ISOLATION AND CHARACTERIZATION OF NANOCELLULOSE FROM EMPTY FRUIT BUNCH FIBER FOR NANOCOMPOSITE APPLICATION

NURUL SAADIAH BINTI LANI

UNIVERSITI TEKNOLOGI MALAYSIA
ISOLATION AND CHARACTERIZATION OF NANOCELLULOSE FROM EMPTY FRUIT BUNCH FIBER FOR NANOCOMPOSITE APPLICATION

NURUL SAADIAH BINTI LANI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

AUGUST 2014
To my wonderful families especially to my beloved mother and father
ACKNOWLEDGEMENTS

First and foremost, I would like to extend my heartfelt gratitude to my supervisor, Dr Norzita Ngadi for giving me an opportunity to complete this thesis under her supervision. I am very grateful to receive her constant guidance and time throughout my journey in completing this research.

Furthermore, I also would like to show my appreciation to all my friends and others who have provided assistance at various occasions as well as their useful views and opinions regarding my postgraduate research.

Last but not least, I would also like to take this opportunity to thank my parents for financially and morally supporting me in completing this research.
ABSTRACT

Nowadays, the demands for plastics materials are increasing rapidly. Nevertheless, most of these products are non-environmentally friendly and non-biodegradable. About 60 to 100 million gallons of petroleum are needed to produce plastics every year around the world. Therefore, there has been growing interest in developing bio–based products that can offer favorable environmental advantages. The purpose of this study is to isolate nanocellulose from empty fruit bunch (EFB) fiber and to investigate reinforcing effect of nanocellulose in poly(vinyl alcohol) (PVA)/starch blend films. The optimization of acid hydrolysis conditions for nanocellulose yield with response surface methodology (RSM) was also investigated. Cellulose and nanocellulose fibers were successfully extracted by using alkali treatment and acid hydrolysis, respectively. Subsequently, a series of PVA/starch film with different content of nanocellulose were prepared by solution casting method. The isolated nanocellulose displayed a relatively high crystallinity, which were around 73% that consisted of rod like nanoparticles with the diameter of 4 to 15 nm. Analysis of the RSM result revealed that high nanocellulose yield (83.42%) was obtained when the sulfuric acid concentration, hydrolysis time and reaction temperature were set at 58 wt%, 43 minutes and 35 °C, respectively. PVA/starch films reinforced with nanocellulose fiber possessed significantly improved properties compared to the film without reinforcement. From the results, PVA/starch films with the addition of 5% (v/v) of nanocellulose suspension exhibited the best combination of properties. This nanocomposite was found to have tensile strength about 5.694 MPa and the elongation at break about 481.85%. In addition, this nanocomposite had good water resistance (19.71%) and biodegradability (47.73%). It can be concluded that the nanocellulose obtained in this study can be an excellent reinforcing material in PVA/starch blend film.
Pada masa kini, permintaan untuk bahan plastik semakin meningkat dengan pantas. Walau bagaimanapun, kebanyakan produk ini tidak mesra alam dan tidak terurai. Kira-kira 60 hingga 100 juta gelen petroleum diperlukan untuk membuat plastik setiap tahun di seluruh dunia. Justeron itu, terdapat minat yang semakin meningkat dalam membangunkan penggunaan produk berasaskan bio yang mempunyai kebaikan untuk alam sekitar. Tujuan kajian ini adalah untuk mengasingkan nano selulosa dari serat tandan buah kosong dan mengkaji kesan pengukuhan mereka dalam filem polivinil alkohol (PVA)/kanji. Pengoptimuman keadaan hidrolisis asid untuk menghasilkan nano selulosa dengan menggunakan kaedah gerak balas permukaan (RSM) juga dilakukan. Serat selulosa dan nano selulosa telah berjaya diekstrak dengan menggunakan rawatan alkali dan hidrolisis asid. Selepas itu, satu siri filem PVA/kanji dengan kandungan nano selulosa yang berbeza disediakan dengan menggunakan kaedah tuangan larutan. Nano selulosa yang telah diasingkan meunujukkan penghabluran yang secara relativnya tinggi, iaitu kira-kira 73% dan mempunyai bentuk seperti rod dengan diameter dari 4 hingga 15 nm. Analisis keputusan RSM mendedahkan bahawa hasil nano selulosa (83.42%) adalah tinggi apabila kepekatan asid sulfurik, masa hidrolisis dan suhu tindak balas diletak masing-masing pada 58 wt%, 43 minit dan 35 °C. Filem PVA/kanji yang diperkukuhkan dengan gentian nano selulosa mempunyai ciri-ciri penambahbaikan yang ketara berbanding filem tanpa pengukuh. Daripada keputusan, filem PVA/kanji dengan tambahan 5% (v/v) ampana nano selulosa meunujukkan kombinasi ciri-ciri yang terbaik. Nano komposit ini didapati mempunyai kekuatan tegangan pada kira-kira 5.694 MPa dan pemanjangan pada takat putus adalah 481.85%. Sebagai tambahan, nano komposit ini mempunyai rintangan air (19.71%) dan biodegradasi (47.73%) yang baik. Kesimpulannya, nano selulosa yang diperoleh dalam kajian ini boleh menjadi bahan pengukuh yang sangat baik untuk filem adunan PVA/kanji.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study
1.2 Problem Statement
1.3 Objectives of Study
1.4 Scopes of Study
1.5 Research Hypothesis
1.6 Significant of Study

2 LITERATURE REVIEW

2.1 Nanotechnology
2.2 Composite
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>Matrix</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Reinforcement</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Polyvinyl Alcohol</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Physical Properties</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Composite based on Polyvinyl Alcohol</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Starch</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Composite based on Starch</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>PVA/Starch Blend</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Natural Fiber</td>
<td>29</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Chemical Composition</td>
<td>33</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Physical Structure</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Empty Fruit Bunch Fiber</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>Extraction of Cellulose</td>
<td>40</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Bleaching Process</td>
<td>40</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Alkali Treatment</td>
<td>41</td>
</tr>
<tr>
<td>2.9</td>
<td>Nanocellulose Fiber</td>
<td>42</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Isolation of Nanocellulose Fiber</td>
<td>46</td>
</tr>
<tr>
<td>2.9.1.1</td>
<td>Acid Hydrolysis</td>
<td>47</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Nanocellulose Reinforced Composite</td>
<td>50</td>
</tr>
<tr>
<td>2.10</td>
<td>Nanocomposite based on PVA/Starch</td>
<td>53</td>
</tr>
<tr>
<td>2.11</td>
<td>Response Surface Methodology</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials</td>
<td>60</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Polyvinyl Alcohol</td>
<td>60</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Starch</td>
<td>60</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Natural Fiber</td>
<td>60</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Other Chemicals</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Extraction of Cellulose</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Isolation of Nanocellulose Fiber</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Characterization of Fiber</td>
<td>62</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Chemical Composition</td>
<td>62</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Fourier Transform Infrared Spectroscopy</td>
<td>65</td>
</tr>
</tbody>
</table>
3.5.3 X–Ray Diffraction (XRD) 65
3.5.4 Thermogravimetric Analysis (TGA) 66
3.5.5 Field Emission Scanning Electron Microscope (FESEM) 66
3.5.5 Transmission Electron Microscope (TEM) 66
3.6 Optimization on Nanocellulose Yield 67
3.6.1 Screening Test 67
3.6.2 Statistical Design 67
3.7 PVA/Starch Filled with Nanocellulose Fiber Film Preparation 68
3.8 Characterization of Nanocomposite 69
3.8.1 X–Ray Diffraction (XRD) 69
3.8.2 Scanning Electron Microscopy (SEM) 70
3.8.3 Mechanical Test 70
3.8.4 Water Absorption Test 71
3.8.5 Soil Burial Degradation Test 72
3.9 Comparative Study 72

4 RESULTS AND DISCUSSION 73
4.1 Introduction 73
4.2 Characteristics of Fibers 74
4.2.1 Chemical Composition 74
4.2.2 Fourier Transform Infrared Spectroscopy 76
4.2.3 X–Ray Diffraction 78
4.2.4 Thermogravimetric Analysis 81
4.2.5 Field Emission Scanning Electron Microscopy 83
4.2.6 Transmission Electron Microscopy 86
4.3 Optimization on Nanocellulose Yield 87
4.3.1 Screening of Hydrolysis Conditions 88
4.3.1.1 Effect of Acid Concentration 88
4.3.1.2 Effect of Hydrolysis Time 90
4.3.1.3 Effect of Reaction Temperature 91
4.3.2 Response Surface Methodology 92
4.3.2.1 Statistical Analysis 93
4.3.2.2 Verification of Predicted Model 97

4.4 Characteristics of PVA/Starch Blend Film 98
 4.4.1 Mechanical Properties 98
 4.4.2 Water Absorption 101
 4.4.3 Biodegradation Properties 104

4.5 Characteristics of PVA/Starch Nanocomposite 105
 4.5.1 Mechanical Properties 105
 4.5.2 Water Absorption 108
 4.5.3 Biodegradation Properties 109

4.6 Comparative Study 111

5 CONCLUSIONS AND RECOMMENDATIONS 115
 5.1 Conclusions 115
 5.2 Recommendations 117

REFERENCES 119

Appendices A–G 140–166
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Packaging applications of nanomaterials</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Main characteristics of thermosets and thermoplastics</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Physical properties of polyvinyl alcohol</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Rate of glucose production and percentage of starch hydrolysis from each PVA/starch substrate</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>Characteristics of natural fibers</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Chemical composition of some typical cellulose containing materials</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Nutrient content of EFB</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Comparison between nanocrystal and MFC</td>
<td>43</td>
</tr>
<tr>
<td>2.9</td>
<td>Preparation of nanocellulose from different sources and isolation methods</td>
<td>45</td>
</tr>
<tr>
<td>2.10</td>
<td>Characteristics of NR and NR/CW nanocomposite films reinforced with 2.5 and 7.5wt%</td>
<td>52</td>
</tr>
<tr>
<td>3.1</td>
<td>The parameter values for screening test</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>The composition of PVA, starch, glycerol and nanocellulose fiber</td>
<td>69</td>
</tr>
</tbody>
</table>
4.1 Chemical composition of the EFB fiber in different stages 75
4.2 Effect of sulfuric acid concentration on the yield of nanocellulose 88
4.3 Effect of different hydrolysis time on the yield of nanocellulose 90
4.4 Effect of different reaction time on the yield of nanocellulose 91
4.5 Code and level of factors chosen for RSM design 92
4.6 Experimental design and results 93
4.7 Analysis of variance (ANOVA) for nanocellulose yield 94
4.8 Regression coefficients and p value of second-order polynomial model for nanocellulose yield 95
4.9 Experimental value using optimum conditions for nanocellulose yield 97
4.10 Water absorption of pure PVA, PVA/starch, PVA/starch/cellulose and PVA/starch/nanocellulose composite 112
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of matrices</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of reinforcement in composites</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Production of starches and starch derivatives</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Possible hydrogen bond formation between starch and PVA</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>SEM of fracture of (a) starch film (b) starch/PVA film</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic representation of plant biofiber classification</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Capacity, production, import, export and demand of natural fibers in Asian region</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Chemical structure of cellulose</td>
<td>34</td>
</tr>
<tr>
<td>2.9</td>
<td>Structure of natural fiber</td>
<td>36</td>
</tr>
<tr>
<td>2.10</td>
<td>(a) EFB; (b) EFBF</td>
<td>39</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic structure and TEM image of (a) cellulose nanocrystal and (b) microfibrillated cellulose</td>
<td>44</td>
</tr>
<tr>
<td>2.12</td>
<td>The main steps involved in the preparation of cellulose</td>
<td>46</td>
</tr>
<tr>
<td>2.13</td>
<td>SEM of fractured surface of TPS reinforced (a) 0 wt% and (b) 20 wt%</td>
<td>53</td>
</tr>
</tbody>
</table>
3.1 Flowchart of laboratory work 59
4.1 Photograph of (a) EFB fiber, (b) cellulose fiber, and (c) nanocellulose fiber 74
4.2 FTIR spectra of (a) untreated fiber, (b) cellulose, and (c) nanocellulose 76
4.3 X-ray diffraction patterns for (a) untreated fiber, (b) cellulose, and (c) nanocellulose 79
4.4 Thermogravimetric curves of (a) untreated fiber, (b) cellulose, and (c) nanocellulose 81
4.5 FESEM images raw EFB fiber at (a) 80× (b) 1000× (c) 8000× and 80000× magnification level 83
4.6 FESEM images cellulose fiber at (a) 80× (b) 1000× (c) 8000× and 80000× magnification level 84
4.7 FESEM images nanocellulose fiber at (a) 80× (b) 1000× (c) 8000× and 80000× magnification level 84
4.8 TEM image of nanocellulose from EFB fiber 86
4.9 Pareto chart showing the standardized effect of independent variables and their interaction on the nanocellulose yield 96
4.10 Tensile strength and elongation at break for PVA/starch blend films 98
4.11 Surface morphology of (a) pure PVA film (b) 70:30 PVA/starch blend film and (c) 50:50 PVA/starch blend film 100
4.12 Percentage of water absorption capacity for PVA/starch blend films 101
4.13 X-ray diffraction pattern of the composite films 103
4.14 Degradability of PVA/starch blend films in the soil burial test 104
4.15 The dependence of the tensile strength and elongation at break on the nanocellulose content 106

4.16 SEM image of the surface of (a) PVA/starch blend film, (b) PVA/starch reinforced with 5% (v/v) nanocellulose film and (c) PVA/starch reinforced with 20% (v/v) nanocellulose film 107

4.17 Percentage of water absorption capacity for PVA/starch reinforced with nanocellulose fiber at different amount 118

4.18 Degradability of PVA/starch nanocomposite films in the soil burial test 110

4.19 Mechanical properties of pure PVA, PVA/starch, PVA/starch/cellulose and PVA/starch/nanocellulose composite. 111

4.20 Degradation properties of pure PVA, PVA/starch, PVA/starch/cellulose and PVA/starch/nanocellulose composite. 112
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>Atomic Force Microscope</td>
</tr>
<tr>
<td>AOX</td>
<td>Adsorbable Organic Halide</td>
</tr>
<tr>
<td>AMG</td>
<td>Amyloglycoside</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BCC</td>
<td>Bamboo Cellulose Crystal</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CBN</td>
<td>Cassava Bagasse Cellulose Nanofiber</td>
</tr>
<tr>
<td>CCD</td>
<td>Central Composite Design</td>
</tr>
<tr>
<td>CMC</td>
<td>Carboxymethyl cellulose</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CW</td>
<td>Cellulose Whisker</td>
</tr>
<tr>
<td>DMA</td>
<td>Dynamic Mechanical Analyzer</td>
</tr>
<tr>
<td>EMC</td>
<td>Equilibrium Moisture Content</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty Fruit Bunch</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>FMP</td>
<td>Fish Myofibrillar Protein</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>JNF</td>
<td>Jute Nanofibril</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium Bromide</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium Hydroxide</td>
</tr>
<tr>
<td>LDPE</td>
<td>Low Density Polyethylene</td>
</tr>
<tr>
<td>MFC</td>
<td>Microfibrillated Cellulose</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>MMC</td>
<td>Metal Matrix Composite</td>
</tr>
<tr>
<td>MS</td>
<td>Mean Square</td>
</tr>
<tr>
<td>NaClO₂</td>
<td>Sodium Chlorite</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>NFC</td>
<td>Nanofibril Cellulose</td>
</tr>
<tr>
<td>NR</td>
<td>Natural Rubber</td>
</tr>
<tr>
<td>OPT</td>
<td>Oil Palm Trunk</td>
</tr>
<tr>
<td>OPF</td>
<td>Oil Pam Frond</td>
</tr>
<tr>
<td>PALF</td>
<td>Pineapple Leaf Fiber</td>
</tr>
<tr>
<td>PFF</td>
<td>Presses Fruit Fiber</td>
</tr>
<tr>
<td>PHB</td>
<td>Poly-3-hydroxybutyrate</td>
</tr>
<tr>
<td>POME</td>
<td>Palm Oil Mill Effluent</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PVA</td>
<td>Polyvinyl Alcohol</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Silicon Dioxide</td>
</tr>
<tr>
<td>SPI</td>
<td>Soy Protein Isolate</td>
</tr>
<tr>
<td>SPU</td>
<td>Segmented Polyurethane</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>TPS</td>
<td>Thermoplastics Cassava Starch</td>
</tr>
<tr>
<td>WAC</td>
<td>Water Absorption Capacity</td>
</tr>
<tr>
<td>WVP</td>
<td>Water Vapor Permeability</td>
</tr>
<tr>
<td>WVTR</td>
<td>Water Vapor Transmission Rate</td>
</tr>
<tr>
<td>XRD</td>
<td>X–Ray Diffraction</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(E_a\) - Activation energy

\(kg/m^3\) - kilogram per cubic meter

\(mL\) - milliliter

\(mg/L\) - milligram per liter

\(MPa\) - megapascal

\(\mu m\) - macrometer

\(w/v\) - weight per volume

\(^{\circ}C\) - degree Celsius

\(\%\) - percentage
CHAPTER 1

INTRODUCTION

1.1 Background of Study

In recent years, many researchers have shown considerable interest for the incorporation of nanocellulose fibers as reinforcement. The applications of nanoscale particles in composite processing are also expected to have achieved a significant improvement on the environmental issue as this nanocellulose reinforcement could develop a more biodegradable plastic. This is due to the fact that the usage of non-biodegradable plastics nowadays contributes to about one quarter of all domestic trash in landfill sites. Moreover, the process to manufacture plastics are often involves the use of toxic and environmentally harmful chemicals. Therefore, it is quite important to develop composites that can be easily and completely degraded and also produced from renewable resources.
Polyvinyl alcohol (PVA) has been considered as a suitable source of materials for the composite production because of its benefits of being non-toxic and highly durable. Besides that, PVA is a synthetic polymer that can be fully biodegradable in the environment. However, the applications of PVA materials are limited due to their high cost and slow degradation process especially under anaerobic condition (Takasu et al., 2002). To overcome these limitations, PVA is often blended with other cheap and biodegradable polymers.

By blending with other renewable polymers, it will improve PVA’s biodegradation rate and lowers the overall cost. Among the different types of biopolymer available, starch is well known as the most abundant raw materials and relatively cheap. Previous studies have reported that blending of PVA and starch can enhance their tensile strength, elongation and toughness (Guohua et al., 2006; Mao et al., 2002; Rahman et al., 2010; Russo et al., 2009; Sin et al., 2010). In addition, starch has been successfully blended with PVA due to the presence of hydroxyl groups in both PVA and starch molecules, which tend to form strong hydrogen bonding and relatively good compatibility of PVA and starch (Tang and Alavi, 2011). However, the major disadvantages of these PVA/starch blends are particularly poor water barrier properties, generally attributed to the very large number of hydroxyl groups along with their intrinsic hydrophilicity. Therefore, several studies have proposed the incorporation of fillers in a nanoscale size into PVA/starch blends in order to improve their water barrier properties.

Most of the attention so far has focused on the preparation of nanoparticles from natural fibers. Natural fibers has attracted growing interest because of their unique characteristics, including low cost, lower density, high specific strength, good thermal properties and biodegradable. Oil palm empty fruit bunch (EFB) fiber is a natural fiber which has great relevance to Malaysia, as a large quantity of the biomass is generated by oil palm industries. In 2012, it is estimated that around 18.79 million tons of crude palm oil and 70 million tons of biomass residue are produced in the oil palm industry in Malaysia (Aljuboori, 2013). In addition, the total crop of fresh fruit bunch is approximately 92.78 million tons per year, which
generate more than 20 million tons of EFB (Wan-Razali et al., 2012). Approximately only 10% of the EFB is used and the rest are abundant. This residue may cause many environmental problems. Therefore, there is huge potential for EFB to be exploited in the production of high value-added products, which not only complies with zero-waste strategy but also generated additional profits for the palm oil industry.

Therefore in this study, cellulose was extracted from palm oil empty fruit bunch (EFB) fiber via alkali treatment method while the isolation of nanocellulose was done by acid hydrolysis method. A large number of treatments to extract highly-purified cellulose fibers have already been reported. The most common treatment is mercerization method, which is also known as alkali treatment. The important point to note regarding alkali treatment is their capability to remove certain amount of non-cellulosic impurities on the fiber surface by disrupting the hydrogen bonding in the network structure (Li et al., 2007).

Meanwhile, a comprehensive research and review article dealing with isolation of cellulose fiber in nano-scale size by sulfuric acid hydrolysis was published by many researchers (Araki et al., 1999; Cho and Park, 2011; Fahma et al., 2011; Luduena et al., 2011; Mandal and Chakrabarty, 2011; Morais et al., 2012; Moràn et al., 2008; Revol et al., 1992; Rosa et al., 2012). Controlled acid hydrolysis of native cellulose fibers disrupts the fibers which can then be dispersed into their constituent rod-shaped elementary crystalline microfibrils. During acid hydrolysis, the amorphous regions in native cellulose are more accessible to acid and more susceptible to hydrolytic action than the crystalline domains. Therefore, acid hydrolysis of cellulose is a well-known process used to remove amorphous regions.
Subsequently, nanocellulose that are isolated from EFB fiber was used as reinforcement in composite films. In this study, two series of PVA and starch blend films were prepared and characterized. The first series was based on only PVA and starch in different ratios, as follows: 80% PVA/20% starch, 70% PVA/30% starch, 60% PVA/40% starch, 50% PVA/50% starch, and 40% PVA/60% starch. The second series contain 5, 10, 15 and 20% (v/v) of nanocellulose suspension with respect to the volume of PVA and starch solution. The ratio between PVA and starch was chosen based on mechanical properties, water absorption and biodegradation properties that yield optimum results in the first series.

1.2 Problem Statement

Nowadays, the demands of plastics materials are increasing rapidly. The application of plastics materials includes aeronautics, building and construction, electronic device, packaging, automotives and medical devices. However, most of these products are non-environmentally friendly and non–biodegradable. Moreover, all these plastics residues are mainly discarded into the landfill and frequently the causes of pollution as well. The high usages of plastics are leading to serious environmental pollution, a problem that has to be faced by all societies.

Nevertheless, there is an alternative to reduce the environmental problems caused by plastics. For example, the production and application of biodegradable composites based on biodegradable resources such as natural fiber can be pursued to provide benefits to the environment with respect to the degradability. However, the most serious concerned problem with natural fibers is its hydrophilic nature, which tends to prevent better dispersion of the fibers into the matrix. Therefore, to overcome this challenge, fiber treatment process is one of the common alternatives that can be used to modify the fiber surface topology.
The need for PVA composites has never been as prevalent as it currently is. PVA offers high tensile strength and flexibility as well as excellent film forming. However, this synthetic polymer has important drawbacks that need to be addressed, which is their degradation rate. Therefore, blending with starch would help to improve the biodegradable properties. In the meantime, nano-reinforced starch/PVA blends are not widely studied compared to starch nanocomposites and PVA nanocomposites. Furthermore, most of the previous studies have investigated the use of nanofillers such as nano silicon dioxide (Xiong et al., 2008; Abbasi, 2012), montmorillonite clay (Ardakani and Nazari, 2010; Spiridon et al., 2008), sodium montmorillonite clay (Taghizadeh et al., 2012) and nanoparticles of poly(methyl methacrylate–co–acrylamide) (Yoon et al., 2012). However, these nanoparticles had no significant influence on biodegradability of films. For that reason, this research was conducted for the purpose of improvement in the properties of PVA and starch blend by using nanocellulose from EFB fiber as reinforcement.

1.3 Objective of Study

The objectives of this study are:

i. To extract and characterize cellulose and nanocellulose from oil palm empty fruit bunch fiber
ii. To perform an optimization study on nanocellulose yield
iii. To study the effect of varying the PVA, starch and nanocellulose content on the composites properties
iv. To compare the properties of composites between pure PVA film, PVA/starch blend film, PVA/starch reinforced with cellulose composite film and PVA/starch reinforced with nanocellulose composite film.
1.4 Scope of Study

Once the objective is decided, it is necessary to determine the scopes that will limit the range of the study. This study was firstly focused on the extraction of cellulose from empty fruit bunch fiber. The cellulose from empty fruit bunch fiber was extracted by using alkaline method, whereby the experimental conditions were fixed according to the method used by Moran et al. (2008). Meanwhile, the nanocellulose was isolated from obtained cellulose by using acid hydrolysis method, whereby the hydrolysis conditions were fixed at 60wt% sulfuric acid solutions and reaction temperature at about 45°C with hydrolysis time of 30 minutes under strong agitation (Moran et al., 2008). After that, the extracted cellulose and nanocellulose were characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD) and thermogravimetric analysis (TGA). Furthermore, the nano–dimensions of nanocellulose were determined using a transmission electron microscope (TEM).

For the optimization study, the central composite design (CCD) method was used to determine the relationship between hydrolysis conditions on maximum yield of nanocellulose. Prior to optimization study, a preliminary screening test was conducted to determine trends in the yields of nanocellulose. The yield of nanocellulose was measured as a function of acid concentration, hydrolysis time and reaction temperature, whereby the sulfuric acid concentration in the range of 45–85 wt%, hydrolysis time from 30 to 90 minutes and reaction temperature between 25 and 65°C were used as hydrolysis conditions.

The third part of this study covered the production of PVA/starch blend films. The starch used in the blend was a corn starch, whereby corn starch has higher amyllose content compared to other types of starch, around 28%. High amyllose content in starch is known to produce films with better mechanical properties (Yun and Yoon, 2010). This experiments were done by mixing PVA with starch by varying the blend ratio of PVA:starch, which is 80:20, 70:30, 60:40, 50:50 and
Glycerol was used as a plasticizer, in which it was added to the mixed solution at a 30 wt% ratio based on total weight of starch and PVA (Yao et al., 2011). The mixing temperature and time were fixed at 97°C and 2 hours, respectively (Rahman et al., 2010). The effect of varying the PVA and starch content on the composites properties was analyzed according to their mechanical properties, water absorption and biodegradation properties.

The effectiveness of the nanocellulose fibers as reinforcement was tested in the PVA/starch blend solutions. In this study, content of nanocellulose was varied from 0 to 20% (v/v) of nanocellulose suspension with respect to the volume of PVA and starch solution. Nanocomposite films reinforced with nanocellulose fibers were characterized according to their mechanical properties and water absorption while the biodegradation of films were carried out by using the soil burial test.

In the comparative study, 5% (v/v) cellulose reinforced PVA/starch composite was produced. Therefore, a comparison was made between pure PVA film, PVA/starch blend film, 5% (v/v) cellulose reinforced PVA/starch composite and 5% (v/v) nanocellulose reinforced PVA/starch nanocomposite based on their mechanical properties, water absorption and degradation properties.

1.5 Research Hypothesis

Nanocellulose can be successfully isolated from empty fruit bunch fiber by acid hydrolysis and their incorporation as reinforcement can result in an improvement in polyvinyl alcohol/starch blend film.
1.6 Significance of Study

The finding of the research is important to discover the performance of nanocellulose fiber as reinforcing materials in polymer composites due to their large surface area and the nano-scale dimensions. Therefore, it can provide the opportunity for nano-engineered materials in composite processing that could have not achieved from conventional materials.

Apart from that, this research will also contribute on improving the properties and biodegradation of nanocomposite. Their good mechanical performance showed the potential replacement to glass fiber composite in the emerging advanced composite market. It may give the plastics industry a more economic solution in managing the environmental problems caused by conventional synthetic plastics.

Cellulose Hydrolysis with Concentrated Sulphuric Acid. *Journal of Chemical
Technology and Biotechnology.* 67(4), 350–356
Extracted from TEMPO-Oxidized Jute Fibers. *Carbohydrate Polymer.* 90(1):
1075–1080
Electrospun Chitosan/Polyvinyl Alcohol Nanofibre Mats for Wound Healing.
International Wound Journal. 1–10
York, USA: Springer Verlag
University Press Publisher
Chawla, K. K. (2003). *Ceramic Matrix Composites.* (2nd ed.) The Netherlands,
United States of America: Kluwer Academic
Particulate–Reinforced Viscoelastic Composite Materials with Debonded
Lactide)/Starch Blends Compatibilized with Poly(l-Lactide)-g-Starch
Nanofibers with Diameters of 30–80 Nm from Bamboo Fibers. *Carbohydrate
Polymers.* 86(2): 453–461
Bionanocomposites Based on Pea Starch and Cellulose Nanowhiskers
Hydrolyzed from Pea Hull Fiber: Effect of Hydrolysis Time. *Carbohydrate
Polymers.* 76(4), 607–615
Cellulose Nano-Particles from Pandanus: Viscometric and Crystallographic

