR. Sugeng Ariyono, Mohd Salman bin Che Kob, Mohd Ezlamy bin Zulkifli, Aishah binti Daraoh, Sugeng Susianto and Radhana Dwi Wibowo who help me in assembling and installing the mechanical and electronic parts of EMDAP CVT test rig.
ABSTRACT

Electro-Mechanical Dual Acting Pulley Continuously Variable Transmission (EMDAP CVT) is a transmission operated by electro-mechanical actuated system. It has a potential to reduce energy consumption where power is only needed during changing of CVT ratio and no additional power is needed to maintain the CVT ratio due to self-lock mechanism design feature of the EMDAP CVT. In this research, simulation of an EMDAP CVT model was first performed in order to evaluate controller system performance using MATLAB/Simulink software package. Then, confirmation of the simulation results is made by experimental data that is being measured from EMDAP CVT test rig. In order to obtain adequate performance, basic Proportional Integral Derivative (PID), Proportional Derivative (PD) and Proportional Derivative with Conditional Integral (PDCI) controller schemes were proposed to control EMDAP CVT ratio. Relay feedback and Ziegler-Nichols methods were utilized to tune the PID based controller parameters. From simulation analysis, the basic PID based controller shows a huge overshoot up to 280% and it takes very long settling time up to 65 seconds. However, this controller generates very small steady state error which is around 0.2%. The PD controller shows better performance where there is no overshoot occurred and faster settling time, i.e. 8 seconds, but steady state error is a bit higher, i.e. 3.2%, than the basic PID based controller. The best performance is predicted by PDCI controller where it shows maximum overshoot at 0.2%, 8 seconds in settling time and steady state error at 0.1%. In the experimental work, only PD and PDCI controller schemes are adopted because of their good control performance in the simulation. It is found that performance of the PD and PDCI controllers in the experiments are quite close to those predicted in the simulation. For the PD controller, experimental results show no overshoot, it takes only 4 seconds in settling time and produces steady state error of 10%. As for the PDCI controller, it shows 1% in maximum overshoot, 8 seconds in settling time and steady state error at 1%. This indicates that the PDCI controller is superior than the PD controller in terms of steady state error and this is confirmed by simulation and experimental results.
ABSTRAK

Takal Dwi Tindakan Elektro-Mekanikal Transmisi Sentiasa Berubah (EMDAP CVT) adalah transmisi yang dikendali oleh sistem penggerak elektro-mekanikal. Ia mempunyai potensi untuk mengurangkan penggunaan tenaga di mana, kuasa hanya diperlukan semasa penukaran nisbah CVT dan tiada kuasa tambahan diperlukan untuk mengekalkan nisbah CVT disebabkan oleh ciri reka bentuk mekanisma terkunci sendiri bagi EMDAP CVT. Dalam kajian ini, kerja-kerja simulasi bagi model EMDAP CVT dilakukan terlebih dahulu bagi menilai prestasi sistem kawalan menggunakan pakej perisian MATLAB/Simulink. Seterusnya, pengesahan keputusan simulasi dibuat melalui keputusan eksperimen yang diperoleh daripada pelantar ujian EMDAP CVT. Dalam usaha untuk mendapatkan prestasi yang mencukupi, skim pengawal asas PID, PD dan PDCI dicadangkan untuk mengawal nisbah EMDAP CVT. Kaedah relay feedback dan Ziegler-Nichols digunakan untuk melaraskan parameter pengawal PID. Daripada analisis simulasi, pengawal asas PID menunjukkan lajakan besar berlaku sehingga 280% dan ia mengambil masa pengenapan yang sangat panjang sehingga 65 saat. Bagaimanapun, pengawal jenis ini hanya menjana ralat keadaan manapun yang sangat kecil iaitu 0.2%. Pengawal PD pula menunjukkan prestasi yang lebih baik dengan tiada lajakan terhasil dan masa pengenapan yang lebih cepat iaitu 8 saat, namun, ralat keadaan mantap adalah sedikit besar iaitu 3.2% daripada pengawal asas PID. Prestasi terbaik diramal oleh pengawal PDCI di mana ia menunjukkan lajakan maksimum pada 0.2%, 8 saat masa pengenapan dan ralat keadaan mantap pada 0.1%. Di dalam kerja-kerja eksperimen, hanya skim pengawalan PD dan PDCI yang digunapakai kerana ia memberikan prestasi kawalan yang baik di dalam simulasi. Didapati bahawa prestasi pengawal PD dan PDCI di dalam eksperimen hampir menyamai apa yang diramal di dalam simulasi. Bagi pengawal PD, keputusan eksperimen menunjukkan tiada lajakan berlaku, ia hanya mengambil 4 saat masa pengenapan dan menghasilkan ralat keadaan mantap sebanyak 10%. Bagi pengawal PDCI, keputusan eksperimen menunjukkan 1% dalam lajakan maksimum, 8 saat masa pemendapan dan ralat keadaan mantap pada 0.1%. Ini menunjukkan bahawa pengawal PDCI adalah lebih baik daripada pengawal PD berdasarkan ralat keadaan mantap dan ini disahkan oleh keputusan simulasi dan eksperimen.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2. Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3. Objectives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4. Research Scopes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.5. Research Methodology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.6. Research Contribution</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.7. Organization of Thesis</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.1. Introduction</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2. Related Works on Controlling EMDAP CVT</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.3. EMDAP CVT</td>
<td>10</td>
</tr>
</tbody>
</table>
2.4. CVT Variator Geometry 11
2.5. Gear Reducer and Power Screw Mechanism 13
2.6. Brushless DC Motor 17
2.7. PID based control Method 18
2.8. PID Parameters Tuning 19
2.9. Summary 21

3 EMDAP CVT RATIO CONTROL SIMULATION 22
3.1. Introduction 22
3.2. EMDAP CVT Model 22
 3.2.1. DC Motor Model 22
 3.2.2. EMDAP CVT Mechanical Model 27
3.3. EMDAP CVT Ratio Controller Model 30
 3.3.1. CVT Ratio Variator Model 30
 3.3.2. Pulley Axial Position Control 32
3.4. EMDAP CVT Ratio Control Strategy 35
 3.4.1. Pulley Axial Movement Control 36
 3.4.2. EMDAP CVT Ratio Control Simulation 40
3.5 Summary 45

4 EXPERIMENTAL WORK OF THE EMDAP CVT RATIO CONTROL 47
4.1. Introduction 47
4.2. Mechanical Parts of EMDAP CVT 47
4.3. Electrical Parts of EMDAP CVT 51
 4.3.1. Brushless DC Motor 52
 4.3.2. Speed Control Unit of Brushless DC Motor 52
 4.3.3. Pulley Minimum Position Sensor 55
 4.3.4. Pulley Position Sensor 56
 4.3.5. Speed Sensor 58
 4.3.6. Power Supply and Interfacing Unit 59
 4.3.7. Microcontroller 60
 4.3.7.1. Analog Input Port 60
 4.3.7.2. Analog Output Port 62
LIST OF TABLE

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Ziegler Nichols formula based on frequency response</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Brushless DC motor parameters based on datasheet</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Brushless DC motor parameters value</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>EMDAP CVT mechanical system dimensions</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Relay feedback parameters value</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>PID based parameters values</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>Primary relay feedback and PID based parameters values</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Secondary relay feedback and PID based parameters values</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>CVT ratio response parameters from under drive to overdrive</td>
<td>45</td>
</tr>
<tr>
<td>3.9</td>
<td>CVT ratio response parameters from overdrive to under drive</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Specification data of brushless DC motor</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Operation mode of brushless DC motor</td>
<td>54</td>
</tr>
<tr>
<td>5.1</td>
<td>Primary relay feedback and PID based parameters value</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>Secondary relay feedback and PID based parameters value</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>CVT ratio response parameters from under drive to overdrive</td>
<td>82</td>
</tr>
<tr>
<td>5.4</td>
<td>CVT ratio response parameters from overdrive to under drive</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>EMDAP CVT Test rig</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Flow Chart of research methodology</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>EMDAP CVT structure</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>CVT ratio types</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Variator geometry diagram</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Relationship between pulley contact radius and axial movement</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Power screw mechanism schematic diagram</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Free body diagram of power screw in clamping condition</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Free body diagram of power screw in release condition</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Equivalent DC motor model</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Relay feedback signal</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>System output oscillation response</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>DC motor block diagram</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>DC motor torque speed curve</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>DC motor SIMULINK model</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Torque speed curve simulation result</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Mechanical block diagram</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Mechanical SIMULINK model</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>EMDAP CVT block diagram</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>EMDAP CVT SIMULINK model</td>
<td>30</td>
</tr>
<tr>
<td>3.9</td>
<td>CVT ratio variator SIMULINK model</td>
<td>32</td>
</tr>
<tr>
<td>3.10</td>
<td>Relationship of CVT ratio, R_p and R_s</td>
<td>33</td>
</tr>
<tr>
<td>3.11</td>
<td>Pulley Axial Position control model</td>
<td>33</td>
</tr>
<tr>
<td>3.12</td>
<td>PID and relay feedback controller model</td>
<td>34</td>
</tr>
<tr>
<td>3.13</td>
<td>R_p to X_p Converter Model</td>
<td>35</td>
</tr>
<tr>
<td>3.14</td>
<td>X_p to R_p Converter Model</td>
<td>35</td>
</tr>
</tbody>
</table>
3.15 EMDAP CVT Ratio Controller Model 36
3.16 Relay Feedback Output Signal 37
3.17 Pulley Axial Movement Response 37
3.18 System Output Response due to PID based controller action 39
3.19 System Output Response due to PD controller action 40
3.20 Integral controller activation scheme 40
3.21 System Output Response due to PDCI controller action 41
3.22 Block Diagram of EMDAP CVT Parameters Tuning 42
3.23 Primary Response of Relay feedback controller 43
3.24 Secondary Response of Relay feedback controller 43
3.25 CVT ratio response from under drive to overdrive 44
3.26 CVT ratio response from overdrive to under drive 45
4.1 Worm gear reducer of 30:1 48
4.2 Pinion and helical gears, power screw of EMDAP CVT 48
4.3 Two movable pulley sheaves 49
4.4 Metal V belt connects primary and secondary pulleys 50
4.5 A disc spring behind pulley sheave 50
4.6 Characteristic of disc spring 51
4.7 Brushless DC Motor 52
4.8 Speed controller unit 53
4.9 Schematic diagram of manual speed control unit 53
4.10 Schematic diagram of brushless DC motor automatic speed control unit 54
4.11 Brushless DC motor automatic speed control unit 55
4.12 Schematic diagram of pulley minimum position sensors 55
4.13 Real hardware of pulley minimum position sensor 56
4.14 A 10-turns potentiometer 57
4.15 Pulley position sensor with gear reducers 57
4.16 Schematic diagrams of position sensors 57
4.17 Rotary encoder as position sensors 58
4.18 Frequency to voltage unit 58
4.19 +12 Vdc power supply and interfacing unit 59
4.20 Car battery as +24 Vdc power supply and battery charger 59
4.21 STM32 microcontroller module 60
4.22 Analog Input Blockset 61
4.23 Analog Input Blockset Parameter 61
4.24 (a) Variable resistor (b) Schematic diagram of voltage divider 62
4.25 Analog Output Blockset 63
4.26 Analog Output Blockset Parameter 63
4.27 Dual Operational Amplifier LM 358 64
4.28 Non-inverting mode of operational amplifier 64
4.29 Digital Input Blockset 65
4.30 Digital Input Blockset Parameter 65
4.31 Digital Output Blockset 66
4.32 Digital Output Blockset Parameter 66
4.33 EMDAP CVT Test Rig 67
4.34 Calibration of EMDAP CVT 68
5.1 PID based blockset selector for release or clamping conditions 72
5.2 EMDAP CVT Experimental Block Diagram 74
5.3 EMDAP CVT Experimental SIMULINK Diagram 75
5.4 Primary Relay feedback signal 76
5.5 Secondary Relay feedback signal 76
5.6 Primary Pulley Position Response 76
5.7 Secondary Pulley Position Response 77
5.8 PD controller scheme 78
5.9 PD controller system response 79
5.10 PDCI controller scheme 80
5.11 PDCI controller system response 80
5.12 CVT ratio response from under drive to over drive 81
5.13 CVT ratio response from over drive to under drive 82
LIST OF ABBREVIATIONS

AANN - Adaptive Artificial Neural Network
ADC - Analog to Digital Converter
BLDC - Brushless DC
CVT - Continuously Variable Transmission
DAC - Digital to Analog Converter
DAS - Data Acquisition System
DC - Direct Current
DRG - Drivetrain Research Group
EMDAP - Electro-Mechanical Dual Acting Pulley
I/O - Input/Output
PC - Personal Computer
PD - Proportional-Derivative
PDCI - Proportional-Derivative with Conditional-Integral
PID - Proportional-Integral-Derivative
PMPS - Primary Minimum Position Sensor
PPS - Pulley Position Sensor
RFTM - Relay Feedback Tuning Method
SCU - Speed Controller Unit
SMPS - Secondary Minimum Position Sensor
UTM - Universiti Teknologi Malaysia
VSC - Voltage for Speed Controller
ZN - Ziegler-Nichols
LIST OF SYMBOLS

\[\theta \quad - \quad \text{half the increase in the wrapped angle on the primary pulley} \]
\[\omega_p \quad - \quad \text{angular speed of the primary shaft} \]
\[\omega_s \quad - \quad \text{angular speed of the secondary shaft} \]
\[B \quad - \quad \text{viscous friction coefficient} \]
\[c \quad - \quad \text{pulley center distance} \]
\[d_p \quad - \quad \text{pitch diameter of screw thread} \]
\[F \quad - \quad \text{tangential force of helical gear inner thread} \]
\[F_z \quad - \quad \text{force for clamping or release MPVB} \]
\[I_m \quad - \quad \text{motor current} \]
\[J_m \quad - \quad \text{motor inertia} \]
\[K_e \quad - \quad \text{back EMF constant} \]
\[K_T \quad - \quad \text{torque constant} \]
\[L \quad - \quad \text{pitch length} \]
\[L_m \quad - \quad \text{motor inductance} \]
\[P \quad - \quad \text{thrust bearing force} \]
\[r_{cvt} \quad - \quad \text{CVT ratio.} \]
\[r_{gm} \quad - \quad \text{motor gear ratio} \]
\[R_m \quad - \quad \text{motor resistace} \]
\[R_p \quad - \quad \text{primary running radius} \]
\[R_{p0} \quad - \quad \text{minimum primary running radius} \]
\[R_s \quad - \quad \text{secondary running radius} \]
\[R_{s0} \quad - \quad \text{minimum secondary running radius} \]
\[T_{gr} \quad - \quad \text{gear reducer torque} \]
\[t_{hg} \quad - \quad \text{helical gear teeth number} \]
\[T_{hg} \quad - \quad \text{helical gear torque} \]
\[T_L \quad - \quad \text{load torque} \]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_m</td>
<td>motor torque</td>
</tr>
<tr>
<td>t_p</td>
<td>pinion teeth number</td>
</tr>
<tr>
<td>T_p</td>
<td>pinion gear torque</td>
</tr>
<tr>
<td>T_{psc}</td>
<td>torque of power screw for clamping MPVB</td>
</tr>
<tr>
<td>T_{psr}</td>
<td>torque of power screw for release MPVB</td>
</tr>
<tr>
<td>V_b</td>
<td>back EMF voltage</td>
</tr>
<tr>
<td>V_m</td>
<td>motor voltage</td>
</tr>
<tr>
<td>X_p</td>
<td>primary pulley position</td>
</tr>
<tr>
<td>X_s</td>
<td>secondary pulley position</td>
</tr>
<tr>
<td>a</td>
<td>pulley angle</td>
</tr>
<tr>
<td>μ</td>
<td>friction coefficient</td>
</tr>
<tr>
<td>ω_m</td>
<td>motor angular speed</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Publication</td>
<td>91</td>
</tr>
<tr>
<td>B</td>
<td>Derivation of DC Motor Equations</td>
<td>92</td>
</tr>
<tr>
<td>C</td>
<td>Derivation of CVT ratio Equations</td>
<td>95</td>
</tr>
<tr>
<td>D</td>
<td>EMDAP CVT Calibration data and figures</td>
<td>97</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1. Introduction

In automotive industry, green technology has been widely developed for saving fuel consumption and minimizing gas emission to reduce environment pollution. One of them is development in automotive transmission. There are various technologies in automotive transmission, such as; manual transmission, semi automatic transmission, automatic transmission and continuous variable transmission (CVT). Among the automotive transmission types, CVT has a great advantage in saving fuel consumption because its wide variable ratio coverage characteristic can maintain the engine speed independently under various load condition. Maintaining engine speed means maintaining engine power. Thus, it minimizes the fuel consumption (Wang and Chu, 2009).

Common CVT which widely used in the market is electro-hydraulically actuated type. It needs continuous power to supply force to maintain the desired ratio and preventing gross belt slip. Thus, it can reduce CVT efficiency (Akerhurst et al., 1999). An alternative solution to enable economic fuel consumption is to use electro-mechanical CVT type with single acting pulley system because it only operates during changing the transmission ratio (van de Meerakker et al., 2004). The single acting pulley mechanism used in this system causes misalignment of metal belt. This belt misalignment may reduce the belt life. Another solution is to use Electro-Mechanical Dual Acting Pulley (EMDAP) CVT designed by Drivetrain Research Group of Universiti Teknologi of Malaysia, (DRG UTM). EMDAP CVT utilizes two
DC motors as actuator, power screw mechanism and two moveable sheaves in both primary and secondary pulley (Supriyo, 2011). Two moveable sheaves move identically to keep the belt align in the center, thus, eliminate belt misalignment. Also, this system only operates during the changing of ratio transmission, thus, save fuel consumption. By controlling two DC motors precisely and accurately, desired CVT ratio can be achieved accordingly.

In order to create high efficiency of CVT for automotive application, a precise and accurate control method is also important. A common Proportional, Integral and Derivative (PID) control method has been widely used in industry because of its precision, accuracy, simplicity and robustness (Shen, 2002). PID based parameters can be set independently and its scheme can be arranged according to the need. Thus, parameters of P, I and D are tuned and combined to obtain the optimal performance.

1.2. Problem Statement

The latest research of Electro-Mechanical Dual Acting Pulley CVT was developed by Supriyo (2011). Two DC motors as actuators for primary and secondary pulley have been utilized. Both DC motors are controlled using various control methods, such as Proportional and Derivative (PD), Proportional Derivative with Conditional Integral (PDCI), and Fuzzy-PID which are implemented on PC utilized by MATLAB/SIMULINK software and data acquisition system card to control EMDAP CVT ratio.

As a continuation of EMDAP CVT development, standalone controller device, such as microcontroller, is needed in order to implement EMDAP CVT ratio control in the car. In a car, there may be hundreds of microcontrollers inside it. For example: one to monitor and control automatic fuel injection, one to monitor ABS break system, one to monitor and control cabin temperature and so on. For these intelligent automatic control applications, it is very inefficient to PC due to its big
size and high cost. Therefore, a microcontroller is very important for many automatic control applications. In this research, a microcontroller is proposed as a standalone controller device. By using a microcontroller, EMDAP CVT ratio control can be implemented and integrated in the car.

1.3. Objectives

The main objective of this research is to design and develop a microcontroller based EMDAP CVT ratio controller as standalone controller device. The specific objectives are stated as follows:

i. To design simulation model of EMDAP CVT ratio control using PID based control method for obtaining PID based combination and parameters tuning based on relay feedback and Ziegler-Nichols methods.

ii. To design electronic hardware for EMDAP CVT experiment rig to test the effectiveness of EMDAP CVT ratio control.

1.4. Research Scope

The scopes of the research are stated as follows:

i. Simulation of EMDAP CVT is build based on mathematical models of mechanical system, brushless DC motor and PID.

ii. Simulation is carried out using MATLAB/SIMULINK software.

iii. Experimental work is carried out using existing EMDAP CVT test rig, developed by DRG UTM, as shown in Figure 1.1.

iv. Experimental work is carried out without applying external load on output shaft.

v. Microcontroller module used in this research is Aimagin Rapid STM32 board, which can be operated standalone or online with PC using MATLAB/SIMULINK software.
vi. Characteristic of EMDAP CVT ratio control simulation result is adopted as reference for conducting experimental work, especially on PID based control performance.

vii. For the purpose of testing, various EMDAP CVT ratio inputs are set from under drive to over drive in the range of 3.0–2.5; 2.5–2.0; 2.0–1.5; 1.5–1.0; 1.0–0.8 and also from overdrive to under drive in the range of 0.8–1.0; 1.0–1.5; 1.5–2.0; 2.0–2.5; 2.5–3.0.

1.5. Research Methodology

This research covers simulation and experimental works of EMDAP CVT ratio control. The simulation consists of EMDAP CVT modeling, obtaining appropriate PID based control scheme and its parameters tuning. While the experimental work deals with microcontroller programming, sensor calibration, setting and running the test rig and data recording. Flow chart of research methodology is shown in Figure 1.2.
Research methodology is described as follows:

i. Literature reviews consist of metal pushing V belt, basic principle of CVT, basic principle of EMDAP CVT, PID based control method, relay feedback method, DC motor, gear reducer and power screw mechanism.

Figure 1.2 Flow Chart of Research Methodology

ii. EMDAP CVT modeling is designed for the purpose of simulation. This model consists of DC motor, gear reducer and power screw mechanism based on basic equations of DC motor, gear reducer and power screw mechanism. For modeling DC motor, basic equations of dc motor equivalent circuit and parameters stated on datasheet are used. Its torque-speed performance is validated with torque-speed curve stated on datasheet. Gear reducer acts as speed reducer and torque multiplier. It is modeled as a gain block. For modeling power screw mechanism,
basic equations of power screw are used. It acts as a converter of rotational movement into linear movement.

iii. PID based controller model is designed based on PID based controller equations. For PID based parameter tuning, Ziegler Nichols and relay feedback methods are used. Parallel PID based controller scheme is designed in order to independently modify PID based parameter tuning.

iv. To perform CVT ratio controller simulation, both EMDAP CVT and PID based controller models are combined resulting closed loop system. This closed loop system is simulated using MATLAB and SIMULINK software. The performances of the CVT ratio control system are recorded and analyzed. Modification of PID based controller is carried out to obtain the best result.

v. Once the best simulation result has been obtained, a PID based control algorithm and its parameter values are adopted as pattern reference for programming microcontroller.

vi. Electronic hardware consists of potentiometer as position sensor, rotary encoder as speed sensor, brushless DC motor and its speed driver as actuator and Aimagin Rapid STM32 microcontroller module as controller device.

vii. The existing EMDAP CVT test rig enables to vary the CVT ratio from 0.6 up to 3.0. It consists of mechanical and electrical parts. The mechanical parts consist of electric motor which is used to drive the primary pulley shaft, gear reducer which has ratio 30:1, pinion gear which has 14 gear teeth, helical gear which has 60 gear teeth, power screw which has rotation to linear converter ratio 2 mm/rotation and axial range 0 up to 10 mm, dual moveable pulleys on every shaft and a metal pushing V belt. Once all the components are assembled, calibration of power screw movement, related to speed and position sensors values reading, is carried out in order to achieve accurate parameter values.

viii. The experiment work is carried out using existing EMDAP CVT test rig, EMDAP CVT ratio controller system based on microcontroller, sensors and signal conditioners. Just for monitoring and recording data,
the system have to be set in online mode, thus, PC utilized by MATLAB and SIMULINK software is used during the experiment.

i. Various step inputs are applied to test the EMDAP CVT ratio changing of six steps ratio, namely: 3.0 to 2.5, 2.5 to 2.0, 2.0 to 1.5, 1.5 to 1.0, 1.0 to 0.8 and 0.8 to 0.6.

x. Experimental results, in term of settling time, error steady state and maximum overshoot, are recorded, analyzed and discussed.

1.6. Research Contribution

The main research contribution is to bring an implementation opportunity of EMDAP CVT ratio control in the car. Whereas regarding EMDAP CVT simulation, it enables to tune PID based control scheme to obtain a good EMDAP CVT ratio control performance before implementing on EMDAP CVT test rig. So, experimental work can be carried out safely.

1.7. Organization of Thesis

This thesis consists of 6 chapters. In chapter 1, the background, problem statement, research objectives, research scope, methodology and research contribution are outlined. Chapter 2 describes literature reviews. Previews works of controlling CVT ratio, latest work of EMDAP CVT ratio, basic principle of EMDAP CVT, PID based control method, including relay feedback and Ziegler-Nichols formula, and Aimagin Rapid STM32 microcontroller module are outlined.

Chapter 3 presents simulation of EMDAP CVT ratio control. Building EMDAP CVT model is started with creating brushless DC motor model, then, simulating brushless DC motor torque and speed performance compared to brushless DC motor datasheet. Next step is to build mechanical model of EMDAP CVT, which
consists of power screw, pinion gear, helical gear and gear reducer. While PID based control model is build based on its equation, then, it is combined with EMDAP CVT mechanical model to perform EMDAP CVT ratio control simulation.

Chapter 4 describes hardware and software of experimental works. It consists of EMDAP CVT test rig set up, pulley linear movement calibration and setting up parameters of microcontroller module using MATLAB/SIMULINK software integrated with a PC.

In chapter 5, PID based control algorithm is implemented on experimental works of EMDAP CVT ratio control. The real responses of the system are analyzed. Chapter 6 presents conclusion of the works and recommendation for future research.
REFERENCES

