SOLID PHASE MEMBRANE TIP EXTRACTION - MICROEMULSION ELECTROKINETIC CHROMATOGRAPHY OF SELECTED NON-STEROIDAL ANTI-INFLAMMATORY DRUGS

IZDIANI MOHD YATIM

UNIVERSITI TEKNOLOGI MALAYSIA
SOLID PHASE MEMBRANE TIP EXTRACTION - MICROEMULSION ELECTROKINETIC CHROMATOGRAPHY OF SELECTED NON-STEROIDAL ANTI-INFLAMMATORY DRUGS

IZDIANI MOHD YATIM

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

AUGUST 2014
In the name of Allah, the Most Merciful and the Most Beneficent. This thesis is dedicated to my beautiful mother Zalilah Naemat, my late father Mohd Yatim Sa’at, my beloved husband Muhammad Ilyas Mohd Ramdzan, my family and friends.
ACKNOWLEDGEMENTS

Alhamdulillah. First and foremost, all praise be to Allah, the Almighty God for the grace that He has given me the strength, patience, and the time to complete this work.

I would like to express my sincere gratitude to both my supervisors Prof. Dr. Wan Aini Wan Ibrahim and Dr. Dadan Hermawan for the continuous support of my Master degree study and research, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance have helped me in the research and writing of this thesis. I could not have imagined having a better supervisor and mentor for my master degree study.

Besides my supervisor, I would like to thank all of the Separation Science and Technology group members for their encouragement, insightful comments, helping hands along the way, stimulating discussions and for the sleepless nights we were working together before the deadlines.

Last but not least, I am thankful for having a loving family who are always there beside me. The love and encouragement means everything to me. Thank you very much.
ABSTRACT

Arylalkanoic acid drugs belong to the group of non-steroidal anti-inflammatory drugs (NSAIDs). These drugs are often used for the treatment of fever and minor pain due to its capability to inhibit prostaglandin productions which act as a messenger molecule in human body. There are many methods used in previous research to analyse arylalkanoic acids drugs but most of the methods require high organic solvent consumption, time consuming and involve complex sample derivatization. Solid phase extraction (SPE) is the common method used for sample preparation of NSAIDs but also involves high organic solvent consumption and is time consuming. To overcome the problems, solid phase membrane tip extraction (SPMTE) coupled with microemulsion electrokinetic chromatography (MEEKC) were used in this study and its performance was evaluated. Under the optimum MEEKC and SPMTE conditions, good linearity was obtained in the range of 0.25 to 4.00 µg/mL with good coefficient of determination ($r^2 > 0.9985$). Good repeatability was obtained with percentage relative standard deviation (% RSD) of 1.04 - 1.31% ($n=3$). Limit of detection (LOD) (S/N =3) was satisfactory for all the selected drugs (0.14 - 0.18 µg/mL). The average relative recoveries of the selected drugs in spiked water sample were good (99-104%). Combination of SPMTE procedure and the MEEKC method was then applied to the determination of spiked sulindac, ketorolac and aceclofenac in human urine samples. The percentage recoveries of the three NSAIDs obtained from the SPMTE-MEEKC method were good, ranging from 79 to 96%. Percentage relative standard deviation (% RSD), ($n=3$) for the extraction process was also good (< 3.7%). The result was then compared to SPE-MEEKC method. SPE-MEEKC method shows slightly higher percentage recovery (95 - 112%) and lower RSD % ($n=3$) (1.33 - 2.06%) than SPMTE-MEEKC method. The SPMTE-MEEKC method was proven to be applicable to human urine analysis of sulindac, ketorolac and aceclofenac with faster analysis time and low amount of organic solvent used than in SPE-MEEKC method.
ABSTRAK

Dadah asid arilalkanoik tergolong di dalam kumpulan dadah anti-radang bukan-steroid (NSAIDs). Dadah ini biasanya digunakan bagi merawat demam dan sakit kecil kerana kebolehan untuk merencat penghasilan prostaglandin yang bertindak sebagai molekul penghantar di dalam badan manusia. Banyak kaedah yang telah digunakan dalam penyelidikan terdahulu untuk analisis dadah asid arilalkanoik tetapi kebanyakan daripada kaedah tersebut melibatkan penggunaan pelarut organik yang banyak, mengambil masa yang lama dan melibatkan penerbitan sampel yang kompleks. Pengekstrakan fasa pepejal (SPE) adalah kaedah yang biasa digunakan untuk penyediaan sampel NSAIDs tetapi juga melibatkan penggunaan pelarut organik yang banyak dan mengambil masa yang lama. Untuk mengatasi masalah ini, pengekstrakan muncung membran fasa pepejal (SPMTE) yang digabungkan dengan kromatografi elektrokinetik mikroemulsi (MEEKC) telah digunakan dan prestasinya dinilai. Di bawah keadaan optimum SPMTE dan MEEKC, kelinearan yang baik diperoleh dalam julat 0.25 hingga 4.00 µg/mL dengan pekali penentuan yang baik ($r^2 > 0.9985$). Kebolehan yang baik diperoleh dengan peratus sisihan piawai relatif (% RSD) ialah 1.04 - 1.31% ($n=3$). Had pengesanan (LOD) (S/N =3) adalah memuaskan untuk semua dadah terpilih (0.14 - 0.18 µg/mL). Perolehan purata relatif dadah terpilih yang dipakai dalam sampel air adalah baik (99 ke 104%). Gabungan prosedur SPMTE dan MEEKC kemudiannya telah digunakan untuk menentukan aseklofenak, ketorolak dan sulindak yang dipakai dalam sampel air kencing. Peratus perolehan tiga NSAIDs yang dipereoleh daripada kaedah SPMTE-MEEKC adalah baik dalam julat 79 ke 96%. Peratus sisihan piawai relatif (% RSD), ($n=3$) untuk proses pengekstrakan juga adalah baik (< 3.7%). Keputusan yang diperoleh dibandingkan dengan kaedah SPE-MEEKC. Kaedah SPE-MEEKC menunjukkan peratus perolehan semula yang sedikit tinggi (95 - 112%) dan % RSD ($n=3$) yang sedikit rendah (1.33 - 2.06%) daripada kaedah SPMTE-MEEKC. Kaedah SPMTE-MEEKC terbukti boleh digunakan untuk analisis aseklofenak, ketorolak dan sulindak dalam air kencing manusia dengan masa analisis yang lebih cepat dan penggunaan pelarut organik yang kurang berbanding dengan kaedah SPE-MEEKC.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
<td></td>
</tr>
</tbody>
</table>

1 SUMMARY OF THESIS 1
1.1 Background of Study 1
1.2 Summary 3

2 INTRODUCTION 5
2.1 Arylalkanoic Acids Properties 5
2.1.1 Aceclofenac 5
2.1.2 Ketorolac 6
2.1.3 Sulindac 7
2.2 Previous Separation Methods Used for Arylalkanoic Acid Drugs 8
2.2.1 Liquid Chromatography 9
2.2.2 Gas Chromatography 13
2.2.3 Voltammetric Method 15
2.2.5 Spectrophotometric and Spectrofluorometric 17
Method
2.3 Capillary Electrophoresis
 2.3.1 Arylalkanoic Acid Drugs Analysis by Capillary Electrophoresis
 2.3.2 Microemulsion Electrokinetic Chromatography (MEEKC)
2.4 Sample Preparation
 2.4.1 Previous Extraction Methods Used for Arylalkanoic Acids Drugs
 2.4.2 Solid Phase Membrane Tip Extraction (SPMTE)
2.5 Problem Statement
2.6 Aim and Objectives of the Study
2.7 Significance of the Study
2.8 Scope of the Study
2.9 Summary of Research Works

3 OPTIMIZATION OF MICROEMULSION ELECTROKINETIC CHROMATOGRAPHY METHOD FOR THE SEPARATION OF SELECTED NSAIDs

3.1 Introduction
3.2 Standards and Chemicals
3.3 Instrumentation
3.4 Results and Discussions
 3.4.1 Separation of Aceclofenac, Ketorolac and Sulindac by MEEKC
 3.4.1.1 Effect of Sodium Tetraborate Buffer pH
 3.4.1.2 Effect of Sodium Tetraborate Buffer Concentration
 3.4.1.3 Effect of SDS Concentration
 3.4.1.4 Effect of Acetonitrile Concentration
 3.4.1.5 Effect of Butan-1-ol Concentration
 3.4.1.6 Effect of Ethyl Acetate Concentration
4 OPTIMIZATION OF SOLID PHASE MEMBRANE TIP EXTRACTION FOR THE SEPARATION OF SELECTED NSAIDs

4.1 Introduction 66
4.2 Standards and Chemicals 67
4.3 Extraction Procedure 68
 4.3.1 Solid Phase Membrane Tip Extraction 68
 4.3.2 Solid Phase Extraction 69
4.4 Results and Discussions 70
 4.4.1 Optimization of SPMTE for Separation of Selected NSAIDs 70
 4.4.1.1 Effect of Organic Solvents Used in SPMTE Conditioning Step 70
 4.4.1.2 Effect of Sample pH on SPMTE 72
 4.4.1.3 Effect of Salt Addition Percentage on SPMTE 74
 4.4.1.4 Effect of Sample Volume on SPMTE 76
 4.4.1.5 Effect of Extraction Times on SPMTE 78
 4.4.1.6 Effect of Desorption Times on SPMTE 80
4.5 Method Validation 82
 4.5.1 SPMTE Method Validation 82
 4.5.2 SPE Method Validation 83
4.6 Analysis of Real Sample 85
 4.6.1 Sample Collection and Pretreatment 86
 4.6.2 Results and Discussions 86
5 CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions 90
5.2 Future Recommendations 91

REFERENCES 93
Appendices A - C 106
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Some examples on analysis of NSAIDs using LC method for different matrices.</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Some examples on analysis of NSAIDs in water sample using GC method.</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Some examples on NSAIDs analysis using voltammetry in different matrices.</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Some examples on NSAIDs analysis using spectrophotometric and spectrofluorometric methods</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Advantages and disadvantages of several previous study on NSAIDs analysis.</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Different CE modes to resolve some NSAIDs: arylalkanoic acids class.</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Some examples on extraction of NSAIDs using EME in wastewater and biological samples</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Advantages and disadvantages between different extraction methods of NSAIDs.</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) by MEEKC at different sodium tetraborate buffer pH.</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) for separation of selected NSAIDs by MEEKC at different buffer concentration.</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) for</td>
<td>44</td>
</tr>
</tbody>
</table>
separation of selected NSAIDs by MEEKC at different SDS concentration.

3.4 Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) for separation of selected NSAIDs by MEEKC at different acetonitrile concentration.

3.5 Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) for separation of selected NSAIDs by MEEKC at different butan-1-ol concentration.

3.6 Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) for separation of selected NSAIDs by MEEKC at different ethyl acetate concentration.

3.7 Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) by MEEKC at different temperature.

3.8 Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) for separation of selected NSAIDs by MEEKC at different applied voltages.

3.9 Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) for separation of selected NSAIDs by MEEKC at different injection time.

3.10 Migration times (min), peak area (mAU), peak height (mAU), resolution (Rs) and plate number (N) by MEEKC for different type of analyte solvent used.

3.11 Linearity, repeatability, LOD (S/N=3) and LOQ (S/N=10) of aceclofenac, ketorolac and sulindac using the optimized MEEKC method.

4.1 Linearity, repeatability, LOD (S/N=3) and LOQ (S/N=10) of aceclofenac, ketorolac and sulindac in deionized water using the optimum SPMTE-
MEEKC method.

4.2 Linearity, repeatability, LOD (S/N=3) and LOQ (S/N=10) of aceclofenac, ketorolac and sulindac in deionized water using SPE-MEEKC method.

4.3 Precision (% RSD, n=3), percentage recovery (%), extraction efficiency (%) and enrichment factor of the analytes in 1µg/mL spiked human urine.

4.4 Relative recovery (%) of the extracted NSAIDs using SPMTE-MEEKC and SPE-MEEKC methods in human urine samples.

4.5 Comparison between SPMTE and SPE methods for the extraction of spiked selected NSAIDs in the samples.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structure of aceclofenac</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical structure of ketorolac</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical structure of sulindac</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic representation of a capillary electrophoresis system</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Illustration of the short chain alcohol, SDS, the octane droplet and</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>the sodium ions surrounding the droplet (Altria, 2000)</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Illustration of MEEKC process (Altria, 2000)</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Flow of the current research works</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Electropherogram of borate buffer pH optimization process. a) pH</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>7.0, b) pH 8.0, c) pH 9.0 and d) pH 10.0 under constant condition of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mM buffer concentration, 1.0%, w/v SDS, 0.8%, w/v ethyl acetate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and 6.6%, w/v butan-1-ol at 20°C, 20 kV, 214 nm, hydrodynamic injection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at 50 mbar for 5 s and methanol as analyte solvent. Peak identification:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Sulindac, 2. Ketorolac and 3. Aceclofenac</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Electropherogram of buffer concentration optimization process, a) 2.5</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>mM, b) 7.5 mM, c) 10.0 mM and d) 12.5 mM under constant condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of 10 mM buffer concentration, 1.0% w/v SDS,</td>
<td></td>
</tr>
</tbody>
</table>
0.8%, w/v ethyl acetate and 6.6% w/v butan-1-ol at 20°C, 20 kV, 214 nm and 5 s injection at 50 mbar. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

3.3 Electropherogram of SDS concentration optimization process

- a) 0.25% w/v SDS
- b) 0.5% w/v SDS
- c) 1.0% SDS w/v
- d) 1.25% w/v SDS

at 10 mM buffer concentration (pH 9.0), 0.8% w/v ethyl acetate and 6.6% w/v butan-1-ol at 20°C, 20 kV, 214 nm and hydrodynamic injection at 50 mbar for 5 s. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

3.4 Electropherogram of acetonitrile concentration optimization process

- a) 12.0% w/v
- b) 9.0% w/v
- c) 6.0% w/v
- d) 3.0% w/v

at 10 mM buffer concentration at pH 9.0, 0.5% w/v SDS, 0.8% w/v ethyl acetate and 6.6% w/v butan-1-ol at 20°C, 30 kV, 214 nm and hydrodynamic injection at 50 mbar for 5 s. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

3.5 Electropherogram of butan-1-ol concentration optimization process

- a) 3.3% w/v
- b) 6.6% w/v
- c) 9.9% w/v
- d) 13.2% w/v

at 10 mM buffer concentration at pH 9.0, 0.5% w/v SDS, 0.8% w/v ethyl acetate and 6.0% w/v acetonitrile at 20°C, 20 kV, 214 nm and hydrodynamic injection at 50 mbar for 5 s. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

3.6 Effect of butan-1-ol concentration on migration time by MEEKC for the separation of sulindac, ketorolac and aceclofenac. MEEKC condition as in Figure 3.5

3.7 Effect of butan-1-ol concentration on plate number
by MEEKC for the separation of sulindac, ketorolac and aceclofenac. MEEKC condition as in Figure 3.5

3.8 Electropherogram of ethyl acetate concentration optimization process. a) 0.2% w/v, b) 0.4% w/v and c) 0.8% w/v, at 10 mM buffer concentration of pH 9.0, 0.5% w/v SDS, 6.6% w/v butan-1-ol and 6.0% w/v acetonitrile at 20°C, 20 kV, 214 nm and hydrodynamic injection at 50 mbar for 5 s. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

3.9 Electropherogram of temperature optimization process. a) 20°C, b) 25°C, c) 30°C, d) 35°C and e) 40°C at 10 mM sodium tetraborate buffer concentration of pH 9, 0.5% w/v SDS, 0.8% w/v ethyl acetate, 6.6% w/v butan-1-ol and 6.0% w/v acetonitrile at 20 kV, 214 nm and hydrodynamic injection at 50 mbar for 5 s. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

3.10 Electropherogram of wavelength optimization process. a) 200 nm, b) 207 nm, c) 214 nm, d) 221 nm and e) 228 nm at 10 mM sodium tetraborate buffer concentration of pH 9.0, 0.5% w/v SDS, 0.8% w/v ethyl acetate, 6.6% w/v butan-1-ol and 6.0% w/v acetonitrile at 25°C, 20 kV and hydrodynamic injection at 50 mbar for 5 s. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

3.11 Effect of wavelengths on peak area by MEEKC for the separation of sulindac, ketorolac and aceclofenac. MEEKC conditions as in Figure 3.11

3.12 Electropherogram of applied voltage optimization process. a) 20 kV, b) 25 kV and e) 30 kV at 10
mM sodium tetraborate buffer concentration of pH 9, 0.5% w/v SDS, 0.8% w/v ethyl acetate, 6.6% w/v butan-1-ol and 6.0% w/v acetonitrile at 25°C, 200 nm and hydrodynamic injection at 50 mbar for 5 s. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

3.13 Electropherogram of injection time optimization process. a) 1 s, b) 3 s, c) 5 s, d) 7 s and e) 9 s per injection at 50 mbar at of 10 mM sodium tetraborate buffer concentration of pH 9.00.5% w/v SDS, 0.8% w/v ethyl acetate, 6.6% w/v butan-1-ol and 6.0% w/v acetonitrile at the temperature of 25°C, 30 kV applied voltage, 200 nm detection wavelength. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

3.14 Electropherogram of analyte solvent type optimization process. a) isopropanol, b) methanol and c) acetonitrile, at 10 mM sodium tetraborate buffer concentration of pH 9, 0.5% w/v SDS, 0.8% w/v ethyl acetate, 6.6% w/v butan-1-ol, 6.0% w/v acetonitrile at the temperature of 25°C, 30 kV of applied voltage, detection wavelength of 200 nm and hydrodynamic injection at 50 mbar for 7 s. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac

4.1 Schematic of SPMTE device used for the extraction study of sulindac, ketorolac and aceclofenac from aqueous sample

4.2 Electropherogram of organic solvent conditioning types optimization using deionized water (15 mL) as the sample; a) methanol, b) dichloromethane, c) acetonitrile and d) isopropanol. Extraction conditions: 1 μg/mL of spiked solution, sample
solution at pH 4.0, NaCl addition at 1% w/v, 20 min extraction time and 15 min desorption time. MEEKC conditions: separation temperature of 25°C, 200 nm detection wavelength, applied voltage of 30 kV, injection time of 7 s at 50 mbar and BGE composition of 10 mM sodium tetraborate buffer at pH 9.0, 0.5% w/v SDS, 0.8% w/v ethyl acetate, 6.0% w/v acetonitrile and 6.6% w/v butan-1-ol. Peak identification: 1. Sulindac, 2. Ketorolac and 3. Aceclofenac.

4.3 Effect of organic solvents used for conditioning step on peak area of sulindac, ketorolac and aceclofenac extracted using SPMTE-MEEKC method. MEEKC condition as in Figure 4.2.

4.4 Electropherogram of sample pH optimization using deionized water (15 mL) as the sample; a) pH 2.0, b) pH 4.0, c) pH 6.0 and d) pH 8.0. Extraction conditions: 1 μg/mL of spiked solution, isopropanol as organic solvent used for conditioning step, NaCl addition at 1% w/v, 20 min extraction time and 15 min desorption time. MEEKC conditions and peak identifications as in Figure 4.2.

4.5 Effect of Sample pH on peak area of sulindac, ketorolac and aceclofenac extracted using SPMTE-MEEKC method. MEEKC condition as in Figure 4.2.

4.6 Electropherogram of % NaCl addition optimization using DAD detection; a) 0.0% w/v b) 1.0% w/v, c) 2.5% w/v and d) 5.0 % w/v. SPMTE extraction conditions: 1 μg/mL of spiked solution, isopropanol as organic solvent used for conditioning step, sample solution at pH 2.0, 20
min extraction time and 15 min desorption time. MEEKC conditions and peak identifications as in Figure 4.2

4.7 Effect of salt addition percentage on peak area of sulindac, ketorolac and aceclofenac extracted using SPMTE-MEEKC method. MEEKC condition as in Figure 4.2

4.8 Electropherogram of sample volume optimization using DAD detection; a) 5 mL b) 10 mL, c) 15 mL and d) 20 mL. SPMTE extraction conditions: 1 µg/mL of spiked solution, isopropanol as organic solvent used for conditioning, 2.5% w/v NaCl salt addition, sample solution at pH 2, 20 min extraction time and 15 min desorption time. MEEKC conditions and peak identifications as in Figure 4.2

4.9 Effect of sample volume on peak area of sulindac, ketorolac and aceclofenac extracted using SPMTE-MEEKC method. MEEKC condition is as in Figure 4.2

4.10 Electropherogram of extraction time optimization using DAD detection; a) 10 min b) 20 min, c) 30 min and d) 40 min. SPMTE extraction conditions: 1 µg/mL of spiked solution, isopropanol as organic solvent used for conditioning, 2.5% w/v NaCl salt addition, sample solution at pH 2.0, 10 mL sample volume and 15 min desorption time. MEEKC conditions and peak identifications as in Figure 4.2

4.11 Effect of extraction time on peak area of sulindac, ketorolac and aceclofenac extracted using SPMTE-MEEKC method. MEEKC condition as in Figure 4.2

4.12 Electropherogram of desorptions time optimization
using DAD detection; a) 5 min b) 10 min, c) 15 min and d) 20 min. SPMTE extraction conditions: 1 µg/mL of spiked solution, isopropanol as organic solvent for conditioning, 2.5% w/v NaCl salt addition, sample solution at pH 2.0, 10 mL sample volume and 30 min extraction time. MEEKC conditions and peak identifications as in Figure 4.2

4.13 Effect of desorption time on peak area of sulindac, ketorolac and aceclofenac extracted using SPMTE-MEEKC method. MEEKC condition as in Figure 4.2

4.14 Electropherogram of human urine extracts using optimum SPMTE and SPE procedure prior to MEEKC analysis. (a) Blank sample-SPMTE, b) Sample spiked with 1 µg/mL of each selected NSAIDs-SPMTE c) Blank sample-SPE and d) Sample spiked with 1 µg/mL of each selected NSAIDs-SPE. MEEKC conditions and peak identifications as in Figure 4.2
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>Ar</td>
<td>Argon</td>
</tr>
<tr>
<td>BGE</td>
<td>Background electrolyte</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical abstracts service</td>
</tr>
<tr>
<td>CE</td>
<td>Capillary electrophoresis</td>
</tr>
<tr>
<td>CNT</td>
<td>Carbon nanotube</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>CZE</td>
<td>Capillary zone electrophoresis</td>
</tr>
<tr>
<td>DAD</td>
<td>Diode-array detectors</td>
</tr>
<tr>
<td>DCNP</td>
<td>Dichloro nitrophenyl phosphate</td>
</tr>
<tr>
<td>EME</td>
<td>Electromembrane extraction</td>
</tr>
<tr>
<td>EOF</td>
<td>Electroosmotic flow</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>He</td>
<td>Helium</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IPA</td>
<td>Isopropanol</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemists</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid chromatography</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantitation</td>
</tr>
<tr>
<td>LPME</td>
<td>Liquid phase microextraction</td>
</tr>
<tr>
<td>MEEKC</td>
<td>Microemulsion electrokinetic chromatography</td>
</tr>
<tr>
<td>MEKC</td>
<td>Micellar electrokinetic chromatography</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>Multiwalled carbon nanotubes</td>
</tr>
<tr>
<td>N2</td>
<td>Nitrogen gas</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>PDAC</td>
<td>Poly (diallyldimethylammonium chloride)</td>
</tr>
<tr>
<td>RSD</td>
<td>Relative standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SLM</td>
<td>Supported liquid membrane</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>SPME</td>
<td>Solid phase microextraction</td>
</tr>
<tr>
<td>SPMTE</td>
<td>Solid phase membrane tip extraction</td>
</tr>
</tbody>
</table>
CHAPTER 1

SUMMARY OF THESIS

1.1 Background of Study

Non-steroidal anti-inflammatory drugs (NSAIDs) belong to the class of acidic compounds which include a various number of different chemical types such as derivatives of arylacetic acid, arylalkanoic acid, arylpropionic acid, indolic acid and anthranilic acid. Commonly, NSAIDs exhibit pK_a values in the range of 3-6 and exist in anionic form in pH values greater than 7 (Jorgensen and Lukacs, 1981a). NSAIDs are usually taken at higher doses because of their anti-inflammatory effect and in small doses for their analgesic and antipyretic actions (Jorgensen and Lukacs, 1981b).

The most common anti-inflammatory mechanism for NSAIDs is the inhibition of cyclooxygenase enzyme (COX) which is necessary in the formation of prostaglandins. Prostaglandins can cause strong physiological effects like swelling and pain. The usage of NSAIDs however can give a few side-effects such as irritation of the stomach, vomiting and sometimes nausea. NSAIDs can be taken orally, systemically or as localized injection. NSAIDs are widely used and easily available. Thus, they are extensively used by patients (Hontela, 2006). However, because of their polar structures, high water solubility and poor degradability, NSAIDs usually cannot be completely eliminated through the sewage treatment plant and these facilitate their penetration through all natural filtration steps and enter the ground and drinking water (Jorgensen and Lukacs, 1981a; Jorgensen and Lukacs 1981b; Hollister, 1991; Sherma and Jain, 2000; Hontela, 2006). Arylalkanoic acid is one of the NSAIDs class and it usually contains one or more aryl groups in the
structure. Many important arylalkanoic acid drugs like sulindac and ketorolac play an important role in treating osteoarthritis, cancer, and smooth-muscle pain (O'Donnel, 1997; Schrier, 2007).

The growing demands for arylalkanoic acid class of NSAIDs drug and its bad effect towards the environment from their production and decomposition process ignite the needs to develop new analytical methods regarding their qualitative and quantitative analysis. There are many methods used in previous research on aryalkanoic class analysis such as high performance liquid chromatography (HPLC) (Sun et al., 2003; Payan et al., 2011), gas chromatography (GC) (Martinez-Algaba, 2004), liquid chromatography (LC) (Hoshina et al., 2011), voltammetric (Ali, 1999), spectrophotometric and spectrofluorometric methods (Gouda et al., 2011).

However, many of these methods are solvent and time consuming. LC, spectrophotometric method and spectrofluorometric method also exhibit low sensitivity properties (Sun et al., 2003; Payan et al., 2011; Martinez-Algaba, 2004; Hoshina et al., 2011; Ali, 1999; Gouda et al., 2011; Harvey, 2000). Therefore, one of the CE modes which is MEEKC was selected as the separation method to overcome the large solvent consumption problem faced in the previous method. Microemulsion electrokinetic chromatography (MEEKC), an electrodriven separation technique is one of the capillary electrophoresis modes in a nanoseparation method.

MEEKC offers a highly efficient separation of both charged and neutral solutes covering a various range of water solubility. This technique basically separates the solutes based on their hydrophobicities and electrophoretic mobilities using microemulsion buffers. This method was proved to be rigid, faster, low solvent consumption and cost effective compared to other rapidly used separation methods such as high performance liquid chromatography (HPLC) and micellar electrokinetic chromatography (MEKC) (Sun et al., 2003; Payan et al., 2011; Huang et al., 2003; Hansen et al., 2001). Therefore, MEEKC was selected as the separation method in this research in order to achieve a fast, environmental friendly and cost effective separation process of aryalkanoic acid drugs. In this research, an MEEKC method with DAD detector was used and the background electrolyte (BGE) composition was
investigated to provide better result for the analysis of the selected aryalkanoic acid drugs which were aceclofenac, ketorolac and sulindac.

In previous researches, various types of extraction methods have been used to extract NSAIDs such as solid phase extraction (SPE) (Hoshina et al., 2011), electromembrane extraction (EME) (Payan et al., 2011), liquid phase microextraction (LPME) (Es’haghi, 2009) and solid phase microextraction (SPME) (Fan et al., 2005). However, SPE needs a lot of steps which is time consuming and uses a large amount of organic solvent that are potentially toxic and relatively expensive. SPME and LPME both have a similar disadvantage which is lack of selectivity for specific adsorption of certain analytes (Li et al., 2011). EME in the other hand offers faster analysis time but the analyte’s percentage of recovery in real samples is low compared to other extraction methods (Lee et al., 2009).

Therefore, solid phase membrane tip extraction (SPMTE) was used in this research as it offers shorter extraction time, low solvent usage, cost effectiveness, high analyte percentage recovery and is easy to use. SPMTE involves the use of tiny-cone shaped membrane tip protected multiwall carbon nanotubes (MWCNTs). In a previous research done on pesticide analysis, SPMTE method was able to minimize the extraction time as well as reduce cost and solvent usage. This extraction method was proven to give comparable LODs as well as method reproducibility (See et al., 2010).

1.2 Summary

This study was conducted to separate three different aryalkanoic acid drugs namely aceclofenac, ketorolac and sulindac in urine sample using MEEKC coupled with SPMTE method. There are four important objectives in this study which are firstly the optimization of MEEKC method followed by SPMTE method, thirdly is the validation of the SPMTE-MEEKC method and the final objective is application of the validated method in the analysis of human urine sample.
Chapter 2 combines the explanation of the selected drug properties, previous separation and extraction methods used in arylalkanoic acid drugs analysis and introduction to capillary electrophoresis and solid phase membrane tips extraction. Objectives of the study, significance of the study and the scope of the study are also covered in this chapter.

Chapter 3 reports the optimization of microemulsion electrokinetic chromatography method for the separation of the selected drugs. Throughout this chapter, the procedure and the effects of eleven parameters towards the separation process using MEEKC were investigated. The parameters investigated were sodium tetraborate buffer pH and concentration, SDS concentration, acetonitrile concentration, butan-1-ol concentration, ethyl acetate concentration, temperature, wavelength, applied voltage, injection time and solvent type.

Chapter 4 discussed the results obtained from the optimization of SPMTE techniques used in the extraction of the selected drugs in deionized water. Six parameters were optimized namely effect of organic solvent used for conditioning, sample pH, salt addition percentage, sample volume, extraction times and desorption times. The results were then compared with the results obtained from a published SPE method. The optimum conditions of SPMTE-MEEKC were then applied for the analysis of selected NSAIDs in urine samples.

The final chapter discussed the conclusions and future directions for further studies. The results obtained throughout this study such as the analytical performance and optimized parameters were concluded and compared. Future directions of the research are also highlighted in this chapter.
REFERENCES

Maurer, H. H., Tauvel, F. X., Kraemer, T. (2001). Screening Procedure for Detection of Non-Steroidal Anti-Inflammatory Drugs and Their Metabolites in Urine as Part of Systematic Toxicological Analysis Procedure for Acidic Drugs and

