SIMULATION OF LINEAR AND NON-LINEAR SOIL WATER DEFICIT DUE TO TREE WATER UPTAKE

ONG CHOON KIAN

UNIVERSITI TEKNOLOGI MALAYSIA
SIMULATION OF LINEAR AND NON-LINEAR SOIL WATER DEFICIT DUE TO TREE WATER UPTAKE

ONG CHOON KIAN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil - Geotechnics)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

AUGUST 2014
To my beloved father and mother
ACKNOWLEDGEMENT

In preparing this report, I was in contact with many people, researchers, and academicians. I would like to acknowledge the help, knowledge, and commitment given by those who have contributed in this report. They have contributed a lot towards my writing, planning and understanding.

In particular, I would like to give a special thanks to my master project supervisor, Assoc. Prof. Dr. Nazri Ali, for encouragement, idea, motivation, support and friendship. I also appreciate his afford and interests to improve the performance and outcome of the project. Without his continuous support and idea, this report would not have been the same as presented here.

I am also thankful to my friends, researcher and course mate for their on-going encouragement, views, tips and opinions. A special thanks to the online coding researchers for the time, example and advices along the project. They have been helped me during the time when I am helpless and down. They have contributed a lot help me in complete the project.

Finally, I would like to express my gratitude to all my family members. They have given me the best of their supports and encouragements. Without their supports and encouragements, this report would not have been the good as presented here.
ABSTRACT

The simulation of water uptake model is extremely important to anticipate the moisture content changes in the soil. It is very helpful to the development of geotechnical foundation and geo-environmental problem. There are some water uptake models have been developed by other researchers. However it is lack of software programme to plot and analyse the model. Hence, this project focuses into the development of coding for linear and non-linear water uptake model. Prasad linear model and Li et al. exponential model was simulated by using Visual Basic 6.0. The result was verified and showed a good match with the model. The exponential model also compared with CERES model. The sensitivity of linear and exponential model was investigated and also the comparison between both simulated models. The results show that the total water extraction of linear model does not affected by rooting depth but very sensitive to potential transpiration. For exponential model, the increment of total water extraction is constant with the same increment of potential transpiration. Total water extraction of linear model is lower compare to exponential model. Besides, the extinction coefficient, b shows the least effect to the total water extraction. This value of 0.15/cm and higher shows that the rate of extraction is almost zero when deeper than or equal to 60% of rooting depth.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Introduction 1
1.2 Problem Statement 2
1.3 Objectives 3
1.4 Scope of Study 3
1.5 Research Significance 4

2 LITERATURE REVIEW 5
2.1 Introduction 5
2.2 Root Water Uptake 6
 2.2.1 Context and Significance 6
 2.2.2 Root Water Uptake Process 8
 2.2.3 Rate of Transpiration 9
2.3 Water Uptake Model
 2.3.1 One-Dimensional Water Uptake 10
 2.3.2 Multi-Dimensional Water Uptake 14
 2.3.3 The Water Uptake Process 16
2.4 Water Uptake Model Simulation 16
 2.4.1 Linear Model 16
 2.4.2 Exponential Model 20
2.5 Conclusion 23

3 METHODOLOGY
 3.1 Introduction 25
 3.2 Programme Flow 26
 3.3 Linear Model 27
 3.3.1 Use Guideline 27
 3.3.2 Input 28
 3.3.3 Output 29
 3.4 Exponential Model 31
 3.4.1 Use Guideline 31
 3.4.2 Input 32
 3.4.3 Output 32
 3.5 Verification of Coding 36
 3.5.1 Linear Model Verification 36
 3.5.2 Exponential Model Verification 37

4 RESULT AND DISCUSSION
 4.1 Introduction 42
 4.2 Discussion on Linear Model 42
 4.3 Discussion on Exponential Model 46
 4.4 Discussion on Parameters of Exponential Model 49
 4.5 Comparison of Linear and Exponential Model 52
5 CONCLUSION AND RECOMMENDATION 54
 5.1 Conclusion 54
 5.2 Recommendations for Future Study 55

REFERENCES 56

APPENDIX 62
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Transpiration rate for trees</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Results obtained from Prasad linear model and VB coding</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Results obtained from Li et al. exponential model</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Results obtained from VB coding</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Different of results between model and VB coding</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Results obtained from CERES model and VB coding</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Total water extraction for varies rooting depth</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Rate of extraction at different rooting depth</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Total water extraction for varies potential transpiration</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Total extraction at different rooting depth and b value</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>Total extraction at different potential transpiration and rooting depth</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>Total extraction at different b value and potential transpiration</td>
<td>48</td>
</tr>
<tr>
<td>4.7</td>
<td>The increment of total water extraction for certain rooting depth</td>
<td>50</td>
</tr>
<tr>
<td>4.8</td>
<td>The increment of total water extraction at different rooting depth</td>
<td>51</td>
</tr>
<tr>
<td>4.9</td>
<td>The increment of total water extraction at different potential transpiration</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Water use by Trees modified after Nisbet (2005)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Some possible water uptake patterns, modified after Vrugt (2001a)</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Measurement if soil water content profiles and simulations with different root-water-uptake models (Li et al., 1999)</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Estimated maximum soil water uptake by different b values, the linear model and constant-extraction-rate model with PT set to 0.4 cm per day (Li et al., 1999)</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Soil water content profiles simulated by exponential model with different b values (Li et al., 1999)</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Maximum soil water uptake (S_{max}). Curves A and E, $b = 0.025$; curves B and F, $b = 0.05$; curve C, $b = 0.1$ and curve D, $b = 0.15$, PT set to 0.4 cm per day (Li et al., 1999)</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Programming Flow Chart</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Guideline for the linear extraction model</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>The main input parameters for linear model</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Alpha (h) value corresponding to head (Li et al., 1999)</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Rate and total water extraction</td>
<td>30</td>
</tr>
<tr>
<td>3.6</td>
<td>Linear water deficit curve import from Excel</td>
<td>30</td>
</tr>
<tr>
<td>3.7</td>
<td>Guideline for the exponential extraction model</td>
<td>31</td>
</tr>
<tr>
<td>3.8</td>
<td>The main input parameters for exponential model</td>
<td>32</td>
</tr>
<tr>
<td>3.9</td>
<td>Rate and total water extraction</td>
<td>33</td>
</tr>
<tr>
<td>3.10</td>
<td>The data that saved in text document</td>
<td>33</td>
</tr>
<tr>
<td>3.11</td>
<td>Exponential water deficit curve import from Excel</td>
<td>34</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.12</td>
<td>Login page</td>
<td>34</td>
</tr>
<tr>
<td>3.13</td>
<td>Option page</td>
<td>34</td>
</tr>
<tr>
<td>3.14</td>
<td>Linear model guideline</td>
<td>35</td>
</tr>
<tr>
<td>3.15</td>
<td>Linear model Calculation</td>
<td>35</td>
</tr>
<tr>
<td>3.16</td>
<td>Exponential model guideline</td>
<td>35</td>
</tr>
<tr>
<td>3.17</td>
<td>Exponential model Calculation</td>
<td>36</td>
</tr>
<tr>
<td>3.18</td>
<td>Estimated maximum soil water model Li et al. (1998)</td>
<td>37</td>
</tr>
<tr>
<td>3.19 (a)</td>
<td>Exponential maximum soil water uptake with b = 0.05</td>
<td>39</td>
</tr>
<tr>
<td>3.19 (b)</td>
<td>Exponential maximum soil water uptake with b = 0.15</td>
<td>39</td>
</tr>
<tr>
<td>3.19 (c)</td>
<td>Exponential maximum soil water uptake with b = 0.20</td>
<td>40</td>
</tr>
<tr>
<td>3.20</td>
<td>CERES model maximum soil water uptake</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Relationship between total water extraction and rooting depth</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Relationship between rate of extraction and rooting depth</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Relationship between total water extraction and potential transpiration</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Relationship between total water extraction and root fraction</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Relationship between total water extraction and rooting depth</td>
<td>48</td>
</tr>
<tr>
<td>4.6</td>
<td>Relationship between total water extraction and potential transpiration</td>
<td>49</td>
</tr>
<tr>
<td>4.7</td>
<td>The results of linear and exponential simulation</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(\alpha (h) \) - Dimensionless function of pressure head
\(b \) - Extinction coefficient
\(j \) - \(j^{th} \) day
\(n \) - Number of layers
\(r \) - \(r^{th} \) day
\(S_{\text{max}} \) - Rate of extraction
\(z \) - Depth
\(z_r \) - Rooting depth
\(A \) - Area
\(D \) - Depletion
\(K_{Z_1-Z_2} \) - Fraction of total root length between depth \(Z_1 - Z_2 \)
\(PT \) - Rate of potential transpiration
\(RD \) - Root length density
CHAPTER 1

INTRODUCTION

1.1 Introduction

Nowadays the development of construction is always improves and will stop down at every corner in the world. More and more high-rise buildings were built, mega projects were developed and housing areas were constructed. The geotechnical and foundation problems have become very critical and also the environmental sustainability as the pollution became a more serious problem where construction works in progress. Failure of geotechnical or foundation would affect the surrounding structure and create a lot of problems. The failure of geotechnical engineering that could happen at slope, embankment, dam and also foundation (Das, 2009). The lesson should be learned on the previous case of any failure by analyse the cause of the incident to improve the design and construction method or need some monitoring and maintenance

The soil nailed slope was failed and studied in Malaysia by Liew and Liong (2006). The results showed that the cause of the failure was due to inadequate factor of safety against overall failure. The nail tendons, nail pull-out, and facing failure were gave no sign to the failure. According to the failure case study in civil engineering (Bosela et al., 2013), the failure of Carsington embankment gave the attention to the role of construction equipment and procedures in the subsequent stability of a structure. In addition, the failure of Vajont Dam (1963) gave the lesson important of analysis and monitoring on slope movements. The difficulty of predicting when a slide mass will accelerate or fail became evident and the difficulty
of estimating changes in states of stress and strength during sliding was reinforced (Bosela et al., 2013).

Other than that, trees have the power that can damage the building services direct or indirectly. Direct damage from tree can be avoided by refer to the safe distances guidance given in BS5837: 2005. Indirectly, tress can cause the clay soils to shrink by drawing the water along their roots. Shrinkage will results in vertical and horizontal ground movements and the amount of shrinkage depends on the type of clay soil, size of tree and also climate. In a typical year expansive soils cause a greater financial loss to property owners than earthquakes, floods, hurricanes and tornadoes combined (Nelson and Miller, 1992).

According to Jones and Jefferson (2012), shrinkage and swelling of clay soil due to tress can cause the foundation movements that could damage the buildings. This is a serious problem that needs to take into consideration as a good civil engineer. The prediction of heave shrinkage should make through the changes in soil moisture content. The soil suction is a limiting parameter for free water uptake and also nutrient uptake. The relationship of plant root system and soil water play an important role in agricultural science and geotechnical engineering. So, the variation in soil suction that occurs in presence or absence of plant is very important for an analysis. Therefore, a study on changes of moisture content in soil is required to analyse some geotechnical and geo-environmental problem.

1.2 Problem Statement

The relationship of plant root system and soil water could be obtained by modelling the water uptake of tree. The water uptake model and experimental work had been developed for a period of time with different approach and factors by some researchers (Marto and Rao, 1999; Kumar et al., 2013; Dardanelli et al., 2004; Lv et al., 2013). The equation of the water uptake model had been established and validated with the site measurement by some specific plant and type of soil. From the
result, the water content was investigated and come out with the graph as water deficit curve to present the moisture condition at the site. However, there is lack of software programme to direct plot out and analyse the analytical or numerical model and non-linear problem. The estimated moisture content can be obtained easily and faster with the help of software. So, this is easier for any researcher to calculate the water deficit. In short, the development of the coding programme on the water deficit curve is very important to geo-environment development.

1.3 Objectives

The objectives of this study are as follows:

a) To review the soil water deficit curve under 1-D tree water uptake.

b) To develop the computer programming on soil water deficit estimation for linear and non-linear 1-D water uptake.

c) To verify the simulation and analyse the water deficit curve.

1.4 Scope of Study

This study focused on the soil water relationship and the existing tree water uptake model. The parameters to be investigated are soil water deficit curve and method of coding the programme (visual basic 6.0). Due to the time constrain, the soil water relationship is fixed to two type of 1-D function (linear and exponential only). Besides, experimental work is not carry out in this study. Therefore, the developed coding programme is verified but not validated with site measurement.
1.5 Research Significant

The study analyse the soil water deficit curve under 1D-linear water uptake base on existing model and the developed coding programme was presented in this report. It is faster and easier to calculate the water deficit curve and the results of water deficit can be used for other analysis and as simulation of tree water uptake or suction in the soil.
REFERENCES

Pitman, A. J. and Co-Authors. (1999). Key Results and Implications from Phase 1(c) of the Project for Intercomparison of Land-surface Parameterization Schemes. *Climate Dyn.* Vol. 15, 673-684.

