DETERMINATION OF WATER QUALITY IN UNIFORM CHANNEL USING HOMOTOPY ANALYSIS METHOD

MAIZATUL AKMAR BINTI BAHAROM

UNIVERSITI TEKNOLOGI MALAYSIA
DETERMINATION OF WATER QUALITY IN UNIFORM CHANNEL USING HOMOTOPY ANALYSIS METHOD

MAIZATUL AKMAR BINTI BAHAROM

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Engineering Mathematics)

Faculty of Science
Universiti Teknologi Malaysia

JUNE 2014
Especially to my beloved father and mother who inspired me a lot throughout the journey of my life;

Baharom Bin Yahaya

&

Siti Normadiah Bt Mohd. Yassin

And special dedication to my beloved husband and daughter

Mohamed Izwan Bin Isa

&

Nur Izara Khalisya Bt Mohamed Izwan

Both of you are the precious gift ever. Thanks for everything
ACKNOWLEDGEMENTS

First of all, I would like to say Alhamdulillah to Allah s.w.t. for making all things possible by giving me strength and health to complete this project. I am in debt to a great number of people who helped and supported me during the writing of this research report.

I want to express my deepest thanks to my supervisor, Prof. Dr. Norsarahaida Bt Saidina Amin for guiding and correcting my thesis with patience. She has put a lot of effort checking throughout the whole project and to make sure necessary correction is done. Thank you so much for being patience with me along that way. You made me believe that I had so much strength and courage to preserve even when I felt lost. On the other hand, my deep sense of gratitude would be presented to Prof. Dr. Zainal Bin Abdul Aziz for helping me throughout research completion.

I also extend my heartfelt thanks to my family, especially to my parents for supporting and encouraging me to complete this task so that I will not procrastinate in doing it. Last but not least, I am so grateful having my husband and friends that helped me in any aspects. Without them, completing this project will be a distant reality.
ABSTRACT

In recent years, the interest in preserving the quality and quantity of water is gaining widespread attention worldwide with current increasing trends in population growth and socio-economic development. So, it is important for us to check the water quality by knowing the dispersion of pollutant in water. The Homotopy analysis method (HAM) is used for solving one-dimensional convection-diffusion equation with variable coefficients arising in the mathematical modeling of dispersion of pollutants in water. By solving the convection-diffusion equation, the Homotopy analysis method (HAM) is considered for assessment of the chemical oxygen demand (COD) in a river. The HAM is used to compute the concentration of the pollutant for variable inputs. From the result obtained, we can see that the COD concentration along a uniform channel is decreasing. Therefore, the COD concentration can be used in order to check the water quality along the river.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of the study 1
1.2 Statement of the problem 2
1.3 Objective of research 3
1.4 Significance of the study 4
1.5 Scope of the study 4
1.6 Project overview 5
2 LITERATURE REVIEW

2.1 Introduction 6
2.2 River Water pollutants 7
2.3 Chemical Oxygen Demand 8
2.4 Convection-Diffusion Equation (CDE) 10
2.5 Previous Approximate Analytic Technique for Solving Nonlinear Problems 10
2.6 Homotopy Analysis Method (HAM) 15
2.7 Previous Studies on Mathematical Modelling of River Pollution 17

3 RESEARCH METHODOLOGY 21

3.1 Introduction 21
3.2 Research Procedure 22
3.3 Flow Chart of the Research 24
3.4 Governing equation 25
3.5 Basic Idea of Homotopy Analysis Method (HAM) 26
 3.5.1 Zero–order deformation equation 27
 3.5.2 High-order deformation equation 30
 3.5.3 Convergence Theorem 33
3.6 Convergence Region and Rate of Approximation for HAM solution 38
 3.6.1 The h-curves and the valid region of h. 39
3.7 Application of Homotopy Analysis Method (HAM)

4 RESULTS AND DISCUSSION

4.1 Introduction
4.2 Numerical result
4.3 Discussion

5 CONCLUSION

5.1 Introduction
5.2 Summary
5.3 Conclusion

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Approximate COD concentration using Homotopy Analysis</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Method (HAM)</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Approximate COD concentration using Finite Difference</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Method (FDM)</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Error estimation of HAM and FDM</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>a woman take some water from a very polluted river in India.</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>example of apparatus used for checking the COD value in water.</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>graph 2D for the COD concentration using FDM</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAM</td>
<td>Homotopy Analysis Method</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolve Oxygen</td>
</tr>
<tr>
<td>FDM</td>
<td>Finite Difference Method</td>
</tr>
<tr>
<td>CDE</td>
<td>Convection – Diffusion Method</td>
</tr>
<tr>
<td>EM</td>
<td>Effective Microorganism</td>
</tr>
<tr>
<td>EMA</td>
<td>Effective Microorganism Agent</td>
</tr>
<tr>
<td>CSTR</td>
<td>Continually stirred tank reactor</td>
</tr>
<tr>
<td>PFR</td>
<td>Plug flow reactor</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>$u_0(r,t)$</td>
<td>initial approximation</td>
</tr>
<tr>
<td>L</td>
<td>auxiliary linear operator</td>
</tr>
<tr>
<td>$H(r,t)$</td>
<td>auxiliary function</td>
</tr>
<tr>
<td>$C(x)$</td>
<td>concentration of COD</td>
</tr>
<tr>
<td>U</td>
<td>flow velocity in x direction</td>
</tr>
<tr>
<td>D_s</td>
<td>diffusivity</td>
</tr>
<tr>
<td>Q</td>
<td>increasing rate substrate concentration due to a source</td>
</tr>
<tr>
<td>N</td>
<td>nonlinear operator</td>
</tr>
<tr>
<td>$u(t)$</td>
<td>unknown function</td>
</tr>
<tr>
<td>t</td>
<td>independent variable</td>
</tr>
<tr>
<td>Q</td>
<td>embedding parameter</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the study

Water pollution is the contamination of water bodies (e.g. lakes, rivers, oceans, aquifers and groundwater). Water pollution occurs when pollutants are directly or indirectly discharged into water bodies without adequate treatment to remove harmful compounds. Water pollution affects plants and organisms living in these bodies of water.

Water pollution from human activities, either industrial or domestic, is a major problem in many countries. Every year, approximately 25 million persons die as a result of water pollution. Developing models to enable us to understand how to control and predict water quality is of crucial interest. When assessing the quality of water in a river, there are many factors to be considered such as the level of dissolved oxygen (DO), the presence of nitrates, chlorides, phosphates and heavy metals, the level of suspended
solids, environmental hormones, chemical oxygen demand (COD) and the presence of bacteria.

The dispersion of pollutants in the river can be known by the assessment of the chemical oxygen demand (COD) concentration in a river. This research devotes a mathematical model for solving the dispersion of pollutants in a river. The Homotopy analysis method for assessment of the chemical oxygen demand (COD) concentration in a river is considered. Pochai et al. (2006) addressed a mathematical model of water pollution using the finite element method.

Pochai (2009) implemented the finite difference method (FDM) to the hydrodynamic model with constant coefficients in the uniform reservoir and stream. This model requires the calculation of the substance dispersion given water velocity in the channel. In 1992, Liao developed the basic ideas of the homotopy in topology to propose a general analytical method for nonlinear problems, namely Homotopy analysis method.

1.2 Statement of problem

Nowadays, people are very concerned about water quality and quantity which to meet the objective of sustainable water supply and prevent potential deterioration. In recent years, the large amounts of polluted water are discharged into rivers and causing serious problem in the water quality.
Water pollution assessment problems arise frequently in environmental science. There are many parameters to be considered when assessing the quality of water in a river. One of the parameter that can be considered is the level of chemical oxygen demand (COD). One dimensional convection-diffusion equation with variable coefficients arising in mathematical model for the dispersion of pollutants in a river is used. The Homotopy analysis method (HAM) for assessment of the chemical oxygen demand (COD) concentration in a river is considered. By knowing the concentration of COD, it is then used to optimize pollution treatment cost.

1.3 Objective of research

The objectives of this study is;

i. To solve convection-diffusion equation using HAM.

ii. To determine the concentration of chemical oxygen demand (COD) in a river by using Homotopy analysis method (HAM).
1.4 **Significance of the study**

The significance of the study is to determine the dispersion of pollutants in a river. By knowing the concentration of the chemical oxygen demand (COD) we can use it to compute the concentration of pollutant for variable inputs using Homotopy analysis method (HAM). Hence, through this research, the model can be used as a tool to look well into the dispersion of pollutants in river by the calculation of the substance dispersion given water velocity in the channel.

1.5 **Scope of the project**

The scope of this project is to solve one dimensional mathematical equation of the dispersion of COD in a uniform channel by using the Convection-diffusion equation (CDE). The model equations consist of a system of the non linear differential equations. The Homotopy analysis method (HAM) is used for solving the one-dimensional Convection-diffusion equation with variable coefficients arising in the mathematical modeling of dispersion of pollutants in water. HAM is used to solve and obtain numerical COD concentration and also the graph.
1.6 Project overview

This study contains five chapters started with introductory chapter. First chapter describe briefly about the research background, problem statements, objectives, scope and significance of this study.

Literature review of this study will be considered in the next chapter 2. This chapter explained briefly about previous study on mathematical modeling of river pollution and previous approximate analytic technique for solving nonlinear problems until they found Homotopy Analysis Method (HAM).

Then, the chapter three will discuss methodologies and procedure in completing this study. Next, results and discussion of data will be considered in the fourth chapter. Finally, some conclusion of the study will be discussed in chapter five.

