THE EFFECTS OF BISMUTH, STRONTIUM AND ANTIMONY ADDITIONS ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A356 ALUMINIUM CASTING ALLOY

LING TUONG THAI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

JANUARY 2006
To my beloved mum and dad (in Heaven).
To all my companions who have accompanied me throughout my life’s journey.
World would not be the same without you all.
ACKNOWLEDGEMENT

Firstly, thank God for His blessings that enabled me to complete my thesis.

My deepest gratitude goes to my supervisor, Associate Professor Dr. Ali Ourdjini, who has been extremely patient and helpful throughout the course of my research. His vast knowledge, experience and constructive ideas have helped me to undertake my study.

I would also like to express my appreciation to my co-supervisor, Dr. Mohd. Hasbullah bin. Haji Idris, who was always generous enough to offer his guidance and assistance, whenever I needed them.

My study could not have been carried out smoothly without the assistance and co-operation from the technicians in the laboratories at the Faculty of Mechanical Engineering, in particular the Materials Science Laboratory which supported most of my work. Special thanks to Mr. Ayub, Mr. Zainal, Mr. Adnan, Mr. Jefri, Mr. Amri, Mr. Azri and Mr. Nazri for their experience and help.

Not forgetting my family members and friends, who have been ever supportive and always encouraged me to move on, no matter what difficulties that may lie ahead.
ABSTRACT

Aluminium castings offer significant weight reduction and improved fuel efficiency. Nowadays, aluminium recycling is widely practiced so impurity-related problems has become more important. Bismuth is one of the alloying elements added to aluminium alloys to improve their machinability, but little is known about its effect as a modifier or refiner. There has also been little investigation on the effect of low strontium contents (0.001wt% to 0.006wt%) on porosity formation. In the present work both sand and permanent moulds were used to produce bars containing varying strontium-bismuth ratios with some being treated with 0.2wt% antimony to investigate the interaction between these elements. A quench-during-solidification technique had been performed to study the effect of low strontium content on nucleation and growth of porosity in A356 alloy. Optical microscope, image analyzer, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and x-ray diffraction (XRD) analysis were used to characterize the eutectic silicon, porosity and other phases. Strontium content as low as 0.004wt% was found to bring upon modification to the morphology of the eutectic silicon, whereas an addition of 0.005wt% bismuth refined the eutectic silicon. Beyond this level of bismuth the silicon phase was found to undergo coarsening. A strontium-bismuth ratio of at least 0.5 is suggested to be necessary to ensure a modified silicon morphology, whereas the refining effect of antimony was not affected by bismuth addition. Percentage area of porosity and pore roundness were found to increase with increasing strontium content, reasonably due to earlier pore growth and less shrinkage-type porosity in the castings. The nucleation of new pores occurred at the solid fraction of around 75%, regardless of strontium content. In the present work, the effect of low strontium content, cooling rate and heat treatment (T6) on the mechanical properties was also studied. The results showed that the mechanical properties were less affected by the strontium level but more by heat treatment and cooling rates.
ABSTRAK

Tuangan aluminium memberikan pengurangan berat yang ketara serta kecekapan penggunaan bahan api yang tinggi. Kini, kitar-semula aluminium telah dijalankan secara meluas dan masalah yang berkaitan dengan bendasing semakin penting. Bismuth merupakan salah satu unsur pengaloian untuk meningkatkan ciri kebolehmesinan aloi aluminium tetapi kesannya sebagai suatu pengubahsuai dan penghalus kurang diketahui. Kajian tentang kesan kandungan strontium yang rendah (0.001%bt to 0.006%bt) terhadap pembentukan keliangan juga sedikit. Dalam kerja ini, kedua-dua acuan pasir dan acuan kekal digunakan untuk menghasilkan bar-bar yang mengandungi nisbah strontium-bismuth yang berbeza dan sesetengahnya dirawat dengan 0.2%bt antimoni untuk mengkaji interaksi antara unsur-unsur ini. Suatu teknik lindap kejut-semasa-pemelihan telah dilakukan untuk mengkaji kesan kandungan strontium yang rendah ke atas penukleusan dan pertumbuhan keliangan dalam aloi A356. Mikroskopi optik, penganalisis imej, mikroskopi imbasan elektron (SEM), analisis sinar-x serakan tenaga (EDX) dan belauan sinar-x (XRD) telah digunakan untuk mencirikan silikon eutektik, keliangan dan fasa-fasa lain. Kandungan strontium serendah 0.004%bt didapati mampu memberikan pengubahsuaian ke atas morfologi silikon eutektik. Manakala penambahan pada 0.005%bt bismuth menghaluskan silikon eutektik. Melebihi paras ini fasa silikon didapati menjadi lebih kasar. Nisbah strontium-bismuth sekurang-kurangnya 0.5 dicadangkan adalah perlu untuk memastikan morfologi silikon yang terubahsuai manakala kesan penghalusan daripada antimoni tidak dipengaruhi oleh penambahan bismuth. Peratusan keliangan serta keliangan yang semakin membulat didapati bertambah apabila paras strontium meningkat, disebabkan oleh pertumbuhan keliangan yang lebih awal dan keliangan jenis-tenaga yang kurang dalam tuangan. Penukleusan keliangan baru berlaku pada 75% bahagian-pepejal, tanpa mengira kandungan strontium. Dalam kerja ini, kesan daripada kandungan strontium yang rendah, kadar penyeludupan dan rawatan haba (T6) ke atas sifat mekanik juga telah dikaji. Keputusan menunjukkan bahawa sifat-sifat mekanik kurang dipengaruhi oleh paras strontium tetapi lebih dipengaruhi oleh rawatan haba serta kadar penyeludupan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 | RESEARCH BACKGROUND | 1 |
1.1	Introduction	1
1.2	Objectives of Study	4
1.3	Scope of Work	4

2 | ALUMINIUM ALLOYS | 5 |
2.1	Introduction	5
2.2	Wrought Aluminium Alloys	6
2.3	Cast Aluminium Alloys	6

3 | ALUMINIUM-SILICON ALLOYS | 12 |
| 3.1 | Introduction | 12 |
| 3.2 | Solidification of Aluminium-Silicon | 13 |
Alloys
3.2.1 Heterogeneous Nucleation 13
3.2.2 Growth 14
3.2.3 Eutectic Solidification 15
3.3 Hypoeutectic and Eutectic Aluminium-Silicon Alloys
3.3.1 Aluminium-Silicon-Magnesium 17
3.4 Hypereutectic Alloys 18

4 MODIFICATION OF ALUMINIUM-SILICON ALLOYS 19

4.1 Introduction 19
4.2 Impurity Modification on Hypoeutectic and Eutectic Al-Si Alloys
4.2.1 Mechanisms of Modification 21
4.2.2 Sodium Modification 22
4.2.3 Strontium Modification 23
4.2.4 Comparison Between Sodium and Strontium Modification 24
4.3 Chill or Quench Modification 27
4.4 Microstructural Differences Between Impurity Modification and Quench Modification 28
4.5 Antimony Refinement 29
4.6 Interactions Between Modifiers 35
4.7 Interaction of Phosphorus With Sodium or Strontium 38
4.8 Bismuth 39
4.8.1 Phase-Diagram of Al-Bi 39
4.8.2 Effect of Bismuth 40
4.9 Effects of Strontium Modification 43
4.9.1 Fluidity 43
4.9.2 Solidification Shrinkages and
5 EXPERIMENTAL METHODOLOGY

5.1 Introduction

5.2 Cooling Rates

5.3 Bismuth, Strontium, Antimony and Interactions
 5.3.1 Mould Preparation
 5.3.2 Melting Conditions
 5.3.3 Additions of Bismuth, Strontium and Antimony
 5.3.4 Specimen Preparation and Metallographic Examination

5.4 Quench-during-solidification
 5.4.1 Metallographic Examination of Quenched Specimens
5.5 Stepped Castings

5.5.1 Melting and Pouring

5.5.2 Tensile Test Specimen Preparation and Heat Treatment

5.5.3 Metallographic Examination of Tensile Test Specimens

5.5.4 Mechanical Testing

5.5.4.1 Tensile Test

5.5.4.2 Micro Hardness Test

6 EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Bismuth, Strontium and Antimony Treatment of A356 Alloy

6.1.1 Effect of Bismuth

6.1.2 Effect of Bismuth and Strontium Interactions

6.1.3 Effect of Bismuth, Strontium and Antimony Interactions

6.2 Characteristics of Porosity

6.2.1 Effect of Strontium Content on Fully Solidified Castings

6.2.2 Effect of Strontium Content on Quench-Solidified Castings

6.3 Mechanical Property Tests

6.3.1 Tensile Properties of As-Cast Castings

6.3.1.1 Effect of Cooling Rate and Strontium Content

6.3.2 Tensile Properties of Heat-treated (T6) Castings

6.3.2.1 Effect of Cooling Rate and Strontium Content
6.3.3 Comparison of Tensile Properties Between The Heat-treated and The As-cast
6.3.4 Micro Hardness Test
6.3.5 Quality Index

7 CONCLUSIONS

REFERENCES

APPENDICES A - F
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Designation of Cast Aluminium Alloys According to AA (Budgen, 1947)</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Basic temper designations for wrought alloys (Hatch, 1984)</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Alloiying elements and some of their effects (adapted from Brown, 1994)</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Oxidation losses with sodium versus strontium (Kotte, 1985)</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of temperature on Na modification (Hellawell, 1970)</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of under- and over-modification on a sodium modified, sand cast eutectic alloy (Granger and Elliott, 1987)</td>
<td>25</td>
</tr>
<tr>
<td>4.4</td>
<td>Mechanical Properties of Aluminium, 13% Silicon (Hellawell, 1970)</td>
<td>29</td>
</tr>
<tr>
<td>4.5</td>
<td>Tensile properties of A356 alloy unmodified and treated with different modifiers (Kanicki, 1990)</td>
<td>33</td>
</tr>
<tr>
<td>5.1</td>
<td>Composition of alloy A356</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>Different concentrations of antimony, bismuth and strontium added</td>
<td>65</td>
</tr>
<tr>
<td>5.3</td>
<td>Different holding periods for each additive</td>
<td>66</td>
</tr>
<tr>
<td>5.4</td>
<td>Conditions for quenchings</td>
<td>70</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.5</td>
<td>Specimens from quench-during-solidification experiment</td>
<td>73</td>
</tr>
<tr>
<td>5.6</td>
<td>Casting section thicknesses and nominal diameter / plate thickness</td>
<td>76</td>
</tr>
<tr>
<td>6.1</td>
<td>Different concentrations of bismuth, strontium and antimony</td>
<td>80</td>
</tr>
<tr>
<td>6.2</td>
<td>Characteristics of porosity</td>
<td>106</td>
</tr>
<tr>
<td>6.3</td>
<td>Casting section thicknesses and the resulting cooling rates</td>
<td>113</td>
</tr>
<tr>
<td>6.4</td>
<td>Tensile properties of the as-cast tensile specimens</td>
<td>114</td>
</tr>
<tr>
<td>6.5</td>
<td>Tensile properties of the heat-treated tensile specimens</td>
<td>122</td>
</tr>
<tr>
<td>6.6</td>
<td>Average tensile properties for heat-treated specimens</td>
<td>128</td>
</tr>
<tr>
<td>6.7</td>
<td>Micro hardness for as-cast specimens</td>
<td>135</td>
</tr>
<tr>
<td>6.8</td>
<td>Micro hardness for heat-treated (T6) specimens</td>
<td>135</td>
</tr>
<tr>
<td>6.9</td>
<td>Quality index for flat and round specimens investigated</td>
<td>137</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Equilibrium Diagram Of Aluminium-Silicon Alloys (Agrawal, 1988)</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>Equiaxed and columnar grains</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>The growth of silicon under TPRE mechanism (Hellawell and Shu, 1995)</td>
<td>16</td>
</tr>
<tr>
<td>3.4</td>
<td>Different silicon morphology: (a) flakes under slow cooling rate, (b) rodlke structure or fibrous form at high cooling rate and/or under modification effect by certain elements</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>Measured cooling/heating curves of both unmodified and sodium-modified alloys (Lu and Hellawell, 1995)</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>A model for impurity induced twinning that shows how an impurity atom of appropriate size promotes twinning by causing a growth step to assume the alternative {111} stacking sequence (Lu and Hellawell, 1987)</td>
<td>22</td>
</tr>
<tr>
<td>4.3</td>
<td>Scanning electron micrograph of deeply etched Al-Si eutectic alloy (a) before modification (b) after modification (Khan et al., 1993)</td>
<td>23</td>
</tr>
<tr>
<td>4.4</td>
<td>Effectiveness of sodium and strontium modifiers as a function of time (Rooy, 1987)</td>
<td>26</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of the eutectic silicon growth interface between (a) unmodified flake silicon, (b) quench-modified fibrous silicon and (c) impurity modified fibrous silicon (Granger and Elliott, 1987)</td>
<td>28</td>
</tr>
</tbody>
</table>
4.6 Variation in (a) undercooling and (b) Si interparticle spacing with growth velocity with temperature gradient of 32Kcm$^{-1}$ (Ourdjini and Elliot, 1995)

4.7 Thermal analysis curves of the 0.2wt% Sb treated Al-12% Si alloy in comparison with an untreated alloy (Liu, 1998)

4.8 SEM micrograph of Sb treated flake Si in directionally solidified Al-Si alloy (Khan et al., 1993)

4.9 Influence of repeated melting and isothermal holding on eutectic silicon morphology of A356 alloy treated with 0.2wt% Sb (Pan et al., 1994)

4.10 Sodium-modified structure of Al-S13 (Al-12%Si) (Rowley, 1980)

4.11 Concentration variations of both Sr and Sb throughout the two cycles of remelting and holding process for an alloy initially treated with 0.2wt% Sb (Pan et al., 1994)

4.12 Effect of antimony on strontium modification in A356 alloy (Neff, 1987)

4.13 The Al-Bi phase diagram (Loper and Cho, 2000)

4.14 Alloy fluidity versus degree of silicon modification (Pan et al., 1994)

4.15 A typical gas pore (Anson and Gruzleski, 1999)

4.16 Curves for hydrogen concentration versus holding time for unmodified LM6 and LM6 modified with strontium: percentage shown is melt composition 5 min after addition of strontium (Denton and Spittle, 1985)

4.17 Comparison of density between A356 alloys, with or without Sr-Na modification or Sb refining (Garat et al., 1992)
4.18 Percentage porosity versus hydrogen concentration (Denton and Spittle, 1985) 50

4.19 Two stage solidification process showing microshrinkage formation in: a) an unmodified casting with a short interdendritic feeding distance and an irregular eutectic solidification front, and b) a modified casting with a long interdendritic feeding distance and a regular eutectic solidification front (Argo and Gruzleski, 1988) 54

4.20 Pore size distribution in (a) unmodified, and (b) Sr-modified A356 alloy with a hydrogen content of 0.26 ml/100g solidified at a cooling rate of 0.38°C/sec (Emadi and Gruzleski, 1994) 56

4.21 Influence of Mg content on the relationship between percent porosity and tensile elongation in Al-7%Si alloys having DAS in the range 33-37 µm (Eady and Smith, 1986) 58

4.22 The effect of heat treatment on Al-Si piston alloy in (a) tensile properties, (b) hardness values 59

5.1 Determining cooling rate from a cooling curve 61

5.2 Sand mould 62

5.3 Cone-shaped permanent mould casting 63

5.4 Funnel-shape copper mould 67

5.5 Quenching and first derivative curves for A356 added with strontium at: (a) 0.001wt%, (b) 0.004wt% and (c) 0.006wt% 68

5.6 The cooling and quenching curves for melt A356 added with strontium at: (a) 0.001wt%, (b) 0.004wt%, and (c) 0.006wt% 71

5.7 Isometric drawing for stepped wooden pattern 74

5.8 Stepped wooden pattern with its gating system 74

5.9 Cooling curves for different casting section thicknesses 75
6.1 Optical micrographs of slow-cooled specimens with different bismuth concentrations, (a) 0wt%, (b) 0.005wt%, (c) 0.015wt%, (d) 0.03wt%, (e) 0.05wt%, (f) 0.06wt%, magnified at 200x; (g) 0wt%, (h) 0.005wt%, and (i) 0.015wt%, magnified at 500x (arrowheads show fragmentation of silicon)

6.2 SEM micrographs of slow-cooled specimens with different bismuth additions, (a) 0wt%, (b) 0.005wt%, (c) 0.015wt%, and (d) 0.03wt%, magnified at 2000x

6.3 Optical micrographs of fast-cooled specimens with different bismuth additions, (a) 0wt%, (b) 0.005wt%, (c) 0.015wt%, (d) 0.03wt%, (e) 0.05wt%, (f) 0.06wt%, magnified at 200x; (g) 0wt%, (h) 0.005wt%, (i) 0.015wt%, (j) 0.03wt%, (k) 0.05wt%, and (l) 0.06wt%, magnified at 500x

6.4 SEM micrographs of fast-cooled specimens with bismuth concentration of (a) 0.005wt%, and (b) 0.015wt%, magnified at 1500x

6.5 Matching of XRD analysis results, showing the presence of aluminium bismuth oxide in the melt treated with 0.03wt% and 0.05wt% Bi while at lower concentrations of bismuth (0.005wt% and 0.015wt%) no aluminium bismuth oxide was detected

6.6 Optical micrographs of slow-cooled specimens with different strontium-bismuth ratios, (a) less than 0.10, (b) 0.20, (c) 0.27, (d) 0.60, (e) 1.33, (f) 2.07, (g) 0.004wt% Sr (without Bi), magnified at 200x; (h) 0.004wt% Sr (without Bi), (i) 0.2, (j) 0.60, and (k) 1.33, magnified at 500x

6.7 Optical micrographs of slow-cooled specimens with strontium and bismuth higher in concentrations but at different Sr-Bi ratios of (a) 0.15 (in SrBi17a), (b) 0.16 (in SrBi17b), (c) 0.45, (d) 0.72, magnified at 100x; (e) 0.15 (in SrBi17a), (f) 0.16 in (SrBi17b), (g) 0.45, (h) 0.72, magnified at 200x
6.8 SEM micrographs of slow-cooled specimens with strontium-bismuth ratio of (a) 0.20, and (b) 0.45, and (c) 1.33, magnified at 1500x

6.9 Interactions between bismuth and strontium in sand-cast aluminium alloy A356

6.10 Optical micrographs of fast-cooled specimens with different strontium-bismuth ratios of (a) less than 0.10, (b) 0.15, (c) 0.27, (d) 0.60, (e) 0.72, (f) 2.07, magnified at 200x; (g) less than 0.10, (h) 0.15, (i) 0.27, (j) 0.60, (k) 0.72, (l) 2.07, magnified at 500x; (m) 0.004wt% Sr (without Bi), magnified at 200x, and (n) 0.004wt% Sr (without Bi), magnified at 500x

6.11 X-ray diffraction result showing the presence of strontium bismuth oxide (taken from the specimen containing Sr-Bi ratio = 0.66)

6.12 Optical micrographs of slow-cooled specimens (with different strontium, bismuth and antimony proportions) labelled (a) SbBiSr1S, and (b) SbBiSr2S, magnified at 200x; (c) SbBiSr1S, and (d) SbBiSr2S, magnified at 500x; (e) SbSrS, magnified at 200x, and (f) SbSrS, magnified at 500x

6.13 SEM micrographs of slow-cooled specimens (with different strontium, bismuth and antimony proportions) labelled (a) SbBiSr1S, (b) SbBiSr2S, and (c) SbSrS, magnified at 500x

6.14 Optical micrographs of slow-cooled specimens (with different amount of bismuth and 0.2wt% of antimony) labelled (a) SbBi015S, and (b) SbBi06S, magnified at 200x; (c) SbBi015S, and (d) SbBi06S, magnified at 500x

6.15 SEM micrographs of slow-cooled specimens (with different amount of bismuth and 0.2wt% of antimony) labelled (a) SbBi015S, and (b) SbBi06S, magnified at 500x

6.16 Full solidification of silicon eutectic at different level of strontium (a) 0.001wt%, (b) 0.004wt% and (c) 0.006wt%, each at a magnification of 50x
6.17 Typical pores in the quenched specimens (with respect to different fraction solid within each strontium addition) labeled (a) Q001(10), (b) Q001(55), (c) Q001(75), (d) Q001, (e) Q004(10), (f) Q004(55), (g) Q004(75), (h) Q004, (i) Q006(10), (j) Q006(55), (k) Q006(75), and (l) Q006, magnified at 50x

6.18 Average percent porosity area versus strontium content for unquenched castings

6.19 Average pore size versus strontium content for unquenched castings

6.20 Average density of porosity versus strontium content for unquenched castings

6.21 Average roundness versus strontium content for unquenched castings

6.22 Average percentage porosity area versus fraction solid

6.23 Average pore size versus fraction solid

6.24 Average porosity density versus fraction solid

6.25 Average percentage values of elongation for the as-cast tensile specimens

6.26 Average values of ultimate tensile strength for the as-cast tensile specimens

6.27 Average values of Young Modulus for the as-cast tensile specimens

6.28 Average yield strength (0.2%) values for the as-cast tensile specimens

6.29 Porosity and aluminium oxide inclusion (verified through EDX analysis) detected on the fracture surface of 30mm section casting, without strontium, 50x

6.30 Iron intermetallics (in casting containing 0.002wt% Sr, section with 30mm thickness), verified through EDX analysis, are brittle and detrimental to the tensile properties, 500x
6.31 Fracture surface of an as-cast tensile plate from (a) 5mm, (b) 30mm section thickness, without strontium addition, 200x

6.32 Fracture surface of an as-cast tensile plate from (a) 5mm section thickness, (b) 30mm section thickness, with 0.003wt% Sr, magnified at 200x and 100x respectively

6.33 Fracture surface of an as-cast tensile plate from (a) 10mm, (b) 30mm section thickness, with 0.006wt% Sr, 200x

6.34 Percentage area of porosity in stepped castings

6.35 Average percentage values of elongation for the heat-treated tensile specimens

6.36 Average values of ultimate tensile strength for the heat-treated tensile specimens

6.37 Average values of Young Modulus for the heat-treated tensile specimens

6.38 Average yield strength (0.2%) values for the heat-treated tensile specimens

6.39 Effect of heat treatment on the microstructure of casting section with 5mm thickness, (a) without, (b) with 0.003wt%, and (c) with 0.006wt% Sr, 100x

6.40 Effect of heat treatment on the microstructure of casting section with 30mm thickness, (a) without, (b) with 0.003wt%, and (c) with 0.006wt% Sr, 100x

6.41 Porosity detected on the fracture surface of 30mm-section in casting with 0.006wt% Sr, 25x

6.42 Variations of different tensile properties against increasing cooling rates

6.43 The effect of increasing cooling rate on the ductility

6.44 Presence of magnesium compounds (verified
with EDX analysis) on the microstructure of casting section with 30mm thickness, containing 0.006wt% Sr, 100x

6.45 Effect of heat treatment on the ultimate tensile property 130

6.46 Effect of heat treatment on the yield strength property 131

6.47 Effect of heat treatment on the ductility 131

6.48 Fracture surface of a heat-treated tensile plate from (a) 5mm, (b) 30mm section thickness, without strontium addition, 200x 133

6.49 Fracture surface of a heat-treated tensile plate from (a) 5mm, and (b) 30mm section thickness, with 0.003wt% Sr, magnified at 500x and 250x respectively 133

6.50 Fracture surface of a heat-treated tensile plate from (a) 5mm, and (b) 30mm section thickness, with 0.006wt% Sr, magnified at 500x and 100x respectively 133

6.51 Silicon precipitates (where arrows show) within the aluminium dendrite of (a) 5mm casting section, with 0.006wt% Sr, 100x, (b) 10mm casting section, with 0.006wt% Sr, 200x, (c) 20mm casting section, with 0.003wt% of Sr, 200x, and (d) 30mm casting section, without strontium addition, 100x 134

6.52 Micro-hardness for as-cast and heat-treated (T6) specimens from different section thickness and increasing strontium content 135

6.53 Comparison of quality index for as-cast and heat-treated specimens 137
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The determination of the dimensions for gating system and riser for stepped casting</td>
<td>148</td>
</tr>
<tr>
<td>B</td>
<td>Dimensions for tensile bars and plates according to Standard ASTM B557M</td>
<td>152</td>
</tr>
<tr>
<td>C</td>
<td>Examples of analysis report on percentage of porosity using image analyzer. Magnification at 25x was used for all samples</td>
<td>155</td>
</tr>
<tr>
<td>D</td>
<td>Examples of optical micrographs used for porosity analysis</td>
<td>158</td>
</tr>
<tr>
<td>E</td>
<td>Examples of XRD analysis results</td>
<td>161</td>
</tr>
<tr>
<td>F</td>
<td>Chemical analysis results (provided by Intech Integrated Sdn. Bhd.) for some of the samples</td>
<td>165</td>
</tr>
</tbody>
</table>
CHAPTER 1

RESEARCH BACKGROUND

1.1 Introduction

Aluminium alloys have been widely used in the automotive industry, as the trend nowadays is to achieve higher performance without increasing the weight. Therefore, more and more automotive components are made of aluminium alloys in order to reduce weight, at the same time maintaining or improving mechanical properties. Apart from their excellent casting characteristics, wear and corrosion resistance, aluminium-silicon casting alloys are used extensively because they also impart a wide range of mechanical properties and high strength to weight ratio.

Aluminium silicon foundry alloys with hypoeutectic (<12.7%) and eutectic (~12.7%) ranges are more commonly used due to their exceptional casting properties. Al-Si-Mg alloys such as A356 or LM 25 (Al—7Si-0.3Mg) are widely used for sand and permanent mould castings and they are found to be particularly useful for automotive applications. Sand casting offers high versatility and it is more economically feasible while permanent mould and die casting yield better mechanical properties in the castings.

The increasing demand and use of these aluminium foundry alloys, particularly in those critical service environments, have prompted a more in-depth research and development to enhance the casting and mechanical properties. Besides controlling the inclusions and gas, silicon modification is another important area that catches the interest of many researchers ever since its discovery by Pacz in the 1920s.
(Polmear, 1981). It was found that silicon modification is able to improve the mechanical properties of Al-Si alloys by altering the structure of the silicon phase. Modification induces the change in silicon structure from a coarse acicular morphology, which can cause brittleness in the casting to a fine, interconnected, fibrous morphology that increases the tensile strength and ductility of the casting. There are many types of modifiers available in the market but the more commonly used modifiers are sodium and strontium. Antimony that is used to refine the silicon structures has not gained wide popularity if compared with the former modifiers due to its health hazard potential. Apart from modification through chemical additions, quenching or chill modification also enhances the mechanical properties of the castings.

Nowadays, in one of the environmental conservation efforts, aluminium-recycling operation is acquiring more and more momentum. The scrap metals are not only resourced from the return of aluminium castings but also from wrought aluminium. Bismuth has constantly been added as one of the alloying elements in aluminium wrought alloys with the purpose to improve the machinability of the alloys. However, little is known about the effect of bismuth on the microstructure of aluminium cast alloy (i.e. A356 (AA) or LM25 (BS) alloy in this research) and its interaction with the addition of other modifiers such as strontium and sodium. Some suggested that the presence of bismuth might actually interfere with strontium modification effect on the alloy. Moreover, the presence of antimony that is originally added as a refiner in some aluminium scrap materials also constitutes some poisoning effect especially when strontium modification is much intended in the subsequent process. Therefore, additional work is required to investigate the effect of bismuth addition in A356 alloy and its interactions with other modifiers and/ or refiners.

Casting process has often been the economical means of achieving high volume production of complex automotive parts. Aluminium castings offer significant weight reduction that eventually generates into improved fuel efficiency. As to attain sound castings, a good control of the melt treatment and casting processes in order to produce the desired microstructures has become an
utmost important task. The quality of the castings is often related to features such as silicon shape and sizes, porosity, inclusions and intermetallics phases. In the case of aluminium castings, porosity formation has always been a quality issue since it is extremely difficult to produce an entirely pore-free casting. Although a number of researchers have attempted to explain the nucleation and growth mechanism of porosity in aluminium castings using different approaches, there is still limited understanding on the subject. Most of the work relates porosity formation with modification in which strontium was added in higher amount (approximately 0.02wt%). Less investigation has been done on the effect of low strontium contents (less than 0.01wt%) on porosity formation in the aluminium cast alloys, even though modification could have been attained at lower strontium contents. Hence, more work has to be carried out in order to gain better understanding as well as to ascertain what others have postulated.

Heat treatment or thermal modification has long been practiced as one of the feasible means to enhance the mechanical properties of aluminium castings through spheroidising the plate-like silicon, apart from the usual chemical modification. This treatment improves the mechanical properties such as tensile strength, ductility and impact strength. Heat treatment often follows suit after casting process in order to maintain optimum mechanical properties of the castings, especially for those used in areas where structural integrity is a key concern. Some combine the chemical and thermal treatment processes to achieve greater improvement. Therefore, it is reasonable to perform heat treatment on the castings added with low strontium contents and their mechanical properties being evaluated against those in the as-cast condition. In addition, it is not uncommon to find varying cooling rates within a casting during solidification, particularly in an intricately designed casting. As solidification rate affects the mechanical properties of the cast section, the cooling rate factor should also be taken into consideration during the evaluation of the quality of the castings.

1.2 Objectives of Study
In response to the concerns identified above, the present research is aimed at:

1. Investigating the effect of bismuth addition and its interactions with strontium (modifier) and antimony (refiner) in aluminium foundry alloy (i.e. A356).

2. To study the evolution process of the porosity in order to gain a better understanding of the nucleation and growth characteristics of porosity with respect to strontium additions

3. To evaluate the mechanical properties of the castings produced and examine the effect of process parameters such, cooling rate of the casting, melt treatment and heat treatment.

1.3 Scope of Work

1. Examination of the effect of bismuth, strontium and antimony, which are added in different proportions, on the microstructure of the castings.

2. Study of nucleation and growth of porosity in aluminium silicon castings by conducting quench during solidification experiments.

3. Effect of process factors such strontium concentration, cooling rate and heat treatment (T6) on the mechanical properties of the castings.
5. The nucleation of new shrinkage pores occurs at the fraction solid of about 75%, where the feeding resistance builds up. Porosity formation process starts with the nucleation and growth of inherently-present baseline pores through hydrogen diffusion. Strontium reduces the fraction of solid where baseline pores starts to form, or reduces the hydrogen threshold value and promotes earlier pore growth.

6. Heat treatment (T6), through fragmentation and spheroidization of silicon, enhances as well as moderate the strontium effect on the mechanical properties if compared to the as-cast alloys. The effects of low strontium content and cooling rate are lessened through heat treatment and the heat-treated castings always show higher quality index compared to those of the as-cast, for both slow and fast cooling conditions.
REFERENCES

