CRASH ANALYSIS OF A RAINFOREST VEHICLE (RFV) UNDER FRONTAL IMPACT LOADING

MOHAMAD SYAUQY AMIN BIN OTHMAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Mechanical Engineering

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

MAY 2014
DEDICATION

To my beloved wife, parents and family
To all my lecturers, for their guidance and encouragement
To all my friends, for their support and sincerity
ACKNOWLEDGEMENT

Praise to All Mighty Allah for giving the opportunity for me to complete my degree and final year project within a certain period of time. Praise also to our prophet Muhammad, peace be upon him and his followers for showing the right path in my entire life.

This thesis has been complied with involvement from many people whom I desire to acknowledge for their dedication. I wish to express my sincere appreciation to my supervisors Dr Zaini Ahmad and Ir Razali Sulaiman for his continuous guidance and motivation. His enormous contribution in the many finer points of thesis writing has helped greatly.

I am also thankful to the sincere panels Assoc. Prof. Dr Nazri Kamsah, Assoc. Prof Dr Amran Alias and all CSM Lab members for their kind encouragement throughout the performance of the work contained in this thesis. It is usual to acknowledge the cooperation and praise the help extended by the concerned lecturer for completing the thesis and for their kind help, useful discussion and encouraging attitude in finishing my Master thesis.

I extend my gratitude to all my friends for their help and contributions from the beginning till the end. A special acknowledgement goes to my parents for their infinite faith, support and love.
ABSTRACT

Rainforest Vehicle (RFV) is defined as an outdoor vehicle that can be used in the rural, military area especially in the forest. This vehicle must have the capability to use in uneven terrain and sloping condition. This thesis presents the crash analysis of a RFV under frontal impact loading. A Finite Element (FE) nonlinear code, LSDYNA software was comprehensively employed to evaluate the crashworthiness performance of the space frame model of the RFV. Experimental testing was conducted on subcomponents to validate the FE model and the analytical analyses from the previous researchers were conducted to compare the results. In addition, the simplified model of the upper rails also validated throughout the quasi static experiment. The validated model was then used to examine three different crash scenarios; impacting rigid wall, 40% offset and rigid pole. The simulation results were used to identify the load path, deceleration and the energy absorption capacity of the main longitudinal component and available crush zone, thus facilitating crashworthiness requirement for future design improvements. The primary outcome of this research is to generate research and design information on the vehicle that will enable further modification and enhancement of the current design for optimizing crashworthiness performance and increasing the levels of safety.
ABSTAK

Kenderaan Rainforest (RFV) ditakrifkan sebagai kenderaan luar yang boleh digunakan di luar bandar, kawasan tentera terutama di dalam hutan. Kenderaan ini mesti mempunyai keupayaan untuk menggunakan di kawasan tidak sekata dan keadaan cerun. Tesis ini membentangkan analisa pelanggaran sebuah RFV berdasarkan pelanggaran hadapan. Perisian LSDYNA, yang menggunakan kaedah unsur tak terhingga yang tak linear digunakan secara menyeluruh untuk menilai kemampuan pelanggaran rangka kenderaan (RFV). Kaedah eksperimen dilakukan pada sebahagian tempat pada kenderaan untuk mengesahkan kaedah unsur tak terhingga (FE) dan kaedah analisa pengiraan daripada penyelidik yang lalu dilakukan untuk membandingkan hasil yang diperoleh. Di samping itu, sebuah model landasan atas yang dipermudahkan juga disahkan di seluruh eksperimen separa statik Model yang telah disahkan, digunakan untuk menganalisa tiga jenis pelanggaran yang berbeza iaitu: pelanggaran kekal, 40 peratus perubahan pelanggaran kekal dan tiang kekal. Keputusan simulasi digunakan bagi mengenal pasti laluan bebanan, nyah pecutan dan tenaga resapan pada sesetengah bahagian utama yang membujiur dan zon kehancuran yang masih diperolehi sekaligus memudahkan keperluan untuk memberikan perlindungan pelanggaran bagi penambah baikkan reka bentuk pada masa akan datang. Hasil yang diharapkan daripada kajian ini adalah untuk menghasilkan penyelidikan dan reka bentuk maklumat mengenai kenderaan yang akan membolehkan pengubahsuaian dan peningkatan reka bentuk semasa untuk mengoptimumkan prestasi perlindungan pelanggaran dan meningkatkan tahap keselamatan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Rain Forest Vehicle
1.2 Project Background
1.3 Objectives of the study
1.4 Scope of the study

2 LITERATURE REVIEW

2.1 Introduction
2.2 Crashworthiness
2.3 Controlling the crush and energy
 2.3.1 Axial collapse
2.3.2 Bending collapse 13
2.4 Vehicle regulation 14
 2.4.1 FMVSS 208 15
 2.4.2 New Car Assessment Program (NCAP) 18
 2.4.3 Rigid Pole 19
2.5 Collision Speed 20
2.6 Simulation of Finite Element Method (FEM) 21

3 RESEARCH METHODOLOGY 26
3.1 Tensile Test 28
3.2 Compression test by using FEA for a subcomponent of the RFV 30
3.3 Validation of the component test 33
3.4 Crash analysis of RFV by using FEA 35
 3.4.1 Model Setup 35
 3.4.2 Energy absorption of the main parts 37
 3.4.3 Element definition 38
 3.4.4 Material properties 38
 3.4.5 Constraint 39
 3.4.6 Output file 40
3.4.7 Test Setup 40
 3.4.7.1 Full frontal 41
 3.4.7.2 40 Percent offsets rigid 42
 3.4.7.3 Rigid pole 43
3.5 Improvement of the crashworthiness 44
3.6 Resolutions 44

4 RESULTS AND DISCUSSIONS 45
4.1 Introduction 45
4.2 Compression test by using FEA for a subcomponent of the RFV supplement via experiment 46
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Overview of the FMVSS 208</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Overview of the EURO NCAP</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison between the current testing and the simulation of the Ford Taurus</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>True stress-plastic strain data points for carbon steel in the numerical simulation</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Energy absorption part names</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Mild Steel Elastic data</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Mild Steel Plastic data</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Keyword database</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>The comparison of average mean load, $P_m (kN)$</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison between original, simulation M and V</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Energy absorption of different part of full frontal</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Energy absorption of different parts on 40 percent offset</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Energy absorption of different parts of rigid pole impact</td>
<td>79</td>
</tr>
<tr>
<td>4.6</td>
<td>Energy comparison for prescribed crash</td>
<td>85</td>
</tr>
<tr>
<td>5.1</td>
<td>Part improvement and description</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Energy comparison for prescribed crash after reinforced</td>
<td>99</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Example of RFV</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>8 WD Vehicle</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Prototype of Rain Forest Vehicle</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Ideal crash of a square seamless steel tube</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Dynamic is crushing mode for a thin-walled square tube</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Bending Collapse</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Full Frontal Fixed Barrier</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Estimated energy absorption percentages in the frontal structure</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>40% offset impact</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Three optimal deceleration curves in three phases</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Comparison of real structure and simulation</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Full Structure of OUV</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology Diagram of Overall Project</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Specimen geometry according to the ASTM A370 standard</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Specimen fracture</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>True stress versus plastic strain distribution of mild steel</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Quasi static of single component by using FEA</td>
<td>30</td>
</tr>
<tr>
<td>3.6</td>
<td>Quasi static of frontal longitudinal section test by</td>
<td>32</td>
</tr>
</tbody>
</table>
using FEA

3.7 Quasi static test of a single component 33
3.8 Quasi static of frontal longitudinal section 34
3.9 RFV model 36
3.10 Centroid and element mass position 36
3.11 Main parts of energy absorption 37
3.12 Full frontal test setup 41
3.13 40 percent offset rigid test setup 42
3.14 Rigid pole test setup 43
4.1 Comparison between experiment and simulation 47
4.2 Graph force versus displacement between 48
simulation and experiment of single component
4.3 Comparison between experiment and simulation 51
of frontal longitudinal section
4.4 Graph force versus displacement between 52
simulation and experiment of frontal longitudinal
section
4.5 Sequence of full frontal impact 53
4.6 Von Misses Stress distribution after 60ms of full 54
frontal impact
4.7 Bottom View of full frontal impact 54
4.8 Graph energy versus time of full frontal impact 56
4.9 Graph force versus displacement of full frontal 57
impact
4.10 Full frontal deceleration curve 58
4.11 Simulation M 60
4.12 Simulation V 60
4.13 Simulation V at 75ms 61
4.14 Node identifying 62
4.15 Crush of part 451 at 30ms of full frontal impact 63
4.16 Crush of part 451 at 60ms of full frontal impact 63
4.17 Graph force of several nodes at right side of the vehicle during full frontal

4.18 Energy of several nodes at left side of the vehicle during full frontal

4.19 Sequence of 40 percent offset impact

4.20 Von Misses Stress distribution after 60 ms of 40 percent offset crash

4.21 Bottom view of 40 percent offset crash

4.22 Graph Energy versus time of 40 percent offset impact

4.23 Graph force versus displacement of 40 percent offset

4.24 Graph Acceleration versus Time

4.25 Energy versus time of 40 percent impact

4.26 Deformation of part 451 during 40 percent offset impact at 60 ms

4.27 Graph force versus node during 40 percent offset on the left of part 451

4.28 Sequence of rigid pole impact

4.29 Von Misses stress at $t=60$ ms of rigid pole impact

4.30 Graph energy versus time of rigid pole impact

4.31 Graph force verses deformation of rigid pole

4.32 Graph Acceleration Versus Time

4.33 Graph Acceleration Versus Time

4.34 Deformation of part 451 at 60 ms during rigid pole impact

4.35 Graph force versus node on left of part 451 on rigid pole impact

4.36 Deformation curves of three different impacts

4.37 The velocity difference in all crashes

4.38 Comparison Parts of Energy Absorption for
Different Crash Situation

5.1 Assembly of the reinforced structure 88
5.2 Von misses stress at t=60ms for full frontal impact 90
5.3 Bottom view of Von Misses stress at t=60ms for full frontal impact 91
5.4 Force versus displacement curve after reinforcing of the full frontal crash 92
5.5 Energy comparison of the reinforced structure for full frontal impact 93
5.6 Von misses stress at 60ms of 40 percent offset impact 94
5.7 Bottom view at 60ms of 40 percent offset impact 94
5.8 Force versus displacement curve after reinforcing of the 40 percent offset 95
5.9 Energy comparison of the reinforced structure for 40 percent impact test 96
5.10 Von misses stress at 60ms of rigid pole impact 97
5.11 Bottom view at 60ms of rigid pole impact 97
5.12 Force versus displacement curve after reinforcing of the rigid pole 98
5.13 Energy comparison of the reinforced structure of rigid pole impact tests 99
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFV</td>
<td>Rain Forest Vehicle</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>SUV</td>
<td>Sport Utilities Vehicle</td>
</tr>
<tr>
<td>OUV</td>
<td>Outdoor Utilities Vehicle</td>
</tr>
<tr>
<td>8WD</td>
<td>8 Wheel Drive</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>NHTSA</td>
<td>National Highway Traffic Safety Administration</td>
</tr>
<tr>
<td>CG</td>
<td>Centre of Gravity</td>
</tr>
<tr>
<td>NCAP</td>
<td>New Car Assessment Program</td>
</tr>
<tr>
<td>KE</td>
<td>Kinetic Energy</td>
</tr>
<tr>
<td>IE</td>
<td>Internal Energy</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, l</td>
<td>Length</td>
</tr>
<tr>
<td>E</td>
<td>Modulus of Elasticity</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
</tr>
<tr>
<td>K</td>
<td>Stiffness</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>g</td>
<td>Constant due to Gravity</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>σ</td>
<td>Stress</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>v</td>
<td>Velocity</td>
</tr>
<tr>
<td>a</td>
<td>Acceleration</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Rainforest Vehicle

Peninsular Malaysia consists about 5.87 million hectares or 45% of its total land area of tropical rainforest. The major rainforest types in Malaysia consist of dry inland forest which is the main forest cover, peat swamp forest and mangrove forest. 4.93 million hectares are Permanent Reserved (PRFs), 0.33 million hectares are State/Alienated Land Forest and 0.61 million hectares are National Park/Wildlife and Bird Sanctuary (Council, 2007). Regarding to this statistic, the use of transportation in the forest is very significant.

Based on the necessity in transportation, people need to travel and explore new areas, especially in the new rural areas. This demands the need of a vehicle that is equipped with relevant capabilities and able to restrain with the jungle road condition. In this era, automotive historians will remember 1990s as the Renaissance decade of automotive safety. During this decade, occupant safety has been established as a leading marketing characteristic of motor vehicles. In Malaysia, one company, Innopeak Sdn. Bhd with the association with scholars are developing a vehicle called Rainforest Vehicle (RFV).

RFV is defined as an outdoor vehicle that can be used in the rural, military area especially in the forest. This vehicle must have the capability to be driven in uneven terrain and sloping condition as well as on any paved or gravel surface.
Furthermore, ground clearance aspect has to be in account so that it will not get hung up on obstacles. Since the body is heavy, it needs to keep their wheels or tracks on the ground so as not to lose traction. As it goes through the sloping terrain, the centre of gravity must be maintained so will minimise the probability to turn over. This all are the advantages of this vehicle compared to normal transportation. Figure 1.1 shows the example of the RFV that is available in the market.

![Figure 1.1: Example of RFV](www.virtualmalaysia.com)

In the market, the well-established brand name like Toyota, Mitsubishi, Land Rover and Suzuki are multinational companies. However, this vehicle needs to be modified in order to have a great handling capability, especially while going through the Malaysian rainforest. Besides, it is a good opportunity to produce our own vehicle. In Australia, the use of 8 Wheel Drive (8WD) has been used in the Daintree rainforest as a means of transportation. This means, the utilisation of special vehicle in the forest is very significant throughout other country. Furthermore, the All-Terrain Vehicle (ATV) used in the off-road condition might be influential in designing this vehicle. By taking consideration of the rainforest condition, especially in Malaysia, this vehicle must implement the safety testing required by this vehicle during impact. In spite of these vehicles are not subjected to the safety standards of road cars, but it must be expected higher than the other category. The only regulation
that is available currently in the forest condition is ATV. However, this vehicle has the minimal regulation as it is only used for one or two people and the minimal weight that is less than 500kg and in fact, the safety regulation of ATVs is minimal compared with those road cars. As a result, the testing standard for the road safety is the best guideline for the safety requirement in testing the impact.

![Figure 1.2: 8 WD Vehicle](www.cairns.com.au)

1.2 Problem Statement

One company namely Innopeak (M) Sdn Bhd is on an upward spiral of increasing mass and stiffness for heavy duty vehicles. This company is developing one prototype vehicle called rainforest vehicle (RFV) which is used for the outdoor transportation. This design must fulfil the safety requirement before proceeding to another step; this RFV must be tested according to the road safety standard. Since the destructive testing is immensely expensive, time consuming and unsuitable for a developing company, another approach has been proposed to solve this issue. To address this, a comprehensive research will be undertaken to investigate the crash response of this vehicle using finite element techniques complimented by experiments.
This crash response must be guided using a world standard that has been used in the crashworthiness area. Validation of the model will be conducted by comparing finite element simulation with experimental result of individual frontal truck components and scale section of frontal parts. The effect of varying impact velocity and mass will be numerically examined using finite element models to manifest the impact and energy absorption response during a crash. Moreover, structural integrity and crashworthiness aspect will also be considered accordingly to optimise the design of the existing truck cabin during such an event. The expected outcome of this project is to generate research and design information on the design that will enable further modification and enhancement of the current design for optimising crashworthiness performance and enhancing level of safety.

![Prototype of Rainforest Vehicle (RFV)](image)

Figure 1.3: Prototype of Rainforest Vehicle (RFV)

1.3 Objectives of the study

The objectives of the studies are as follows:

a) To investigate the crashworthiness and energy absorption capability of a space frame rainforest vehicle when subjected to frontal impact.

b) To generate research information and make design recommendation based on the numerical crash analysis performed.
1.4 Scope of the study

The scopes of this research were as follows:

a) Development of preliminary model under impact loading.

b) Crushing a quasi-static of the vehicle component

c) Validation of FE results supplement by experiment

d) Detailed impact cases of RFV; Full frontal, 40 % offset and rigid pole.

e) Investigating energy absorption capability of frontal longitudinal members and the chassis.

f) Recommendation of improvement in the critical vehicle component.
REFERENCES

Motozawa, Y. and T. Kamei (2000). *A New Concept for Occupant Deceleration Control*
in a Crash. SAE 1(0881).

