THE INTEGRATION OF CLOSE RANGE PHOTOGRAMMETRY AND DATABASE MANAGEMENT FOR TRAFFIC ACCIDENT MAPPING

NURKHALIESA BALQIS BINTI HAMZAH

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Geomatic Engineering)

Faculty of Geoinformation and Real Estate
Universiti Teknologi Malaysia

MARCH 2014
To my dearest husband, Saiful Adilin Ab Aziz
my lovely mama, Jamaliah Desa
my late dad, Hamzah Md. Jidin
my siblings, Faris Syahin,
Muhammad Qayyum and
Nur Batrisyia
ACKNOWLEDGEMENT

First of all, I thank Almighty, my husband, my parents, brothers, sisters, family in laws and friends for their constant encouragement without which this thesis would not be possible.

I take this opportunity to express my profound gratitude and deep regards to my guide Prof. Dr. Halim Setan and Dr. Zulkepli Majid for their exemplary guidance, monitoring and constant encouragement throughout the course of this thesis. The blessing, help and guidance given by them time to time shall carry out me a long way in the journey of life on which I am about to embark.

I also take this opportunity to express a deep sense of gratitude to PLSRG members, Sahidatul Fariza, Saidatul Shamila, Rizka Akmalia, Suzanna, Nurul Shahida, Suraya, Faizah, Sabrina, Erna, and Ajibah for the valuable information provided by them in their respective fields. I am grateful for their cooperation during the period of my thesis.
THE INTEGRATION OF CLOSE RANGE PHOTOGRAMMETRY AND DATABASE MANAGEMENT FOR TRAFFIC ACCIDENT MAPPING

NURKHALIESA BALQIS BINTI HAMZAH

UNIVERSITI TEKNOLOGI MALAYSIA
ABSTRACT

Various approaches in acquiring data of road accident are being implemented worldwide. For police and forensic in Malaysia, they face challenges in obtaining accurate measurements because they are still implementing the conventional method which is impractical to map the road accident scene, consequently explain the lack of a comprehensive accident recording and analysis system. This research presents the implementation of close range photogrammetry of accident scene for data collection by using three types of sensors to study the effectiveness of each sensor which are SONY DSCHX5V for compact camera, NIKON D300S for Single Lens Reflex (SLR) camera and MI DVJ350 for video recorder. Each accident simulation conducted at Universiti Teknologi Malaysia (UTM) was recorded and imported into two different processing softwares which are Photomodeler and iWitness that is employed together with CrashZone, to perform non-contact measurement on physical evidences and subsequently generate 3D model of the crash scene. The outcomes of this research are the measurement of evidences and 3D model of road accident from three types of sensors. Data is stored, organized and retrieved in accident data management system by using Microsoft Visual Studio together with SQL Server Management Studio. The result shows that among these three sensors, NIKON D300S is the best sensor that fit the requirement of law enforcement in acquiring accident data because it has achieved the highest accuracy for physical evidences measurement. From iWitness software the RMS obtained was 0.0344m while Photomodeler was 0.0348m. In conclusion, this research gives benefits and contribution to the Malaysia’s traffic management system due to the application of close range photogrammetry (CRP). The final result can be as evidence in court litigation because in most jurisdictions, accidents involving fatalities must be surveyed and mapped.
ABSTRAK

Pelbagai pendekatan di dalam pengumpulan data kemalangan jalan raya sedang diimplimentasikan di seluruh dunia. Bagi pihak polis dan forensik di Malaysia, mereka menghadapi cabaran dalam mendapatkan pengukuran yang tepat kerana mereka masih mengimplimentasi kaedah konvensional yang mana tidak praktikal untuk memetakan kemalangan jalan raya, seterusnya menunjukkan kelemahan sistem merekod dan analisis yang komprehensif. Kajian ini mempersembahkan pengimplimentasian fotogrametri jarak dekat terhadap situasi kemalangan untuk pengumpulan data dengan menggunakan tiga jenis sensor untuk mengkaji keberkesan setiap sensor iaitu; SONY DSCHX5V mewakili kamera kompak, NIKON D300S mewakili kamera lensa reflex tunggal dan MI DVJ350 mewakili perakam video. Setiap simulasi kemalangan dijalankan di Universiti Teknologi Malaysia (UTM) telah direkod dan diimport ke dalam dua perisian pemprosesan berbeza iaitu Photomodeler dan iWitness yang digunakan bersama dengan CrashZone, untuk melakukan pengukuran tanpa sentuh terhadap bukti-bukti fizikal dan seterusnya menghasilkan model 3D suasana kemalangan tersebut. Hasil kajian ini adalah pengukuran bukti-bukti dan model 3D kemalangan jalan raya daripada tiga jenis sensor. Data telah disimpan, diselenggara dan dicapai di dalam sistem pengurusan data kemalangan dengan menggunakan Microsoft Visual Studio bersama dengan SQL Server Management Studio. Keputusan menunjukkan di antara ketiga-tiga sensor ini, NIKON D300S adalah sensor terbaik yang sesuai dengan keperluan pihak penguasa dalam mendapatkan data-data kemalangan kerana ia telah mencapai ketepatan paling tinggi bagi pengukuran bukti-bukti fizikal. Dari perisian iWitness, RMS yang diperolehi adalah 0.0344m manakala Photomodeler adalah 0.0348m. Secara kesimpulannya, kajian ini memberi kelebihan dan sumbangan kepada sistem pengurusan trafik Malaysia disebabkan aplikasi fotogrametri jarak dekat (CRP). Keputusan akhir boleh dijadikan sebagai bukti di perbicaraan mahkamah kerana dalam kebanyakan bidang kuasa, kemalangan yang melibatkan kematian mesti diukur dan dipetakan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 3
1.3 Objectives of Study 4
1.4 Scope of Study 5
1.5 Significance of Study 7
1.6 Thesis Chapters Layout 8

2 LITERATURE REVIEW

2.1 Information on Traffic Accidents 10
2.2 Methods Used in Traffic Accident Data Collection 13
 2.2.1 Conventional Method 14
 2.2.2 Close-Range Photogrammetry 16
2.2.3 Other Methods 21
2.3 Traffic Accident Management System 24
2.4 Critical Needs of Road Accident Database 29
2.5 General Requirement to Develop Road Accident System 32
2.6 Type of Database Management System (DBMS) 36
 2.6.1 Relational DBMS (RDBMS) 37
 2.6.2 Hierarchical 38
 2.6.3 Object-oriented (O-O) 39
2.7 Chapter Summary 41

3 RESEARCH METHODOLOGY 44
 3.1 Flowchart of Research Methodology 44
 3.2 Traffic Accident Mapping 46
 3.2.1 Data Collection 46
 3.2.2 Data Processing 48
 3.2.2.1 Image Processing in iWitness and CrashZone 48
 3.2.2.2 Image Processing in Photomodeler 56
 3.3 Traffic Accident Data Management System 61
 3.3.1 Overall Workflow 62
 3.3.2 Database Design 63
 3.3.3 Database System Development 67
 3.3.4 System Evaluation 68
 3.4 Chapter Summary 69

4 RESULT AND ANALYSIS 70
 4.1 Introduction 70
 4.2 Camera Calibration 70
 4.2.1 iWitness Camera Calibration 71
 4.2.2 Photomodeler Camera Calibration 72
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Thesis Chapters Layout</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Existing Traffic Accident Mapping and Data Management</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Sample of Physical Evidences</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Camera Calibration Result in iWitness for Three Cameras</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Camera Calibration Result in Photomodeler for Three Cameras</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Root Mean Square for iWitness and Photomodeler Project (in Pixel)</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>Dimensions of Physical Evidences Using Measurement Tape and iWitness Based on 3 Cameras (Simulation 1)</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>Dimensions of Physical Evidences Using Measurement Tape and Photomodeler Based on 3 Cameras (Simulation 1)</td>
<td>82</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison between This Research and Current Implementation by PDRM and UTM Security Unit</td>
<td>99</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison between Photomodeler and iWitness Software</td>
<td>101</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison between Three Types of Cameras</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research Area</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>i) Compact Camera, SONY DSC HX5V</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>ii) SLR Camera, NIKON D300S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii) Video Recorder, MI DVJ350</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Results of Traffic Accidents</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Total Road Accidents and Motor Vehicles Involved 2001 to 2010</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Types of Manual Measurement</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Sketch of a Traffic Accident in POL27 Form</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Police Investigators Using Camera to Collect Data</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Sketches from James Dean Accident Scene</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Crashteam (2008) converted an image that shows skid marks to scale top down view of the scene. The right image was central to the scene reconstruction and development of an accurate accident scene for speed calculation and 3D animation.</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Concept of Close Range Photogrammetry</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>Data Collection using Total Station and Laser Scanning</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>A reconstructionist and forensic mapping trainer, uses a Sokkia robotic total station to map the scene of a two-vehicle crash.</td>
<td>23</td>
</tr>
</tbody>
</table>
2.11 Data visualization on seat belt usage in Vectormap. 25
2.12 Components of Abu Dhabi’s Traffic Information Management 27
2.13 Road Traffic Information Centre 27
2.14 Intelligent Road Accident System (IRAS) 28
2.15 Statistic of Road Deaths per 100000 Populations 30
2.16 Road Safety Strategy 31
2.17 Vehicle and Operator Services Agency (VOSA) Accident Database 33
2.18 PDRM Requirement for Measuring Crash Data 36
2.19 Example of Relational Data Model 38
2.20 Formal Relational Term versus Informal Equivalents Term 38
2.21 Hierarchical Database Model 39
2.22 Object Oriented Database Model 40
3.1 Flowchart of Research Methodology 45
3.2 Process of Data Collection 47
3.3 Process of Data Processing in iWitness and CrashZone 49
3.4 The Arrangement of Colour Coded Target for iWitness Camera 49
3.5 Referencing a Corresponding Feature Point in an Initial Image Pair 50
3.6 Process of Editing 52
3.7 Placing a Car Symbol from Symbol Manager Toolbox onto the Drawing Window 55
3.8 Marking Process in Photomodeler 58
3.9 Setting Up Project Unit and Scale 58
3.10 Wireframe of Digitized Points and Lines 60
3.11 Path Surfaces is Applied into the Project 60
3.12 Fast Textures is Applied into the Project 60
3.13 Quality Textures is Applied into the Project 61
3.14 Overall Workflow for Road Accident Data Management 63
3.15 (a): ER Diagram (Conceptual Model)
(b): ER Diagram (Logical Model)
(c): ER Diagram (Physical Model)

4.1 Camera Calibration Result (iWitness)
4.2 Camera Calibration Result (Photomodeler)
4.3 Location of a Simulation of Road Accident
4.4 A Scene of Road Accident
4.5 3D Point Table for iWitness
4.6 3D Point Table for Photomodeler
4.7 Sample of Measuring a Feature of Interest in iWitness
4.8 Sample of Measuring a Feature of Interest in Photomodeler
4.9 2D Diagram of Accident Scene
4.10 (a) Images from Camera
(b) 3D Reconstructed Model
4.11 Wireframe of Digitized Points
4.12 Model has been Added Surfaces
4.13 Model in Fast Textures
4.14 Model in Quality Textures
4.15 Model in Quality Textures without Points and Lines
4.16 User Form to Make Query
4.17 Starting Window
4.18 Complainant Form
4.19 Investigation Result of an Accident Case
4.20 Details of Staff Registration
4.21: Total Three Data in Database
4.22: Search by Specific Accident Report Number
4.23: Search by Specific Accident Location
4.24: Search by All for Complainant Information Report 97
4.25: Search by All for Vehicle Information Report 98
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CRP</td>
<td>Close Range Photogrammetry</td>
</tr>
<tr>
<td>DXF</td>
<td>Drawing Exchange Format</td>
</tr>
<tr>
<td>RMP</td>
<td>Royal Malaysia Police</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>SLR</td>
<td>Single Lens Reflex</td>
</tr>
<tr>
<td>TLS</td>
<td>Terrestrial Laser Scanning</td>
</tr>
<tr>
<td>2D</td>
<td>2 Dimension</td>
</tr>
<tr>
<td>3D</td>
<td>3 Dimension</td>
</tr>
<tr>
<td>DBMS</td>
<td>Database Management System</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDICES</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Image of Camera Calibration in iWitness for SONY DSCHX5V</td>
<td>122</td>
</tr>
<tr>
<td>B</td>
<td>Image of Camera Calibration in iWitness for NIKON D300S</td>
<td>123</td>
</tr>
<tr>
<td>C</td>
<td>Image of Camera Calibration in iWitness for MI DVJ350</td>
<td>124</td>
</tr>
<tr>
<td>D</td>
<td>AutoCal Button to Run Camera Calibration Automatically</td>
<td>125</td>
</tr>
<tr>
<td>E</td>
<td>Process of Assigning a Scale</td>
<td>125</td>
</tr>
<tr>
<td>F</td>
<td>XYZ Coordinate Axes in iWitness</td>
<td>126</td>
</tr>
<tr>
<td>G</td>
<td>Button to View Crash Area in 3D Model</td>
<td>126</td>
</tr>
<tr>
<td>H</td>
<td>Camera Calibration in Photomodeler</td>
<td>127</td>
</tr>
<tr>
<td>I</td>
<td>Image activated as the Source in Referencing Mode</td>
<td>127</td>
</tr>
<tr>
<td>J</td>
<td>Icon of Camera Indicating Position of the Camera Has Been Oriented</td>
<td>128</td>
</tr>
<tr>
<td>K</td>
<td>Positions of Camera</td>
<td>128</td>
</tr>
<tr>
<td>L</td>
<td>Setting Up for Rotation Axes in Photomodeler Project</td>
<td>129</td>
</tr>
<tr>
<td>M</td>
<td>Measurement of Point of Interest</td>
<td>129</td>
</tr>
<tr>
<td>N</td>
<td>URA: Interview Session with PDRM-Inspector Haidir</td>
<td>130</td>
</tr>
<tr>
<td>O</td>
<td>URA: Interview Session with UTM Security Unit-Mr. Norazam</td>
<td>133</td>
</tr>
<tr>
<td>P</td>
<td>URA: Interview Session with MIROS-Mr. Hizal Hanis</td>
<td>135</td>
</tr>
<tr>
<td>Q</td>
<td>Road Accident Sketch-by Computer</td>
<td>138</td>
</tr>
<tr>
<td>R</td>
<td>Road Accident Sketch-by Hand</td>
<td>139</td>
</tr>
</tbody>
</table>
S Road Accident Report by PDRM 140
T Road Accident Report in hardcopy form by UTM Security Unit 141
U Road Accident Report in HRFin by UTM Security Unit (1) 142
V Road Accident Report in HRFin by UTM Security Unit (2) 143
W1 Difference Value of Camera Parameters in iWitness 144
W2 Images for Processing (Simulation 1) 145
W3 Images for Processing (Simulation 2) 146
W4 Images for Processing (Simulation 3) 147
W5 Images for Processing (Simulation 4) 148
W6 Images for Processing (Simulation 5) 149
W7 Dimensions of Physical Evidences Using Measurement Tape and iWitness Based on 3 Cameras (Simulation 2) 150
W8 Dimensions of Physical Evidences Using Measurement Tape and Photomodeler Based on 3 Cameras (Simulation 2) 151
W9 Dimensions of Physical Evidences Using Measurement Tape and iWitness Based on 3 Cameras (Simulation 3) 152
W10 Dimensions of Physical Evidences Using Measurement Tape and Photomodeler Based on 3 Cameras (Simulation 3) 153
W11 Dimensions of Physical Evidences Using Measurement Tape and iWitness Based on 3 Cameras (Simulation 4) 154
W12 Dimensions of Physical Evidences Using Measurement Tape and Photomodeler Based on 3 Cameras (Simulation 4) 155
W13 Dimensions of Physical Evidences Using Measurement Tape and iWitness Based on 3 Cameras (Simulation 5) 156
W14 Dimensions of Physical Evidences Using Measurement Tape and Photomodeler Based on 3 Cameras (Simulation 5) 157
| W15 | 3D Constructed Model of Accident Scene for Simulation 2 (iWitness) | 158 |
| W16 | 3D Constructed Model of Accident Scene for Simulation 3 (iWitness) | 159 |
| W17 | 3D Constructed Model of Accident Scene for Simulation 4 (iWitness) | 160 |
| W18 | 3D Constructed Model of Accident Scene for Simulation 5 (iWitness) | 161 |
| W19 | 3D Constructed Model of Accident Scene for Simulation 2 (Photomodeler) | 162 |
| W20 | 3D Constructed Model of Accident Scene for Simulation 4 (Photomodeler) | 163 |
CHAPTER 1

INTRODUCTION

1.1 Background of Study

As time goes by, traffic accident has been a concern of the world community since the number of accidents occurs has increased drastically. According to Sahar and Jehan (2010), this phenomenon is increasingly being recognized as a growing public issue. There are many factors that cause road collision including the behaviour of driver, weather conditions, environment of the street, conditions of vehicles and so forth. Malaysia as a developing country is experiencing growing numbers of vehicles every year which is also contributing to the numbers of accidents (Road Safety Department Malaysia, 2010).

Various methods have been introduced to collect the measurement of road accident data ranged from conventional method to the sophisticated technology. The data collection techniques includes by using a tape measure, close range photogrammetry (CRP), laser scanner, and etc (Randles et al, 2010). Based on Haidir (2012), Malaysian police still make use of tape measure to obtain accident data measurement. Another method that can be implemented for this initiative is by using digital cameras.
These sensors comprises of cameras that can be utilized for capturing images and videos. Recorded images are the source of accident data collection to do measurement on evidences, reconstruct and map the crash scene afterwards. Crash data can be obtained by using close range photogrammetry (CRP) method. Coyle (2008) stated that CRP can be implemented in motor vehicle accident reconstruction while Richard and Stephen (2000) declared that videogrammetry can be used by forensic engineers to assist them in the same field.

There are numerous effects of a road accident to the individual involved, their family, and towards the country (Qirjako et al., 2008). Hence, many efforts have been made by different organizations in improving safety each year. The utilization of computers makes this effort more comprehensive and productive. One of the approaches is by using Geographic Information System (GIS) technology which has been a vital tool for visualization of accident data and analysis of hotspots on the road. Mino and Asada (2003) explained that they have demonstrated the spatial information technology such as GIS which can assist their case study.

The key of this study is to investigate five simulation cases of traffic accidents by using 3 types of camera which are SONY DSCHX5V for compact camera, NIKON D300S for Single Lens Reflex (SLR) camera and MI DVJ350 for video recorder. The accident scene is recorded and imported into two different processing softwares which are iWitness that is employed with CrashZone and Photomodeler to perform non-contact measurement on physical evidences. The generation of 3D model of crash scene is made afterwards. The outcomes from these three types of sensors are the measurement of evidences and 3D model of road accident that are analyzed in data analysis section.

Accident data that has been processed are the input for the database to be further analysed. These data are served as visualization purpose in the traffic accident database system. The data management system is developed using Visual Studio to
determine accident location, to identify the details of particular accidents and also to determine how accident countermeasures can be implemented.

1.2 Problem Statement

One of the major concerns for police investigators and forensic scientists in Malaysia is the challenges in documenting traffic accident scenes to obtain accurate measurements. The approach for collecting the measurement of evidences is conventional method which is using a tape measure (Yew, 2009). It is almost impractical to map the scene due to many issues such as traffic jam, the environment of the road, unstable flooring, and line of sight issues consequently this is often inaccurate for 3D data.

In spite of this matter, other techniques that can be implemented for most cases are close range photogrammetry. Currently, law enforcement in Malaysia depends on images captured on site of the accident scene which is only for visualization purpose (Haidir, 2012). The utilization of camera for them is just for pointed out the evidence which is difficult when it comes to retrieve the data.

Nowadays, different types of camera are available in the market with different technology and specification. Thus, the need to find the suitability of camera must be discovered to be the best sensor that can fit the requirement of law enforcement in acquiring accident data. This camera is expected to give the best image resolution and achieve the highest accuracy for physical evidence measurement.
The representation of different type of cameras; SONY DSCHX5V for compact camera, NIKON D300S for SLR camera and MI DVJ350 for video recorder, producing a variety of data accuracies in terms of image processing. Hence, analysis is done to evaluate the effectiveness of using three types of camera based on different data accuracy.

In the aspect of data processing, the usage of two different softwares which are iWitness and PhotoModeler yield different quality of evidences measurement and the reconstruction of accident scene. To check the reliability of accident simulation, 5 different cases were carried out by using the same three types of camera together with the two kinds of CRP data processing softwares. In brief, various types of camera and processing softwares are used in this research to produce different type of data. The result is different according to accident cases, sensor’s accuracy, measurement of evidences, and crash scene mapping.

In addition, accident recording and analysis system must be developed to support crash data that are obtained by using proposed sensors. Therefore, an appropriate database is necessary to help the police investigators and forensic scientists to assist and manage the road collision data.

1.3 Objectives of Study

The objectives are specified as follows:

i) To reconstruct 3D model of simulation of five accident scenes by using PhotoModeler and iWitness software according to different types of camera.

ii) To develop traffic accident database system.
1.4 Scope of Study

Four scopes of research are listed as below:

i) Area of study is conducted in Universiti Teknologi Malaysia (UTM) as shown in Figure 1.1. It is located at Johor Bahru, the southern city in Iskandar Malaysia with 1177 hectares of land. The simulations of road accidents are located at 5 different places (yellow pinpoint) which are identified as ‘hotspots’ in UTM area.

![Figure 1.1: Research Area](image)

Scale 1:25000

ii) 5 data of road accidents is obtained from 5 accident simulations. Crash scenes are captured by using 3 types of sensors which are SONY DSCHX5V (10.2 Megapixels), NIKON D300S (12 Megapixels) and MI DVJ350 (20.1 Megapixels) as illustrated in Figure 1.2. SONY DSCHX5V is used to capture images of road accidents to represent compact camera. NIKON D300S is characterized as SLR camera also...
is utilized to take picture of accident scene. As for video recorder, MI DVJ350 is employed to capture video of road accident simulation. These cameras are calibrated before collecting the data. Several cars are used along with other tools such as scale bar, broken glasses as for the impact of accident, 6 traffic cones to control the crash area, and black aerosol spray for creating the scratch tyre. Several images are taken in different angles to cover the whole area of the crash scene.

Figure 1.2:

i) Compact Camera, SONY DSC HX5V (10.4 x 5.8 x 2.8cm) ii) SLR Camera, NIKON D300S (14.7 x 11.4 x 7.4cm) iii) Video Recorder, MI DVJ350 (6.7 x 6.9 x 12.9cm)
iii) The data are processed by using 2 softwares:

a) iWitness and CrashZone: iWitness is used to process the data in terms of measurement. In addition, iWitness also used to perform the camera calibration. CrashZone support iWitness in order to display the 3D view of the collision scene.

b) Photomodeler: A photogrammetric-based processing software that measures and model real world objects and scenes through the use of images. This software brings the powerful capabilities of photogrammetry in a simple, user friendly Windows environment (Eos, 2010).

iv) The database of road accident data is stored in SQL Server Management Studio while the system is developed in Microsoft Visual Studio 2010.

1.5 Significance of Study

Various actions and treatments have been taken to reduce the rate of traffic accident in the whole world. According to U.S Department of Interior (2003), “an accident investigation is the methodical collection of evidence (facts), and the analysis and interpretation of the evidence. The fundamental purpose is to identify the cause, why the accident happened, and to recommend corrective actions to prevent or minimize the chance of a reoccurrence.” Thus, accident data is significant for government and road agencies as it is served as evidence in jurisdictions and as countermeasure for road safety.

CRP is an alternative way to conventional method to obtain measurement of traffic accident data. This technique is more practical to be implemented because of
the reducing on scene time, which leads to shorter periods of traffic disruption. Furthermore, the procedure is easy to adopt for assisting police officers in managing the road accident case.

This research is expected to give benefits and contribution to the Malaysia’s traffic management system due to the application of CRP. The final result can be as evidence in court litigation because in most jurisdictions, accidents involving fatalities must be surveyed and mapped. In brief, this research contributes to current practice of data collection with reducing the time and provides higher accuracy of positional crash data.

Variety of study and advice as well as mass media reports regarding the cause of the accident give useful messages to other road users. Despite, this tragedy on the roads continues to be a burden to the society. Thus, this study is essential for traffic accident management by utilization of database system. Since the rate of road deaths increases, a database system is extremely significant tool for traffic safety.

This tool has been employed more commonly by many traffic agencies for accident analysis due to the variety of function such as storing, sharing and managing a great quantity of data. Thus the need to attempt to avoid road accidents by whatever means that are effective will become increasingly important.

1.6 Thesis Chapters Layout

This thesis consists of five chapters, Table 1.1 described the summary of each chapter.
Table 1.1: Thesis Chapters Layout

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe the introduction of the research background, problem statement, objective of study, scope of study, significance of study and chapters layout.</td>
</tr>
<tr>
<td>2</td>
<td>Describes the methods used in traffic accident data collection. Also describes related works on road accident database that has been established worldwide.</td>
</tr>
<tr>
<td>3</td>
<td>Describes the method implemented in the data collection of traffic accident and the development of traffic accident database.</td>
</tr>
<tr>
<td>4</td>
<td>Describes the results and analysis.</td>
</tr>
<tr>
<td>5</td>
<td>Describes the conclusion and recommendation for further research.</td>
</tr>
</tbody>
</table>

Faculty of Geodesy and Geomatics Eng. K.N. Toosi University of Technology Vali_Asr St., Mirdamad Cross, Tehran, Iran.

Noronha, V. and Church, R.L. (2002). *Linear Referencing and Alternate Expressions of Location for Transportation*. Santa Barbara, California: [Report]. Vehicle Intelligence and Transportation Analysis Laboratory, National Center for Geographic Information and Analysis.

