MATHEMATICAL MODEL OF SINGLE AND TWO COMPARTMENTAL INDOOR AIR QUALITY

SYAHIDA BINTI SAMSUDIN

The dissertation is submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Engineering Mathematics)

Faculty of Science
UNIVERSITI TEKNOLOGI MALAYSIA

JUNE 2014
To my beloved family.

Samsudin Bin Melan

Saadiah Binti Seis

Nurulhuda Bt Samsudin

Khairul Fadzli Bin Samsudin

Khairunnajwa Bt Samsudin

Muhd. Khairul Hakimin Bin Radiman

Muhammad Luthfi Hakim Bin Muhd. Khairul Hakimin
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis.

I would like to show my greatest appreciation to my supervisor Professor Madya Dr. Shamsuddin Bin Ahmad, for his tremendous support and help. His invaluable help of constructive comments and suggestions throughout the thesis works have contributed to the success of this research. Without his encouragement and guidance this project would not have materialized. In addition, I take this opportunity to express my gratitude to my co-supervisor, Professor Dr. Norsarahaida Saidina Amin and Dr. Yeak Su Hoe for their support and knowledge regarding this topic.

Special appreciation are also goes to my beloved husband and son for their love, care and understanding. My deepest gratitude goes to my parents, my parent in-law and my siblings. Your prayer for me was what sustained me thus far.

Sincere thanks to my employer, Tuan Haji Sasman Bin Yasir, the director of Kolej Matrikulasi Johor for his encouragement and a moral support. To all my friends especially my course mates and colleagues for their kindness to shared their information and also a moral support when I was prepared this research. Thanks for the friendships and memories.

Last but not least, I place on record, my sense of gratitude to one and all who directly or indirectly have lent their helping hand in this research. Thank you so much.
ABSTRACT

Smoking does not only affect the smoker’s health, but it also greatly influences the surrounding atmosphere, indoor and outdoor. Indoor air quality (concentration of carbon monoxide) in a compartmental room or building is a very important element to ensure the health and comfort level of the occupants. This study presents a mathematical model of two compartmental indoor air quality. The model is based on system of differential equation. Hence, the solutions is obtained by using the method of Laplace transform. The concentration of the pollutants are calculated and then compared with experimental data.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND SYMBOLS</td>
<td></td>
<td>xi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.0 Background of the study 1
1.1 Statement of problem 3
1.2 Objective of the research 4
1.3 Scope of the research 4
1.4 Significance of the study 4
1.5 Dissertation Organizations 5

2 LITERATURE REVIEW

2.0 Introduction 7
2.1 Air pollution 7
2.2 Environmental Tobacco Smoke(ETS) 9
 2.2.1 Measurement of tobacco smoke 10
2.2.2 Indoor concentration of carbon monoxide from smoke

2.3 Compartmental model

3 RESEARCH METHODOLOGY

3.0 Introduction

3.1 The Derivation of single compartment model

3.2 The derivation of two compartment model

3.2.1 The governing equations of two compartment model

3.2.2 The variable or parameter involved in two compartment model

4 SOLUTION OF SINGLE AND TWO COMPARTMENT MODEL

4.0 Introduction

4.1 Solution of single compartment model

4.2 Solution of two compartment model

4.3 Laplace transform for the two compartment model

4.4 Impulse source time function and natural response

4.5 Step, or Heaviside, source time function

4.6 Rectangular, or Double Heaviside, source time function

5 RESULTS AND DISCUSSION

5.0 Introduction

5.1 Single compartment model
5.2 Two compartment model 45

6 CONCLUSIONS AND RECOMMENDATIONS 52

6.0 Introduction 52
6.1 Conclusions 52
6.2 Recommendations 54

REFERENCES 55
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Pie chart showing the percentage of time spent</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Sources of indoor air pollutant</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Single compartment model</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Two compartment model</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>Heaviside or step function</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Rectangular source function</td>
<td>40</td>
</tr>
<tr>
<td>5.1</td>
<td>CO concentration for single compartment</td>
<td>44</td>
</tr>
<tr>
<td>5.2</td>
<td>CO concentration and CO emission rate for two compartment</td>
<td>46</td>
</tr>
<tr>
<td>5.3</td>
<td>CO time series in three rooms</td>
<td>49</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of CO concentration observed and model</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION AND SYMBOLS

\(w_{OA} \) - The outdoors to room A airflow rate

\(w_{AO} \) - The airflow rate from room A to the outdoors

\(w_{BO} \) - The airflow rate from room B to the outdoors

\(w_{OB} \) - The outdoors to room B airflow rate

\(w_{AB} \) - Forward interzonal flow rate

\(w_{BA} \) - Reverse interzonal flow rate

\(v_A \) - Air volume of Room A

\(v_B \) - Air volume of Room B

\(\phi_A \) - Global air change rate of Room A

\(\phi_B \) - Global air change rate of Room B

\(\alpha_{AB} \) - Proportion of Room B’s intake air coming from Room A

\(\alpha_{BA} \) - Proportion of Room A’s intake air coming from Room A

\(\alpha_{OA} \) - Proportion of Room A’s intake air coming from outdoors
\(\alpha_{OB} \) - Proportion of Room B’s intake air coming from outdoors

NHAPS - National Human Activity Pattern Survey

IAQ - Indoor Air Quality

EPA - Environmental Protection Agency

ETS - Environmental Tobacco Smoke

CO - Carbon monoxide

VOCs - Volatile organic compounds
CHAPTER 1

INTRODUCTION

1.0 Background of the study

Majority of people spend large portion of time indoors or in the house. According to Klepeis et al. (2001), 68.7% spent their time in a residence, 7.6% outdoor, 5.5% in a vehicle, 5.4% office factory, 11% other indoor location and 1.8% in bar restaurant. Moreover, the total percentage time spent with a smoker in a residence is 42.7% compare to the outdoor that is 14.7%. Figure 1 show a pie chart showing the mean of time the NHAPS (National Human Activity Pattern Survey) respondents spent in six different locations on the diary day (weighted) with 9196 sample.

We work, study, eat, drink and sleep in enclosed environments where air circulation may be restricted. There are many sources of indoor air pollution. Tobacco smoke, cooking and heating appliances, and vapors from building materials, paints, wet or damp carpet, cabinetry or furniture made of certain pressed wood products, will cause pollution inside the house.
Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and structures, especially as it relates to the health and comfort of building occupants. Indoor environments can have pollutant levels higher than outdoor, as reported by Environmental Protection Agency EPA (1997).

Quality of outdoor air and emissions from the indoor environment and the buildings’ occupants has made the indoor air quality affected by type and performance of heating, air conditioning, and ventilation technology, Jakola et al. (1994). According to Hodgson (2002), indoor environment in a restricted space is a complex and dynamic combination of physical, biological, and chemical factors that can affect the humans’ health and physical reactions anytime whether we realize it or not.
Environmental tobacco smoke (ETS) is the smoke emitted from the burning of a cigarette, pipe, or cigar, and smoke inhaled by a smoker. It is a complex mix of more than 4000 chemical compounds, containing many known or suspected carcinogens and toxic agents, including particles, carbon monoxide, and formaldehyde.

The degradation of indoor air quality by harmful chemicals and other material, can be many times worse than outdoor air pollution. This is because contained areas enable potential pollutants to build up more than open spaces do. If we consider that people spend approximately 90 percent of their time indoors, and around 65 percent inside their homes in particular, we can see why indoor air pollution is an important issue.

1.1 Statement of problem

Smoking, cooking, consumer products, gas appliances, and building materials are some of indoor sources that can be found in home. Because of small volumes and low air change rates of most homes, indoor pollutant concentration from smoking activity in a home can be very high. So, it can give a bad exposure for human’s breathing because the air was polluted.

Thus, this study is concerned with the prediction of indoor air pollutant concentrations from smoking activity and how much the exposure of the environmental tobacco smoke concentrating of carbon monoxide (CO).
1.2 Objectives of the research

The objectives of this research are:

1) To develop one and two compartmental model of indoor air pollutant concentration from smoking activity.
2) To solve one and two compartmental model of indoor air pollutant concentration.
3) To analyze and interpret the solution of one and two compartmental model obtained by Laplace transform method.

1.3 Scope of the research

In this study we will considered two compartmental indoor air quality from the research that have been done by Ott et al. titled ‘Analytical Solutions to Compartmental Indoor Air Quality Models with Application to Environmental Tobacco Smoke Concentrations Measured in a House’. The model will be based on system of differential equations.

1.4 Significance of the study

The smokers should make every effort to keep cigarette smoke away from the non-smokers especially in a house or building because inhaling the smoke can affected
the others too. Living with a smoker increases a non-smoker’s chances of developing lung cancer by twenty percent to thirty percent, this fact is according to the United State Surgeon General.

The significance of the study is to provide better understanding and valuable information on how indoor air pollutant from smoking activity in a home can give bad effect to occupant’s health due to its concentration from cigarette smoke that can persist for a long period of time.

Thus, smoking activities are better done outside the house to ensure the adverse effects of cigarette smoke inhaled by other occupants in the house can be avoided.

1.5 Dissertation Organizations

This study contains seven chapters started with introductory chapter. First chapter described briefly about the research background, problem statements, objectives, scope and significance of this study.

Literature review of this study will be considered in chapter two. This chapter explained briefly about all previous studies or research that has been done and related with the current project including the theories, models, method and figures that may support this project.

Then, chapter three discuss methodologies and procedure in completing this study. Next, the results and analysis of data for single compartment and two compartments are discussed in the fourth and fifth chapter. In chapter six, we discussed
the results and analysis of data for two compartments. Finally, some suggestions and conclusion of the study will be recommended in chapter seven.
REFERENCES

Миллер, С.Л., Лейсонс К. и Назарофф, В.В. (1997). Нелинейное наименьшее квадраты Минимизация применена к трекер газа разложения для определения вентиляционных скоростей в двухзонном здании. *Indoor Air*.

Миллер, С.Л., Лейсонс К. и Назарофф, В.В. (1997). Нелинейное наименьшее квадраты Минимизация применена к трекер газа разложения для определения вентиляционных скоростей в двухзонном здании. *Indoor Air*.

