EFFECT OF ENVIRONMENTAL CONDITION AND NICKEL UNDERLAYER ON WHISKERS FORMATION IN TIN SURFACE FINISH

SITI ZAHIRA BINTI YUSOF

UNIVERSITI TEKNOLOGI MALAYSIA
EFFECT OF ENVIRONMENTAL CONDITION AND NICKEL UNDERLAYER
ON WHISKERS FORMATION IN TIN SURFACE FINISH

SITI ZAHIRA BINTI YUSOF

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

OCTOBER 2014
Special Dedicated to......

My beloved parents,
Yusof Bin Salleh and Inson Binti A. Latiff

My respectful ex-supervisor,
Prof. Dr. Ali Ourdjini

My siblings,
Siti Farhanee Binti Yusof
Muhammad Safwan Bin Yusof
Muhammad Afiq Bin Yusof

All my friends,
Especially to my special one,
Muhammad Khairi Bin Ma’arof

Thank you for your endless loves and supports.....
First and foremost, I would like to take this opportunity to express my sincere appreciation to my respectful supervisors, Prof. Dr. Ali Ourdjini, Dr. Norakmal Fadil, and Dr. Tuty Asma Abu Bakar for their guidance, encouragement and unconditional support to complete this thesis. Without their advices and motivation, I would not be able to deliver the project according to the expectations.

My further appreciation goes to all Materials Science Laboratory technicians especially Mr. Jefri, Mr. Ayub, Mr. Azri, and Mr. Amir for providing the hardware and technical support needed to complete this project. Without their assistance, it would be hard for me to complete this work within one and half years.

Lastly, I bid my sincerest “Thank You” to the whole family members and my dearest friends especially Nur Azmah Nordin, Nur Dalilah Mohd Kazahar, Intan Syaqirah Mohd Zulkifli, and Nor Fauza Abd Rahim for their undivided support and continuous encouragements until I completed my thesis. Also, I would like to express my sincere appreciation to those who were involved directly or indirectly in ensuring the successfulness of this thesis.
The ban on lead in electronic industry caused manufacturers to search for alternative ways to replace lead without affecting the performance of electronic products. Among lead-free alternative surface finishes, pure tin plating has attracted greater attention as potential candidate to replace hot air solder levelling (HASL) in electronic application. However, tin whiskers were reported to form on tin surface finishes and have caused the failure to electronic components. The study regarding whiskers phenomenon is important especially with the miniaturisation of electronic components in the electronic industry because whiskers from adjacent area may touch each other, causing short circuit. The main objective of this research is to study tin whiskering behaviour of immersion tin plating after being exposed under two different temperatures and relative humidity conditions: normal condition (30°C/60%RH) and severe condition (55°C/85%RH). Tin layer was deposited by using immersion process. The effect of external stress on whiskers growth was investigated by applying indentation at 2N load on tin surface. In addition, a nickel underlayer on copper substrate was deposited by electroless plating prior to tin plating to investigate the effectiveness of nickel underlayer in mitigating whiskers formation. Field emission scanning electron microscopy (FESEM) was used to observe the behaviour of tin whiskers and intermetallic compound (IMCs). Energy dispersive x-ray (EDX) was used to determine chemical composition and image analyser was used to measure coating thickness of tin, nickel and whiskers length based on micrographs obtained from FESEM. The results showed that whiskers have formed on immersion tin surface finish exposed under normal and severe conditions. These whiskers formed in various types including straight, bent, kinked, and spiral with striations along their circumference. The tin whiskers length was directly proportional to the exposure time for both conditions; normal and severe. However, under normal condition exposure, whiskers have grown longer than severe condition due to formation of small and irregular shape of IMCs. Indented area of tin surface showed shorter whiskers formed than non-indented area indicating that the whiskers grow longer at lower external stress concentration. The deposition of nickel underlayer on copper was effective in mitigating whiskers formation as no whiskers were observed under both conditions up to 12 weeks.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDIX</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Introduction 1
1.2 Problem statement 4
1.3 Objectives 5
1.4 Scopes of research 6

2 LITERATURE REVIEW 7
2.1 Introduction 7
2.2 Tin whiskers 8
 2.2.1 Characteristics of tin whiskers 10
 2.2.2 Failure caused by tin whiskers 10
2.3 Mechanisms of tin whiskers growth 11
2.3.1 Grain boundary diffusion 12
2.3.2 Oxidation theory 14
2.3.3 Recrystallization theory 15
2.3.4 Dislocation theory 16

2.4 Factors affecting tin whiskers formation and growth
2.4.1 Intermetallics compound (IMCs) 18
2.4.2 Thickness of tin plating 20
2.4.3 Environmental effect 23
2.4.4 Indentation induced external stress 24

2.5 Mitigation methods to prevent whiskers growth
2.5.1 Underlayer plating 26
2.5.2 Annealing or post baking 27
2.5.3 Reflow 29
2.5.4 Conformal coating 30

3 RESEARCH METHODOLOGY 31
3.1 Introduction 31
3.2 Substrate material 34
3.3 Pre-treatment process 34
3.4 Immersion tin plating 35
3.5 Electroless Nickel plating 38
3.6 Tin whiskers study 40
3.6.1 Temperature/ humidity testing 40
3.6.2 External stress testing 41
3.7 Coating thickness measurement 42
3.8 Whiskers analysis 42
3.9 IMC analysis 43
3.9.1 Top surface analysis 43
3.9.2 Cross sectional analysis 44
RESULTS AND DISCUSSION

4.1 Introduction 45

4.2 Chemical composition analysis 46

4.3 Coating thickness analysis 47

4.4 Analysis on factors affecting whiskers behaviour

4.4.1 Effect of tin coating thickness on whiskers behaviour 49

4.4.2 Effect of external stress on whiskers behaviour 57

4.4.3 Effect of environmental condition on whiskers behaviour 68

4.4.4 Effect of Ni underlayer on whiskers behaviour 73

4.4.5 Intermetallic compound (IMCs) analysis 76

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions 81

5.2 Recommendations 82

REFERENCES 83

APPENDIX A 90

APPENDIX B 94

APPENDIX C 99

APPENDIX D 101
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Chemical composition for tin plating</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical composition and parameters of electroless nickel plating</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemical composition to remove tin coating</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Average thickness of tin coating for three different plating times</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Average thickness of Ni underlayer coating</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of whiskers</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of grain boundary diffusion</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of CTE mismatch</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic diagram of oxidation theory</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Oblique grain boundary</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Cross-section samples of IMCs</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Top view of IMCs</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Effect of plating time on the grain growth for electroless copper deposition</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic diagram of the effect of deposition time on the grain size</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Grain size from top view tin coating</td>
<td>22</td>
</tr>
<tr>
<td>2.11</td>
<td>Electroplated Sn surface after six months exposed to acidic condition</td>
<td>24</td>
</tr>
<tr>
<td>2.12</td>
<td>Tin whiskers formed along the edge of indentation area</td>
<td>25</td>
</tr>
<tr>
<td>2.13</td>
<td>Tin whiskers on Ag underlayer tin surface</td>
<td>27</td>
</tr>
<tr>
<td>2.14</td>
<td>Top view of IMCs</td>
<td>28</td>
</tr>
<tr>
<td>2.15</td>
<td>Difference in grain size of intermetallic</td>
<td>29</td>
</tr>
<tr>
<td>2.16</td>
<td>Schematic diagram of conformal coating on tin surface</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of the research</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Substrate material</td>
<td>34</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Flow chart of pre-treatment process</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Plating bath</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Non-reactive air balls in plating bath</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic diagram of experimental set up for immersion tin</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Schematic diagram of multiple coating layers</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Schematic diagram of experimental set up for electroless nickel plating</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Humidity chamber used in the experiment</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Micro hardness tester used to indent the samples</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>FESEM micrograph of freshly plated sample and EDX spectra for 1.2µm tin coating thickness</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Cross sectional images for Sn and Ni underlayer</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>FESEM micrographs of tin whiskers growth on 1.2µm tin coating thickness</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>FESEM micrographs of tin whiskers growth on 1.5µm tin coating thickness</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>FESEM micrographs of tin whiskers growth on 2.3µm tin coating thickness</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Graph of whiskers length over exposure times for various thicknesses of tin coating</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Schematic diagram of whiskers formation on thinner and thicker tin coating</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>FESEM micrograph of kinked-type of tin whiskers for 1.2 µm tin coating thickness</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>FESEM micrographs on the types of tin whiskers formed</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Chemical composition analysis of tin whiskers for 1.2 µm tin coating thickness</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>FESEM micrographs on whiskers formed</td>
<td></td>
</tr>
</tbody>
</table>
inside and at the edge of indentation area under 30°C/ 60% RH

4.12 Graph of whiskers length versus exposure times for non-indented and indented surface after 12 weeks exposed under 30°C/ 60% RH for various thicknesses of tin coating

4.13 FESEM micrographs of whiskers and CuO flower formation on 1.2 µm tin coating thickness after exposed under 30°C/ 60% RH conditions

4.14 Schematic diagram on analysis area for sample exposed under 30°C/ 60% RH after 52 weeks for all three tin coating thicknesses

4.15 FESEM micrograph on whiskers formation after 52 weeks exposed under 30°C/ 60% RH at certain distance from indented point for 1.2 µm tin coating thickness

4.16 FESEM micrograph on whiskers formation after 52 weeks exposed under 30°C/ 60% RH at certain distance from indented point for 1.5 µm tin coating thickness

4.17 FESEM micrograph on whiskers formation after 52 weeks exposed under 30°C/ 60% RH at certain distance from indented point for 2.3 µm tin coating thickness

4.18 Graph of whiskers length at indentation point over incubation time after 52 weeks exposed under 30°C/ 60% RH for various tin coating thicknesses

4.19 Chemical composition of SnO on 1.2 µm tin coating thickness

4.20 Graph of average whiskers length over distance from indentation point after 52 weeks exposed
under 30°C/ 60% RH for various tin coating thicknesses

4.21 Types of whiskers formed after exposed under 55°C/ 85% RH

4.22 Graph of whiskers length over exposure times for various thicknesses of tin layers after 12 weeks exposed under 55°C/ 85% RH

4.23 Graph of whiskers lengths over exposure times after 12 weeks exposed under 30°C/ 60% RH and 55°C/ 85% RH

4.24 FESEM micrographs of non-indentated surfaces after 12 weeks exposed under 30°C/ 60% RH

4.25 FESEM micrographs of indented surfaces after 12 weeks exposed under 30°C/ 60% RH

4.26 SEM micrographs of tin surface with Ni underlayer after 12 weeks exposed under 55°C/ 85% RH

4.27 FESEM micrographs of IMCs on 1.5 µm tin coating thickness

4.28 FESEM micrographs of IMCs formed on tin surface finish

4.29 FESEM micrographs of IMCs formed on tin surface finish after 20 weeks

4.30 FESEM micrographs of IMCs on Cu-Ni-Sn samples
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Results of average whiskers length</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>Chemical composition analysis</td>
<td>94</td>
</tr>
<tr>
<td>C</td>
<td>Atomic percentage calculation</td>
<td>99</td>
</tr>
<tr>
<td>D</td>
<td>FESEM images of Sn Whiskers results</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>(Selected samples only)</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Lead is a well-known material used extensively in electronic components for several decades due to its superior performance and chemical properties. However, due to environmental concerns, lead has been banned in electronics industry because its toxicity is harmful to human health. When ingested or inhaled, lead may cause damage to the brain and nerves which controls the body system. Thus manufacturers of printed circuit board (PCB) have been urged to use lead-free (Pb free) soldering in their products. The European Union RoHS (Restriction of Hazardous Substances) has setup the new laws where starting from 1st July 2006, certain products placed on the market must not contain certain restricted substances in excess of the allowable amount; such as maximum concentration for lead and its compounds is 0.1% by weight [1, 2]. Besides leads, mercury, hexavalent chromium, cadmium, polybrominated biphenyls (PBBs), and polybrominated diphenyl ethers (PBDEs) are also categorised as RoHS - restricted substances as they are toxic too. Banning lead has generated a great amount of changes in the electronics industry, and opened the way for the conversion to lead-containing surface finishes to lead-free alternatives.
Surface finish is the most important part in PCB fabrication and is defined as a layer on top of the bare copper surface. There are several surface finish metallurgies commonly used in the electronics industry including hot air soldered levelled (HASL), organic solderable preservatives (OSP), electroless nickel/immersion gold (ENIG), electroless nickel/ electroless palladium/ immersion gold (ENEPIG), immersion silver (IAg), and immersion tin (ISn) [3]. HASL has been the most widely used as surface finish over the past years [4]. However, HASL involves fusing the Sn-Pb onto the substrate with lead as the major component [5]. Since the move towards lead-free soldering, pure tin plating has become the choice for lead-free surface finish [6, 7] because it offers good solderability and is inexpensive.

However, replacement of Sn-Pb by lead-free with tin base surface finishes has the challenging issue and potential problem of tin whiskers formation which can cause serious failure to electronic components and presents reliability issues for electronic components. The conductivity of tin whiskers leads to short circuit if they come into contact [8-10]. Tin whiskers were revealed as early as the 1950s by Bell Laboratories on pure tin plating by K. G. Compton et al.[11, 12]. Brusse et al.[13] in their paper reported many cases documented according to National Aeronautic and Space Administration (NASA) regarding whiskers failures in various applications from 1946 to 2005. Whiskers are usually found on electronic components such as diode, transistor, and capacitor which have tin finishes. Whisker failures were reported in various applications such as nuclear power plant, military aircraft, communication, and automotive fields which involved using electronic components with tin finishes but have led to electrical failure. In 2005, tin whiskers caused nuclear reactor shutdown at Millstone power station due to false pressure drop reading in a computer circuit card and after inspection was done, a bulk of tin whiskers touching each other were found on the computer circuit card surface which led to electrical shortage due to the conductivity of tin whiskers [14]. Recently, in 2009, a customer of a Toyota vehicle reported that the car was totally undriveable due to damage of the pedal assembly [15]. After investigation was made on the accelerator pedal position sensors (APP) assembly it was found that a number of whiskers have grown on the tin finish of the APP boards causing electrical short circuit and led to total failure of the electronic system [16].
Tin whisker formation is due to multifactorial factors including environmental temperature, residual stress, mechanical force, intermetallic compound (IMC) formation, and the oxidized layer. Gedney et al. [17] claims IMCs growth at the grain boundary would generate compressive stress and accelerate tin whiskers growth. Most researchers reported that common types of IMCs namely Cu₆Sn₅ and Cu₃Sn which form within the tin layer and copper base material caused additional compressive stresses to the tin layer; thus in order to relieve the stress, tin whiskers formed [5, 17-19]. Chen et al. [5] in his research stated that an intermetallic phase (Cu₆Sn₅) forms as the immersion plating process starts, thus creating growth over time until all of the tin has been diffused into copper to form Cu-Sn alloy. Therefore it is clearly understood that tin whiskers formation originates from the tin layer itself and creates further growth to relieve the stress. The possible mechanisms proposed by researchers for tin whiskers formation and growth are grain boundary diffusion, dislocation, recrystallization, and interface fluid flow [17]. However, the exact mechanism for tin whisker formation is not yet clear until now.

Even though there are literatures on tin whiskers phenomenon, no concrete mechanism and mitigation method have been established yet. This is because multifactorial factors of tin whiskers formation have to be considered such as plating thickness, environmental conditions, external stress, and other factors that would generate the IMC formation. Some mitigation methods proposed by previous researchers such as, underlayer coating, annealing or post baking, reflow, and conformal coating method were used to date to mitigate the whisker growth [20-22]. Besides, addition of alloying elements in Cu lead frame also has potential to mitigate the whiskers formation [23].
1.2 Problem Statement

The fundamentals of whiskers growth have been addressed and most of the basic concepts currently used to describe whiskers growth were proposed. The electronic industry has successfully used Sn-Pb alloys for soldering and surface finishes since 1960’s. However, with the move towards lead-free in electronic products, pure tin and tin-based alloys are considered as the most suitable alternatives replacing these Sn-Pb alloys. Thus, tin whiskers phenomenon is again at the forefront and may be considered as a serious reliability concern in the electronic industry especially with the miniaturisation of electronic components. The formation of IMCs namely Cu₆Sn₅, is the main factor driving the tin whiskers formation. The IMCs formation generates internal stresses within the tin layer and Cu substrate resulting in whiskers growth out of tin surface which is stress-free.

Among the lead-free surface metallurgies, tin plating has received greater attention in industry owing to its excellent solderability and availability. Electroplating process has been used widely for tin coating in the industry because it is cost effective as compared to the high performance coating coated by physical vapour deposition (PVD) and chemical vapour deposition (CVD). As for soldering process in PCB, the most attractive and simple method is press-fit technology, an advanced solder free fastening technology. Press-fit technology requires a thin tin coating to avoid scraping off and creating a possible conductive particle hazard when the pin is inserted into the PCB. However, in practice, electroplating method is limited by the minimum coating thickness of 7µm. Therefore immersion process is important since it can achieve the thickness of coating as thin as 0.3µm. Many of the previous studies on whiskers growth have focused on electroplated tin and almost none used immersion tin plating.

The main purpose of this research is to investigate and understand the whiskers’ behaviour on immersion tin surface finish. This research will focus on the effects of several factors; tin thickness, external stress and environmental condition
on tin whisker growth on immersion tin surface finish. In addition, the effectiveness of the nickel underlayer in mitigating the formation and growth of whiskers was studied. The studies were carried out because there are only limited numbers of examples in the literature dealing with the effects of tin plating thickness, external stress applied, and exposure under various temperature and environmental condition for immersion tin surface finish.

1.3 Objectives of the Research

The main objectives of the research are to:

1. Determine the effects of tin plating thickness deposited by immersion process and exposed conditions of different temperature/ relative humidity on tin whiskers.

2. Establish the effect of external stress by indentation on tin whiskers growth for with and without Ni underlayer.

3. Determine the effectiveness of Ni underlayer as mitigation against tin whiskers growth.
1.4 Scopes of the Research

Tin plating was deposited by using immersion process on copper substrates. For the tin whiskers mitigation experiment, a nickel underlayer was deposited prior to the tin plating layer by using electroless plating process.

The plated samples were exposed under different temperature and relative humidity for duration up to 12 weeks. The samples were analysed for tin whiskers growth according to certain time interval to investigate their growth and their length were measured for both with and without nickel underlayer samples exposed under both conditions. The effect of external stress on tin whiskers growth was investigated by subjecting the samples to indentation prior to exposure under the same conditions.

In the characterisation phase, the analysis of tin whiskers and intermetallic compound, IMCs was conducted by using Field Emission Scanning Electron microscopy (FESEM) to investigate the tin whiskers types and IMCs formation within tin layer and copper substrate respectively, i-Solution/ Lite software was used to measure the tin whiskers length based on the FESEM micrograph, and energy dispersive x-ray (EDX) to analyse tin whiskers and IMCs composition. The thickness of tin and nickel coating were measured by using image analyser based on the cross-section samples.
REFERENCES

38. Chason, E., Jadhav, N., Buchvecky, E., Bower, A., Kumar, S. Fundamental mechanisms controlling stress evolution and whisker growth. 2010 [cited 2013 9 January];

