THE ULTRASONIC WAVES EFFECTS ON OIL-WATER EMULSIFICATION, COALESCENCE, DETACHMENT, MOBILIZATION AND VISCOSITY IN POROUS MEDIA

HOSSEIN HAMIDI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Petroleum Engineering)

Faculty of Petroleum and Renewable Energy Engineering
Universiti Teknologi Malaysia

JULY 2014
This thesis is dedicated to my beloved wife who has been a great source of motivation and inspiration. Also, this thesis is dedicated to my parents who have supported me all the way since the beginning of my studies.

Without your love and support, I would not have made this thesis possible.

I love you all.
ACKNOWLEDGEMENT

I would like to thank God for giving me this opportunity to study and for being there for me through all the difficult times. I offer my thanks to my supervisor Assoc. Prof. Dr. Radzuan Junin, for all the support and guidance he has given, all the understanding he has shown and for being a great person and an excellent supervisor.

Special appreciation goes to my co-supervisor, Dr. Muhammad Manan, Head of Department of Petroleum Engineering for his guidance and constant support. My acknowledgement also goes to all the technicians and office staffs of Faculty of Petroleum and Renewable Energy Engineering for their co-operations.

I wish to thank my wife and parents for all the encouragement during my studies.

Finally, I would like to thank all those people who I have met in my life and who have influenced me in some way and helped me through my journey of life till this point.
ABSTRACT

Ultrasonic wave technique is an unconventional EOR method, which has been of interest to researchers for more than six decades. Emulsification and demulsification are phenomena which occur at the interface of oil and water under the influence of ultrasonic waves. Therefore, the conditions in which emulsification becomes dominant over demulsification due to ultrasonic radiation in porous media should be further investigated. However, surfactants are the principal agents that enable oil and water to mix and are often the most expensive component in an emulsion. Therefore, selecting an appropriate surfactant formulation capable of mobilization of oil without significant surfactant loss due to adsorption and phase separation in the reservoir is very important. Estimation of solubilization parameters are great tools in designing economical emulsion flooding compositions. In this study, the effect of ultrasonic waves on the amount of oil and water solubilized by a unit of surfactant were investigated. It was observed that the emulsion volume and amount of oil solubilized in emulsion were increased by increasing salinity under short periods of ultrasonic wave radiation, and demulsification of the emulsion occurred after longer period of radiation. In addition, Hele-Shaw model tests were conducted to show microscopically the effect of long and short periods of ultrasonic waves’ radiation at the interface of paraffin oil and surfactant solution/brine. Diffusion of phases, formation of emulsion and gas bubbles were observed after short periods of ultrasonic waves’ radiation. However, demulsification and coalescence of surfactant solution/brine droplets inside emulsion was initiated after long periods of ultrasound radiation. Another objective of this study was to investigate directly the effect of ultrasonic waves on viscosity changes in three types of oil (paraffin oil, synthetic oil, and kerosene) and a brine sample. It was observed that the viscosity of all the liquids was decreased under the influence of ultrasonic waves in both uncontrolled and controlled temperature conditions. However, the reduction was found to be more significant for uncontrolled temperature condition cases. In addition, micro-model experiments were conducted to show other oil recovery mechanisms such as oil droplet coalescence, oil mobilization, and oil detachment from dead end pores under the influence of ultrasonic waves. The results revealed that these mechanisms happen in porous media under the influence of ultrasonic waves. Therefore, it was concluded that the use of ultrasonic waves could be suggested, not as a substitute for conventional EOR methods, but as an alternative or complimentary tool, which in certain instances may make conventional methods more effective and less costly.
ABSTRAK

TABLE OF CONTENTS

CHAPTER

TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xiii
LIST OF SYMBOLS xxi
LIST OF APPENDICES xxiii

1 INTRODUCTION 1

1.1 Background 1
1.2 Statement of Problem 3
1.3 Research Objectives 6
1.4 Scope of Study 6
1.5 Significance of the Study 7

2 MICROSCOPIC DISPLACEMENT IN POROUS MEDIA 9

2.1 Introduction 9
2.2 Pore Geometry 9
2.2.1 Aspect Ratio 10
2.2.2 Coordination Number 11
2.2.3 Heterogeneity 11

2.3 Capillary Forces 13
2.3.1 Wettability 13
2.3.2 Interfacial Tension and Surface Tension 16
2.3.3 Capillary Pressure 17

2.4 Two Phase Microscopic Fluid Displacement in Porous Media 17
2.5 Mobilization of Trapped Phases 21
2.6 Previous Related Works 22
2.7 Chapter Summary 33

3 ULTRASONIC WAVES IN POROUS MEDIA 35

3.1 Introduction 35
3.2 Wave Properties 35
3.3 Effect of Ultrasonic Waves on Emulsification of Oil and Water 38
3.4 Effect of Ultrasonic Waves on Oil Viscosity 43
3.5 Effect of Vibration on Oil Mobilization in Porous Media 47
3.6 Penetration Depth Experiments 52
3.7 Chapter Summary 55

4 METHODOLOGY 59

4.1 Introduction 59
4.2 Experimental Apparatus and Materials 59
4.2.1 Fluid Properties
4.2.2 Experimental Setup

4.3 Basic Parameter Measurements
4.3.1 Viscosity Measurement
4.3.2 Interfacial Tension Measurement
4.3.3 Wettability Measurement
4.3.4 Porosity and Permeability Measurements

4.4 Experimental Procedures
4.4.1 Emulsion Tests
4.4.2 Capillary Tube Tests
4.4.3 Hele-Shaw and Micromodel Tests

RESULTS AND DISCUSSION

5.1 Introduction
5.1 Surface and Interfacial Tension Measurements
5.3 Emulsion Tests
5.4 Capillary Tube Tests
5.4.1 Capillary Tube Tests for Uncontrolled Temperature Condition
5.4.2 Capillary Tube Tests for Controlled Temperature Condition
5.5 Hele-Shaw and Micromodel Tests
5.5.1 Hele-Shaw Model Tests
5.5.2 Micromodel Tests
5.6 Chapter Summary
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The summary of some laboratory studies</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Properties of oleic and aqueous phases used in the tests</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Properties of alpha olefin sulfonate (Probig Fine Chemical Co. Ltd., 2013)</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>Properties of the ultrasonic bath</td>
<td>61</td>
</tr>
<tr>
<td>4.4</td>
<td>Physical properties of 2D glass Hele-Shaw models</td>
<td>69</td>
</tr>
<tr>
<td>4.5</td>
<td>Physical properties of two micromodels with triangle and circle patterns</td>
<td>69</td>
</tr>
<tr>
<td>4.6</td>
<td>Contact angles on different solid surfaces (at 25°C)</td>
<td>69</td>
</tr>
<tr>
<td>4.7</td>
<td>Experimental runs for surface tension and IFT measurements</td>
<td>74</td>
</tr>
<tr>
<td>4.8</td>
<td>Experimental runs for emulsion tests with different salinity concentrations</td>
<td>77</td>
</tr>
<tr>
<td>4.9</td>
<td>Experimental runs for the viscosity experiments</td>
<td>80</td>
</tr>
<tr>
<td>4.10</td>
<td>Experimental runs for the Hele-Shaw models</td>
<td>81</td>
</tr>
<tr>
<td>4.11</td>
<td>Experimental runs for the investigation of oil recovery mechanisms under the influence of ultrasonic waves</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of surface tension and CMC values at different salinities for the aqueous phases</td>
<td>87</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of IFT and CMC values at different salinities for paraffin oil with aqueous phases</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of viscosity experiment results with and without</td>
<td></td>
</tr>
</tbody>
</table>
influence of ultrasonic waves for synthetic oil, paraffin oil, kerosene and brine in uncontrolled temperature condition

5.4 Summary of viscosity experiment results with and without influence of ultrasonic waves for synthetic oil, paraffin oil, kerosene and brine in controlled temperature condition (25°C)

5.5 Summary of the results of the experiments under influence of ultrasonic waves
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>High aspect ratio and low aspect ratio (Mace and Wilson, 1991)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Pore systems with coordination number of 3 and 6 (Wardlaw, 1980)</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Heterogeneous and homogeneous pore network (Morrow, 1979)</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>The contact angle (Anderson, 1986)</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>A sketch of three degrees of wetting and the corresponding contact angles (Anderson, 1986)</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of water wet and oil wet rocks (Anderson, 1986)</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Effect of pore aspect ratio on the oil trapping in a tube of nonuniform diameter (Chatzis et al., 1983)</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Pore doublet (Rose an Witherspoon, 1956)</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Beginning of free imbibition into network (Chatzis et al., 1978)</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Solubilization parameter vs. salinity, %NaCl for 15-S-5 (Bera et al., 2011)</td>
<td>25</td>
</tr>
<tr>
<td>2.11</td>
<td>Solubilization parameter vs. salinity, %NaCl for 15-S-7 (Bera et al., 2011)</td>
<td>26</td>
</tr>
<tr>
<td>2.12</td>
<td>Solubilization parameter vs. salinity, %NaCl for 15-S-9 (Bera et al., 2011)</td>
<td>26</td>
</tr>
<tr>
<td>2.13</td>
<td>Entrapment of connate water in dead-end pores in water-wet micro-model (Jamaloei and Kherrat, 2009)</td>
<td>28</td>
</tr>
</tbody>
</table>
2.14 Residual oil saturation in dead-end pores in oil-wet micro-model (Jamaloei and Kharrat, 2009)

2.15 Mobilization of residual oil in 2D glass micro-models (Chatzis, 2011)

2.16 Photomicrograph of a water-in-oil emulsion (Schramm, 1992)

2.17 Photomicrograph of an oil-in-water emulsion (Schramm, 1992)

2.18 Photomicrograph of a water-in-oil-in-water emulsion (Schramm, 1992)

2.19 Droplet-size distribution of petroleum emulsions (Schramm, 1992)

3.1 Sinusoidal waves of various frequencies; the bottom waves have higher frequencies than those above (Ensminger and Bond, 2011)

3.2 Approximate frequency ranges corresponding to ultrasonic waves, with rough guide of some application (Ensminger and Bond, 2011)

3.3 High-speed observation of emulsion formation (first pulse output 7 (47 W), interface height X = 3 mm). Images taken at times a = 0.000 s, b = 0.020 s, c = 0.030 s, d = 0.064 s, e = 0.074 s, f = 0.112 s, g = 0.136 s, h = 0.172, i = 0.252 s, j = 0.254 s, k = 0.360 s, l = 0.740 s (Cucheval and Chow, 2008)

3.4 Flow of oil through a constricted pore under the effect of external pressure difference ΔP (Beresnev et al., 2005)

3.5 The mechanism of the “nudged” release of the ganglion from its trapped position under the combined effect of external gradient and vibrations (Beresnev et al., 2005)

3.6 Oil drop trapped inside a pore (Xiaoyan et al., 2007)

3.7 (a) The experimental set-up for studying viscous fingering in a Hele-Shaw cell, and (b) a schematic of the Hele-Shaw cell (Hamida, 2006)
3.8 Growth of ultrasonic perturbation on a flat liquid-liquid interface (Hamida, 2006)

3.9 (a) Wave shape with period of T_1 at surface, (b) deformed wave after penetrating into the reservoir; produced harmonic with period of T_2 is demonstrated, (c) a deformed wave at a specific distance from source (Naderi, 2008)

3.10 Penetration experiments diagram (P, power; I, intensity; f, frequency; Vm, amplitude) (Naderi, 2008)

4.1 Experimental setup for emulsion tests

4.2 Ultrasonic bath and immersible transducer

4.3 Schematic diagram of smooth capillary tube with chiller

4.4 Hele-Shaw model; (a) top view, (b) side view

4.5 Schematic diagram of the Hele-Shaw model experiments

4.6 Ultrasonic bath and immersible transducer

4.7 Level of the water in the bath

4.8 Experimental set-up for the Hele-Shaw model experiments

4.9 Micro-model patterns, (a) triangle pattern with 0.15 mm throat diameter, and (b) circle pattern with 0.15, 0.3, and 0.5 mm throat diameter and 1, 1.6, and 2 mm pore diameter

4.10 Micro-model experimental setup

4.11 Viscosity measurement by capillary method

4.12 Illustration of the ring method

4.13 Capillary tube

5.1 Surface tension and CMC measurements for the aqueous phases with different salinities and surfactant concentrations a) 0 ppm salinity, b) 400 ppm salinity, c) 1000 ppm salinity d) 5000 ppm salinity, e) 15000 ppm salinity, and f) 150000 ppm salinity

5.2 Surface tension measurement for the aqueous phases

5.3 IFT measurement between paraffin oil and aqueous phases

5.4 Emulsification results of surfactant solutions (surfactant concentration of 1000 ppm AOS and different salinity concentrations of 5000, 10000, 15000, 20000, 25000, and
30000 ppm NaCl) and PO under no ultrasonic waves (NUS) a) Phase behavior of surfactant solution and PO, b) Relative phase volume vs. salinity, ppm NaCl for PO

5.5 Solubilization parameters vs. salinity, ppm NaCl for PO under no ultrasonic waves after 60 min mixing by Rotospin

5.6 Emulsification results of surfactant solutions (surfactant concentration of 1000 ppm AOS and different salinity concentrations of 5000, 10000, 15000, 20000, 25000, and 30000 ppm NaCl) and PO under 15 mins radiation of ultrasonic waves (40 kHz and 500 W) a) Phase behavior of surfactant solution and PO, b) Relative phase volume vs. salinity, ppm NaCl for PO

5.7 Solubilization parameters vs. salinity, ppm NaCl for PO under 15 mins radiation of ultrasonic waves (40 kHz and 500 W)

5.8 Emulsification results of surfactant solutions (surfactant concentration of 1000 ppm AOS and different salinity concentrations of 5000, 10000, 15000, 20000, 25000, and 30000 ppm NaCl) and PO under 60 mins radiation of ultrasonic waves (40 kHz and 500 W) a) Phase behavior of surfactant solution and PO, b) Relative phase volume vs. salinity, ppm NaCl for PO

5.9 Solubilization parameters vs. salinity, ppm NaCl for PO under 60 mins radiation of ultrasonic waves (40 kHz and 500 W)

5.10 Comparison of emulsion volumes for the mechanical agitation technique; without using ultrasonic waves (black), after 15 mins. radiation of ultrasonic waves (red), and after 60 mins. radiation of ultrasonic waves (blue)

5.11 Comparison of the volume of oil solubilized in emulsion for the mechanical agitation technique; without using ultrasonic waves (black), after 15 mins. radiation of.
ultrasonic waves (red), and after 60 mins. radiation of ultrasonic waves (blue)

5.12 Water temperature changes under influence of ultrasonic waves (40 kHz and 500 W) in ultrasonic bath

5.13 Pressure gradient versus flow rate for synthetic oil under the influence of ultrasonic waves (frequency of 40 kHz and different powers) and without using ultrasonic waves (NUS) a) power of 100 W, b) power of 250 W, c) power of 500 W

5.14 Pressure gradient versus flow rate for paraffin oil under the influence of ultrasonic waves (frequency of 40 kHz and different powers) and without using ultrasonic waves (NUS) a) power of 100 W, b) power of 250 W, c) power of 500 W

5.15 Pressure gradient versus flow rate for kerosene under the influence of ultrasonic waves (frequency of 40 kHz and different powers) and without using ultrasonic waves (NUS) a) power of 100 W, b) power of 250 W, c) power of 500 W

5.16 Pressure gradient versus flow rate for Brine under the influence of ultrasonic waves (frequency of 40 kHz and different powers) and without using ultrasonic waves (NUS) a) power of 100 W, b) power of 250 W, c) power of 500 W

5.17 Synthetic oil viscosities at frequency of 40 kHz and different ultrasonic wave powers in uncontrolled temperature condition

5.18 Paraffin oil viscosities at frequency of 40 kHz and different ultrasonic wave powers in uncontrolled temperature condition

5.19 Kerosene viscosities at frequency of 40 kHz and different ultrasonic waves powers in uncontrolled temperature condition
5.20 Brine viscosities at frequency of 40 kHz and different ultrasonic wave powers in uncontrolled temperature condition 106
5.21 Synthetic oil viscosities at frequency of 40 kHz and different ultrasonic wave powers in constant temperature of 25°C 108
5.22 Paraffin oil viscosities at frequency of 40 kHz and different ultrasonic wave powers in constant temperature of 25°C 108
5.23 Kerosene viscosities at frequency of 40 kHz and different wave powers in constant temperature of 25°C 108
5.24 Brine viscosities at frequency of 40 kHz and different ultrasonic wave powers in constant temperature of 25°C 109
5.25 Configuration of emulsification in Hele-Shaw model with and without radiation of ultrasonic waves a) before applying ultrasonic waves, b) after 30 mins without applying ultrasonic waves, c) after 4 mins radiation of ultrasonic waves d) after 10 mins radiation of ultrasonic waves, e) after 22 mins radiation of ultrasonic waves, and f) after 28 mins radiation of ultrasonic waves 112
5.26 Diffusion of oil in water in Hele-Shaw model with 500μm depth under ultrasonic waves a) after 31 mins, and b) after 33 mins 113
5.27 Generation and explosion of the bubbles under the influence of ultrasonic waves a) Generation of bubbles after 9 mins, b) Explosion of bubbles at 12 mins, and c) movement and gathering of bubbles at the interface after 15 mins 115
5.28 Bubble size distribution in aqueous and oleic phases under ultrasonic waves a) after 23 mins, and b) after 35 mins 116
5.29 Average number of bubbles produced under the influence of ultrasonic waves using degassed and un-degassed liquids 118
5.30 Configuration of aqueous and oleic phases emulsification
and coalescence of aqueous droplets after 30 minutes applying ultrasonic waves in Hele-Shaw model (26 µm) a) with surfactant, b) without surfactant

5.31 Surfactant solution droplet size distribution in paraffin oil under the influence of ultrasonic waves a) after 12 mins, b) after 30 mins

5.32 Detachment of oil droplets from the oil bank

5.33 Configurations of residual oil coalescence a) under influence of ultrasonic waves (40 kHz and 500 W), b) without ultrasonic waves

5.34 Attachment of oil droplets during the water flooding in 2D glass micromodel (triangle pattern) a) before applying ultrasonic waves, b) before applying ultrasonic waves and after 10 mins flow of brine, c) before applying ultrasonic waves and after 12 mins flow of brine, d) before applying ultrasonic waves and after 20 mins flow of brine, and e) after 20 mins influence of ultrasonic waves (40 kHz and 500 W)

5.35 Configurations of mobilization of a single oil droplet in a pore body a) before brine flow and before applying ultrasonic waves, b) after 5 mins brine flow and before applying ultrasonic waves, c) after 15 mins brine flow and before applying ultrasonic waves, d) after 20 mins brine flow and before applying ultrasonic waves, e) after 25 mins brine flow and after 5 mins applying ultrasonic waves, f) after 30 mins brine flow and after 10 mins applying ultrasonic waves, g) after 35 mins brine flow and after 15 mins applying ultrasonic waves, and h) after 40 mins brine flow and after 20 mins applying ultrasonic waves, i) after 45 mins brine flow and after 25 mins applying ultrasonic waves, j) after 50 mins brine flow and after 30 mins applying ultrasonic waves, and k) after 55 mins brine flow and after 35 mins applying ultrasonic waves
waves

5.36 Configuration of oil detachment from pore wall in the oil-wet circular micromodel a) with ultrasonic waves (40 kHz and 500 W), b) without ultrasonic waves

5.37 Configurations of residual oil detachment from dead end pore in the oil-wet triangular micromodel a) with ultrasonic waves (40 kHz and 500 W), b) without ultrasonic waves
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOS</td>
<td>Alpha Olefin Sulfonate</td>
</tr>
<tr>
<td>C</td>
<td>Circumference of ring</td>
</tr>
<tr>
<td>Ca</td>
<td>Capillary number</td>
</tr>
<tr>
<td>CMC</td>
<td>Critical Micelle Concentration</td>
</tr>
<tr>
<td>D</td>
<td>Density of water at 25°C</td>
</tr>
<tr>
<td>d</td>
<td>Density of test specimen at 25°C</td>
</tr>
<tr>
<td>EOR</td>
<td>Enhanced Oil Recovery</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>IFT</td>
<td>Interfacial Tension</td>
</tr>
<tr>
<td>L</td>
<td>Capillary tube length</td>
</tr>
<tr>
<td>n</td>
<td>Power-Law fluid index</td>
</tr>
<tr>
<td>NUS</td>
<td>Non-Ultrasound</td>
</tr>
<tr>
<td>OW</td>
<td>Oil Wet</td>
</tr>
<tr>
<td>P</td>
<td>Scale reading</td>
</tr>
<tr>
<td>PO</td>
<td>Paraffin oil</td>
</tr>
<tr>
<td>ΔPs</td>
<td>External pressure gradient</td>
</tr>
<tr>
<td>ΔP</td>
<td>Differential pressure</td>
</tr>
<tr>
<td>Q</td>
<td>Flow rate</td>
</tr>
<tr>
<td>Q<sub>right</sub></td>
<td>Radius of the right meniscus</td>
</tr>
<tr>
<td>Q<sub>left</sub></td>
<td>Radius of the left meniscus</td>
</tr>
<tr>
<td>R</td>
<td>Radius of ring</td>
</tr>
<tr>
<td>r</td>
<td>Radius of wire of ring</td>
</tr>
<tr>
<td>TCMS</td>
<td>Trichloromethylsilane</td>
</tr>
<tr>
<td>US</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>Vo</td>
<td>Amount of oil in microemulsion</td>
</tr>
<tr>
<td>Vw</td>
<td>Amount of water in microemulsion</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>WW</td>
<td>Water Wet</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosity</td>
</tr>
<tr>
<td>θ</td>
<td>Contact angle</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ultrasonic bath and micromodel holder design</td>
<td>157</td>
</tr>
<tr>
<td>B</td>
<td>Construction of etched 2d glass micromodels</td>
<td>161</td>
</tr>
<tr>
<td>C</td>
<td>Construction of Hele-Shaw model</td>
<td>165</td>
</tr>
<tr>
<td>D</td>
<td>Procedure to make a water-wet and oil-wet medium</td>
<td>166</td>
</tr>
<tr>
<td>E</td>
<td>Determination of micro-models’ physical properties</td>
<td>167</td>
</tr>
<tr>
<td>F</td>
<td>Measuring the contact angle for water-wet and oil-wet glasses</td>
<td>174</td>
</tr>
<tr>
<td>G</td>
<td>Preparation of solutions for emulsion experiments using test tubes</td>
<td>175</td>
</tr>
<tr>
<td>H</td>
<td>Surface tension and IFT measurement results</td>
<td>176</td>
</tr>
<tr>
<td>I</td>
<td>Determination of solubilization parameters and emulsion volumes at 1000 ppm surfactant concentration with different water salinities using paraffin oil</td>
<td>181</td>
</tr>
<tr>
<td>J</td>
<td>Temperature distribution test</td>
<td>183</td>
</tr>
<tr>
<td>K</td>
<td>Viscosity measurement for three types of oils (synthetic oil, paraffin oil, kerosene) and brine in uncontrolled and controlled temperature conditions</td>
<td>184</td>
</tr>
<tr>
<td>L</td>
<td>List of publications</td>
<td>189</td>
</tr>
</tbody>
</table>
INTRODUCTION

1.1 Background

In the oil industry, the reduction of oil production is of major concern as world necessity for oil increases. Therefore, developing and applying new techniques to mobilize residual oil left in the reservoir and make best of the original oil in place (OOIP) is very crucial.

As the world’s human population growing, decreasing of production in oil recovery processes is of major concern. Crude oil production and development of a petroleum reservoir is divided into three distinct stages such as primary, secondary and tertiary or Enhanced Oil Recovery (EOR). During primary recovery, the natural pressure of the reservoir, combined with pumping equipment, brings oil to the surface. Primary recovery is the easiest and cheapest way to extract oil from the ground. However, this method of production typically produces only about 10 percent of a reservoir's OOIP reserve. In the secondary recovery phase, water or gas is injected to displace oil, making it much easier to drive it to a production wellbore. This technique generally results in the recovery of 20 to 40 percent of the OOIP. Consequently, the oil left in the reservoir is the goal of tertiary recovery (EOR) process. In addition to maintaining reservoir pressure, this type of recovery seeks to alter the properties of the oil in ways that facilitate additional production. The three major types of tertiary recovery are chemical flooding, thermal recovery (such as a steamflood) and miscible displacement involving carbon dioxide (CO₂), hydrocarbon or nitrogen injection. All of the conventional EOR methods include
some limitations. Some of them are expensive to use, need a wide range of surface apparatus, generate dangerous environmental results, and have technical limitations (Xiao et al., 2004). Therefore, some unconventional methods have been proposed to EOR.

One of the unconventional methods is the application of wave energy for enhancing oil recovery in reservoirs. This method has been of interest for more than six decades. There are numerous investigations to show the effect of earthquakes on increasing oil recovery (Steinbrugge and Moran, 1954; Voytov et al., 1972; Simkin and Lopukhov, 1989). An earthquake is the result of a sudden release of energy in the Earth's crust that creates seismic waves. However, the question is how long one should wait until an earthquake happens. Therefore, the waves were generated artificially. The wave energy can be sent to an oil reservoir by using seismic method, and in-situ sonication (ultrasonic wave method). The seismic waves can be applied into the reservoir by surface vibrators or explosives. The method utilizes low frequency compressional waves. The in-situ sonication method uses an acoustic transducer, which is delivered into the bottom of the hole and producing ultrasonic waves with high frequency and high intensity. Therefore, the ultrasonic waves move within the porous media and stimulate the fluids mechanically (Hamida, 2006).

There are some advantages of using this method compared to the other conventional techniques that can be reviewed here:

(i) In the methods using fluids, hydraulic force is in charge of delivering the driving force in the conventional methods and fluids always choose the least resistance pathway and suffer from bypassing effects. Therefore, numerous EOR techniques are unsuccessful in heterogeneous formations and running off great oil pools unaffected. However, in the methods using waves, the energy is distributed in all direction and is unchanged by permeability of medium or pore network. Therefore, it is easy to affect every point in the reservoir at the same time (Beresnev et al., 2005).
(ii) The need for chemical stimulation (acid, solvents, and etc.) is replaced by using waves. Because chemical stimulation is not compatible in some cases with the reservoir rock or fluid (Beresnev et al., 2005).

(iii) The waves can be applied to the reservoir while the well is producing (Beresnev et al., 2005).

On the other side, the main limitation of using wave energy is the quick attenuation in porous media particularly at high frequencies (20 kHz up to several gigahertz) (Dunn, 1986). Therefore, the application of ultrasonic method is restricted to near-wellbore area because of its high attenuation in porous media. By studying Biot’s theory, one recognizes that the length of attenuation of ultrasonic waves with frequency about 20 kHz is 2 to 10 cm (Biot, 1956b; Biot, 1962). Therefore, a great number of researches have been performed using low frequency waves that are able to propagate in reservoir several kilometers. On the other hand, it is recognized that ultrasonic waves exist in the reservoir after applying seismic waves (low frequency waves) to the reservoir because low frequency waves dispersion generate ultrasonic noise (high frequency waves) in porous media (Nikolaevskii and Stepanova, 2005). Ultrasonic waves have short wavelengths and considerably play an important role in mechanical perturbation at the pore scale. Consequently, it is supposed that the effect of ultrasonic waves (high frequency waves) is more significant compare to low frequency waves at pore scale (Duohon and Campbell, 1965; Beresnev et al., 2005; Xiaoyan et al., 2007). Nevertheless, the mechanisms caused by ultrasonic waves in porous media are not well recognized yet and requires deep investigations to disclose the physics and mechanisms process included in recovery of oil.

1.2 Statement of Problem

The interest in using ultrasonic waves as an unconventional method for stimulation of oil reservoirs dates back to 1950’s. Most of the studies that have been performed over these years are limited to macromodel studies such as measuring oil recovery after applying ultrasonic waves. In addition, the oil recovery mechanisms mentioned in the previous studies are theoretical and lacks fundamental
researches (microscopic or pore scale studies) (Naderi, 2008). Studying the mechanisms that lead to oil mobilization by ultrasonic waves is very important and is essential for field purposes. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. Therefore, it is very crucial to perform basic experiments (pore scale) to achieve a good knowledge and deep insight into the mechanisms.

Emulsification is one of the oil recovery mechanisms happening in porous media under the influence of ultrasonic waves. Numerous macromodel studies have demonstrated that the emulsion has been generated at the interface of two immiscible fluids under the influence of ultrasonic waves (Wood and Loomis, 1927; Richards, 1929; Bondy and Sollner, 1935; Campbell and Long, 1949; Neduzhii, 1962; Li and Fogler, 1978; Cucheval and Chow, 2008; Ramisetty and Shyamsunder, 2011; Mohammadian et al., 2012). In addition, chemical flooding involves injection of a surfactant solution, which can cause the oil/aqueous interfacial tension to drop and allowing emulsification and displacement of the oil. Surfactants are the principal agents that enable oil and water to mix and are often the most expensive component in an emulsion. Estimation of solubilization parameters is a great tool in designing the economical emulsion flooding compositions. In EOR, one of the most important designing factors for chemical flood is to select an appropriate surfactant formulation capable of mobilization oil without significant surfactant losses due to adsorption and phase separation in the reservoir. An optimum condition for the oil recovery is observed when the middle phase contains the added surfactant and equal amounts of oil and water (Reed and Healy, 1977). Therefore, the effect of ultrasonic waves on the amounts of oil and water solubilized by a unit of surfactant should be investigated and the results must be compared with the case using no ultrasonic waves.

In addition, the majority of the studies on the effect of ultrasonic waves on emulsification are macroscopic and no work (microscopic) to show exactly what happens at the interface of two immiscible liquids. Therefore, it is necessary to study the effect of ultrasonic waves at the liquid-liquid interface to show the phenomena happening there by using Hele-Shaw models. Hele-Shaw experiments very
accurately show what happens at the liquid-liquid interface, without the additional complexity arising from a porous (channeled) structure.

Another mechanism through which ultrasonic waves improves the recovery of oil from porous media is viscosity reduction (Duhan and Campbell, 1965; Xiao et al. 2004; Naderi, 2008; Mohammadian et al., 2012). In all of the previous studies, the viscosity was measured using either indirect methods i.e. calculating the viscosity from temperature changes or it was measured in a static condition. In other words, in spite of numerous studies, it is not yet clear that whether the viscosity reduction in ultrasonic stimulated fluids is due to the thermal effect of waves or due to other reasons. For example, Poesio et al. (2002) convincingly demonstrated that, the only reason for reduction of viscosity is temperature increase in the media. Mohammadian et al. (2012) considered viscosity reduction as one of the possible contributing mechanisms in the recovery. They further concluded that viscosity of brine and oil are reduced as a result of sonication. They also inferred that the reduction in viscosity of fluids is not solely due to heat generated as a result of sonication. Moreover, in previous researches the effects of power of waves, as an independently factor, has not been discussed on viscosity. In the other word, viscosity reduction was reported as a side effect of ultrasonic waves radiation. The area therefore could be explored further.

There are also some other oil recovery mechanisms under the influence of ultrasonic waves in porous media such as oil coalescence, mobilization and detachment. Unfortunately, the mechanisms mentioned are almost theoretical or speculative. For example, there is no micromodel study under microscope to show oil droplets coalescence due to the Bjerknes forces (forces between the vibrating oil droplets under the influence of ultrasonic waves that lead to their attractions) or there is no micromodel study to show oil detachment from dead end pores (Naderi, 2008). Therefore, it is crucial to demonstrate these mechanisms in 2D glass micromodels and prove that if ultrasonic waves can cause oil droplet coalescence and detachment. If these questions answered then it is possible to improve oil recovery techniques in the field and interpret the laboratory experiments more confidently.
1.3 Research Objectives

The objective of this research can be subdivided into four (4) groups as following:

(i) To investigate the effect of ultrasonic waves on the volume of emulsion and amount of oil and water solubilized in emulsion by a unit of surfactant.

(ii) To investigate changes in the viscosity of various liquids exposed to radiation of ultrasonic waves of various power outputs and constant frequency.

(iii) To study the effect of ultrasonic waves at the liquid-liquid interface microscopically to show the mechanisms happening there using Hele-Shaw models.

(iv) To show the effect of ultrasonic waves on oil droplet coalescence, mobilization, and detachment from dead end pores, in porous media.

1.4 Scope of Study

To investigate the effect of ultrasonic waves on oil recovery mechanisms, three series of experiments were conducted.

Firstly, emulsion tests were performed to investigate the effect of ultrasonic waves (40 kHz and 500 W) on the volume of emulsion and amounts of paraffin oil and aqueous solution (a solution of the surfactant (1000 ppm AOS) and sodium chloride solutions at varying concentrations (5000, 10000, 15000, 20000, 25000, 30000 ppm) in de-ionized water) in emulsion using test tubes. All the experiments were conducted under 60 mins mechanical agitation (50 RPM) of the test tubes by Rotospin-rotary mixer inside the ultrasonic bath (40 kHz and 500 W) under three periods of ultrasonic waves radiation (0 (NUS), 15, 60 mins).
Secondly, a smooth capillary tube was employed for investigating the viscosity changes under the influence of ultrasonic waves (constant frequency of 40 kHz). Some parameters were changed such as type of fluids (synthetic oil, paraffin oil, kerosene, and brine), and ultrasonic waves power outputs (100, 250, 500 W). Poiseille’s equation was taken into account for the calculation of the viscosity. In these experiments, the process was examined for different conditions such as controlled and uncontrolled temperature conditions.

As a third attempt, to have a better insight into the oil recovery mechanisms a series of experiments were conducted at pore scale in Hele-Shaw and 2D glass micromodels. For the experiments using Hele-Shaw models, the emulsification mechanism at liquid-liquid interface under the influence of ultrasonic waves (40 kHz and 500 W) was investigated under microscope using two different etched thickness (500 and 26 µm) models. Some experiments were performed to show more oil recovery mechanisms under the influence of ultrasonic waves such as oil droplet coalescence, oil mobilization, and oil detachment from dead end pores under microscope in two 2D glass micromodels with triangular and circle patterns. The experiments were performed in different wettability conditions (oil-wet and water-wet) and flow conditions (static and dynamic).

1.5 Significance of the Study

In enhanced oil recovery (EOR) using surfactant, low interfacial tension at low surfactant concentrations, and acceptable adsorption levels are considered to be important design parameters in optimizing chemical systems for recovering trapped oil from petroleum reservoirs. In addition, surfactants are the principal agents that enable oil and water to mix and are often the most expensive component in an emulsion. Therefore, attempts should be made to increase the volume of emulsion and prevent from phase separation for a specific concentration of surfactant in order to have an economical surfactant flooding. On the other hand, emulsification is one of the oil recovery mechanisms under the effect of ultrasonic waves. Therefore, in this study the effect of ultrasonic waves on phase behavior of surfactant-brine-oil
system was investigated, which is an important step in optimizing performance of emulsion systems for enhanced oil recovery.

The viscosity reduction is another oil recovery mechanism happening under influence of ultrasonic waves. In all of the previous studies, the viscosity was measured using either indirect methods i.e. calculating the viscosity from temperature changes or it was measured in a static condition. In this study, the viscosity changes of the fluids in controlled (constant) and uncontrolled temperature conditions under influence of ultrasonic waves was investigated.

There are also some other oil recovery mechanisms under the influence of ultrasonic waves in porous media such as oil coalescence, mobilization and detachment. However, the mechanisms mentioned are almost theoretical or speculative. Therefore, in this study these mechanisms were demonstrated under influence of ultrasonic waves using Hele-Shaw models and micromodels.

In conclusion, this study contributes:

(i) To make clarifying the oil recovery mechanisms under the influence of ultrasonic waves and

(ii) To find the factors or circumstances in which ultrasonic waves are effective for the purpose of increase in oil recovery.
REFERENCES

presented at the SPE Annual Technical Conference and Exhibition held in New Orleans, LA.

