Decontamination of Chlorobenzene by Electrochemical Method

Aishah Abdul Jalil1, Ani Idris2, Sugeng Triwahyono3 and Tokuda Masao4

1Dept. of Chemical Eng., 2Dept. of Bioprocess Eng., Fac. of Chemical & Natural Resources Eng.,
3Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor, Malaysia. E-mail: aishah@fkkksa.utm.my
4Laboratory of Organic Synthesis, Division of Molecular Chemistry, Graduate School of Eng.,
Hokkaido University, Sapporo 060-8628, Japan

Abstract
A new decontamination system of chlorobenzene was carried out by electrolysis of an
N,N-dimethylformamide (DMF) solution containing a monochlorobenzene as a substrate and supporting
electrolyte in a one-compartment cell fitted with a platinum cathode and a metal anode. In this system,
monochlorobenzene was dechlorinated to benzene where the progress of the reaction was analyzed by gas
chromatography. Effect of temperature, type of anode material and solvent was investigated and it was also
found that the rate and current efficiency for the benzene production were greatly improved when naphthalene
was used as a mediator. In the presence of naphthalene, the reduction of chlorobenzene occurs indirectly
compared to its direct reduction at the platinum cathode to give complete dechlorination.

Keywords: dechlorination, electrolysis, chlorobenzene, naphthalene, green environmental

Introduction
Chlorinated organic compounds (COC) represent a major environmental problem, which are
harmful to both human health and wildlife. Because of these concerns, the development of methods
for both the destruction and disposal of COC has been intensely studied. Since 1970s the
electrochemical reductive approach has been suggested as a promising method for detoxification of
chlorine-containing aromatic hydrocarbons [1]. This method ensured the selective removal of
dichlorine atoms from various chloroaromatics under mild experimental conditions, quite cheap,
technically flexible and really allows COC dechlorination without using the highly reactive
reducing agents [2-4]. Connors et al. use a catalytic amount (<5 mol% of the substrate) of
9,10-diphenylanthracene (DPA) as a mediator in tetrabutylammonium iodide/DMF [5]. Furthermore,
the authors successfully prepared a highly reactive electrogenerated zinc metal in the presence of
naphthalene as a mediator [6], which that such reactive zinc was found to be very reactive towards
an oxidative addition to organic bromides. In this paper, we first investigate the electrochemically
reduction of monochlorobenzene as a model substrate in the absence and present of naphthalene as
a mediator, assuming that if monochlorinated aromatic compounds can be dechlorinated,
polychlorinated aromatics will indeed be dechlorinated.
Result and Discussion

Electrolysis was carried out in a DMF solution containing a monochlorobenzene as a substrate and Et$_4$NClO$_4$ as supporting electrolyte in a one-compartment cell fitted with a platinum cathode and a metal anode. In this system, monochlorobenzene was dechlorinated to benzene where the progress of the reaction was analyzed by gas chromatography. It was found that electrolysis at 0°C at a constant current of 60 mA/cm2 under nitrogen atmosphere with a zinc anode only gave 77% conversion of monochlorobenzene even after 10 F/mol current was passed. While by adding naphthalene as a mediator, complete dechlorination was obtained when the electrolysis was carried out under the same conditions to give 100% conversion of chlorobenzene after 6 F/mol of current was passed. As a conclusion, in the presence of mediator, the reduction of chlorobenzene occurs indirectly compared to its direct reduction at the platinum cathode to give complete dechlorination.

References