PROTEOLYTIC ACTIVITY CHARACTERIZATION OF BACTERIA ISOLATED FROM MALAYSIAN TRADITIONAL FERMENTED FOOD

NAJIHAH BINTI ISMAIL

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JULY 2014
“Maha Suci ALLAH & segala puji bagi-NYA, Maha Suci ALLAH yang Maha Agung”

To heart of my life Ma, Abah, Abg Zi, Q. Ngah, Q. Chik, Q. Jue, & Pok Pi

To my beloved fiancé Mohd Saiful bin Deraman

To all my awesome friends
Bismillahirrahmanirrahim, Alhamdulillah. First and foremost I would like to highly thank my supervisor Dr. Haryati Jamaluddin for giving me this golden opportunity to perform this project and for remarkably supervised me throughout this project duration. I truthfully appreciated all the valuable knowledge, moral support and advise that had been given. My innermost gratitude to my beloved parents Ma and Abah, and also my siblings, Abg, Kak Ngah, Kak Ju and Pok Pi for always be at my side through the hardship of completing this project and for encourage me to do my best in this project. I would also like to specially thank my late beloved sister, Kak Chik, for giving me such a precious advise, grow wonderful spirit in me and for believing in me (al-fatihah).

Besides, I would like to earnestly thank to all postgraduate student of Biological Structure Laboratory, staffs and laboratory assistants for kindly and helpfully helping me in completing my project. In addition, millions thank to my awesome friends Nad, Kak Dalila, Zara Kak Lin, Soraya and all my MQT course mates for thoughtfully sharing important knowledge with me, for being together through thick and thin and for making performing this project such a wonderful and memorable experience. Last but not least, special thanks to Mohd Saiful bin Deraman for always be there.
ABSTRACT

Three types of bacteria strains, which are *Bacillus* sp., *Enterococcus gallinarum* and *Bacillus thuringiensis* have been isolated previously from Malaysian traditional fermented food. The proteolytic activities of the three strains were screened on skim milk agar plate. After 24 hours of incubation at 37°C, proteolytic activity was observed based on halozone formation on the skim milk agar plate with a diameter of 0.1, 1.9, and 3.2 cm respectively for *Bacillus* sp., *Enterococcus gallinarum* and *Bacillus thuringiensis*. The proteolytic activities of all the strains were characterized based on optimum temperature, temperature stability, optimum pH, pH stability, substrate specificity and effect of metal ions towards activity. All three strains showed optimum activity at 50°C. The optimum pH for *Bacillus* sp. and *Bacillus thuringiensis* were pH 8.5, while *Enterococcus gallinarum* showed maximum enzyme activity of 0.068±0.003 U/ml at pH 7.5. The proteolytic activity of the bacteria were stable in the temperature range of 30°C to 50°C and exhibited rapid decrease in activity when incubated at 60°C for 60 minutes. Proteolytic activity of all strains was stable at a broad pH range from pH 4.5 to pH 10.6. The bacteria strains displayed high activity for casein, gelatin and fibrin but showed very low activity for bovine serum albumin. Proteolytic activity of *Bacillus* sp. was enhanced by Cu$^{2+}$, Ca$^{2+}$, Mg$^{2+}$, Fe$^{2+}$ and Zn$^{2+}$, while the proteolytic activity of *Enterococcus gallinarum* was only slightly enhanced by Zn$^{2+}$.
ABSTRAK

Tiga jenis spesis bakteria daripada makanan terampai tradisional Malaysia telah dipencilkan iaitu Bacillus sp., Enterococcus gallinarum dan Bacillus thuringiensis. Aktiviti proteolitik oleh ketiga-tiga spesis bakteria telah ditentukan menggunakan plat agar susu skim. Selepas inkubasi selama 24 jam pada suhu 37°C, aktiviti proteolitik dapat dilihat melalui pembentukan kawasan jernih pada plat agar susu skim dengan masing-masing mempunyai diameter (dalam cm) iaitu 0.19, dan 3.2 bagi Bacillus sp., Enterococcus gallinarum, dan Bacillus thuringiensis. Aktiviti proteolitik oleh setiap spesis bakteria dicirikan mengikut suhu optimum, kestabilan suhu, pH optimum, kestabilan pH, pengkhususan substrat dan juga kesan ion logam terhadap aktiviti proteolitik. Setiap spesis bakteria menunjukkan aktiviti optima pada suhu 50°C. pH optima bagi Bacillus sp. dan Bacillus thuringiensis adalah pH 8.5, manakala Enterococcus gallinarum menunjukkan aktiviti enzim yang maksimum iaitu 0.068±0.003 U/ml pada pH 7.5. Aktiviti proteolitik oleh setiap bakteria adalah stabil di dalam linkungan suhu 30°C hingga 50°C dan menurun secara mendadak selepas inkubasi pada suhu 60°C selama 60 mimit. Aktiviti proteolitik bagi setiap spesis bakteria adalah stabil dalam lingkungan pH yang luas iaitu daripada pH 4.5 hingga pH 10.6. Ketiga-tiga spesis bakteria menunjukkan aktiviti yang tinggi bagi casein, gelatin dan fibrin tetapi menunjukkan aktiviti yang rendah bagi albumin serum bovin (BSA). Aktiviti proteolitik bagi Bacillus sp. dipertingkatkan oleh Cu²⁺, Ca²⁺, Mg²⁺, Fe²⁺dan Zn²⁺. Manakala aktiviti proteolitik bagi Enterococcus gallinarum hanya dipertingkat sedikit oleh Zn²⁺.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Research Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Objectives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4 Scope of Study</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.5 Significance of Study</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.1 Proteolytic Enzyme</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.2 Proteolytic Activity from Fermented Food</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.3 Proteolytic Enzyme from Bacillus sp.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.4 Characterization of Proteolytic Activity</td>
<td>11</td>
</tr>
</tbody>
</table>
2.4.1 Optimum Temperature and Temperature Stability of Proteolytic Activity
2.4.2 Optimum pH and pH stability
2.4.3 Substrate Specificity
2.4.4 Effect of Metal ions on Proteolytic Activity

3 METHODOLOGY

3.1 Chemicals
3.2 Source of Microorganisms and Culture Condition
3.3 Proteolytic Enzyme Production
 3.3.1 Culture Condition
 3.3.2 Inoculum Preparations
 3.3.3 Crude Enzyme Preparations
3.4 Determination of Proteolytic Activity
 3.4.1 Skim Milk Agar Plate Test
 3.4.2 Proteolytic Enzyme Assay
3.5 Characterization of Proteolytic Activity
 3.5.1 Optimum Temperature of Proteolytic Activity
 3.5.2 Temperature Stability of Proteolytic Activity
 3.5.3 Optimum pH for Proteolytic Activity
 3.5.4 pH Stability for Proteolytic Activity
 3.5.5 Substrate Specificity
 3.5.6 Effect of Metal Ions on Proteolytic Activity

4 RESULT AND DISCUSSION

4.1 Growth Profile of Microorganisms
4.2 Skim Milk Agar Plate Test
4.3 Characterization of Proteolytic Activity
 4.3.1 Optimum Temperature of Proteolytic Activity
4.3.2 Temperature Stability of Proteolytic Activity

4.3.3 Optimum pH for Proteolytic Activity

4.3.4 pH Stability for Proteolytic Activity

4.3.5 Substrate Specificity

4.3.6 Effect of Metal Ions on Proteolytic Activity

5 CONCLUSION

5.1 Conclusion

5.2 Future Work

REFERENCES

Appendices A-H
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of traditional fermented foods that showing proteolytic activity.</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of microorganism from various fermented foods sources.</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>The optical density (OD) at 660 nm of Bacillus sp., Enterococcus gallinarum and Bacillus thuringiensis and their respective holozone diameter (cm) from crude proteolytic enzyme isolated after 24 and 48 hours of culture.</td>
<td>28</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.1</td>
<td>The growth profile of Bacillus sp. for 48 hours at 37°C, 200 rpm.</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>The growth profile of Enterococcus gallinarum for 48 hours at 37°C, 200 rpm.</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>The growth profile of Bacillus thuringiensis for 48 hours at 37°C, 200 rpm.</td>
<td>25</td>
</tr>
<tr>
<td>4.4</td>
<td>Preliminary determination of proteolytic activity using skim milk agar plate by observing the holozone formation</td>
<td>27</td>
</tr>
<tr>
<td>4.5</td>
<td>The optimum temperature for Bacillus sp. proteolytic enzyme.</td>
<td>29</td>
</tr>
<tr>
<td>4.6</td>
<td>The optimum temperature for Enterococcus gallinarum proteolytic enzyme.</td>
<td>30</td>
</tr>
<tr>
<td>4.7</td>
<td>The optimum temperature for Bacillus thuringiensis proteolytic enzyme</td>
<td>30</td>
</tr>
<tr>
<td>4.8</td>
<td>The temperature stability for Bacillus sp. proteolytic enzyme.</td>
<td>32</td>
</tr>
<tr>
<td>4.9</td>
<td>The temperature stability for Enterococcus gallinarum proteolytic activity.</td>
<td>33</td>
</tr>
<tr>
<td>4.10</td>
<td>The temperature stability for Bacillus thuringiensis proteolytic activity.</td>
<td>33</td>
</tr>
<tr>
<td>4.11</td>
<td>The optimum pH for Bacillus sp. proteolytic enzyme.</td>
<td>35</td>
</tr>
<tr>
<td>4.12</td>
<td>The optimum pH for Enterococcus gallinarum proteolytic enzyme.</td>
<td>35</td>
</tr>
</tbody>
</table>
4.13 The optimum pH for *Bacillus thuringiensis* proteolytic enzyme.

4.14 pH stability for proteolytic activity of *Bacillus* sp. at 37°C.

4.15 pH stability for proteolytic activity of *Enterococcus gallinarum* at 37°C.

4.16 The pH stability for proteolytic activity of *Bacillus thuringiensis* at 37°C.

4.17 Substrate specificity determination using four different types of substrates which were casein, gelatin, bovine serum albumin and fibrin, with concentration of 0.65% (w/v).

4.18 The effects of metal ions on proteolytic activity of *Bacillus* sp. with the proteolytic activity of *Bacillus* sp. without the effect of metal ions (control).

4.19 Proteolytic activity of *Enterococcus gallinarum* at different types of metal ions with the proteolytic activity of *Enterococcus gallinarum* without the addition of metal ions (control).

4.20 Proteolytic activity of *Bacillus thuringiensis* at different types of metal ions with the proteolytic activity of *Bacillus thuringiensis* without the addition of metal ions (control).
LIST OF SYMBOLS

% - Percentage
°C - Degree Celsius
µl - Microliter
µmoles - Micromoles
cm - Centimetre
g - Gram
h - Hour
M - Molarity
mg/ml - Milligram per milliliter
Min - Minute
ml - Milliliter
mM - Milimolar
pH - Power of hydrogen ion
U - Unit of enzyme activity as define.
LIST OF ABBREVIATIONS

BSA - Bovine serum albumin
GRAS - Generally recognized as safe
NA - Nutrient agar
NaCl - Sodium Chloride
NaOH - Sodium hydroxide
NB - Nutrient broth
nm - Nanometer
OD - Optical density
Rpm - Rotation per minute
TCA - Trichloroacetic acid
w/v - Weight over volume
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tyrosine standard curve</td>
<td>56</td>
</tr>
<tr>
<td>B</td>
<td>Preparation of L-tyrosine Stock Solution for Standard Curve</td>
<td>57</td>
</tr>
<tr>
<td>C</td>
<td>Preparations of Reagents for Proteolytic Assay</td>
<td>58</td>
</tr>
<tr>
<td>D</td>
<td>Preparations of 0.05 M Acetate Buffer</td>
<td>61</td>
</tr>
<tr>
<td>E</td>
<td>Preparations of 0.05 M Potassium Phosphate Buffer</td>
<td>62</td>
</tr>
<tr>
<td>F</td>
<td>Preparation of 0.05 M Tris- HCl Buffer</td>
<td>63</td>
</tr>
<tr>
<td>G</td>
<td>Preparation of 0.05 M Glycine- NaOH Buffer</td>
<td>64</td>
</tr>
<tr>
<td>H</td>
<td>Equations Used in Calculation of Proteolytic Activity</td>
<td>65</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Proteolytic enzymes are a group of enzymes in hydrolase class that break down peptide bond of protein into polypeptides or free amino acids through a hydrolysis process (Raja et al., 2011; Alnahdi, 2012). Hydrolysis is a process where chemical bond is cleaved by the addition of water molecule (Horton et al., 2006). These enzymes are also recognized as proteases, proteinases, and peptidases enzyme (Rani et al., 2012).

Proteolytic enzymes possessed several physiological functions and play a vital role in living being where, they involved in food protein digestion, protein turnover, cell division, blood-clotting cascade, signal transduction, and processing of polypeptide hormones. Proteolytic enzymes have the ability to carry out selective modification of proteins by limited cleavage such as activation of zymogenic forms of enzymes, blood clotting and lysis of fibrin clots, and processing and transport of secretory proteins across the membranes (Rani et al., 2012).
They are also of great importance in various industries as well as providing lots of economic benefits. Among industrial enzymes, proteases account for 1/3 of the total industrial enzymes used and constitute for about 60% of the total enzyme sale in the world (Bose, 2011). Thus, proteases are commercially being produce for application in detergent, leather, brewing and degumming silk industry. Sources of protease include all forms of life, that is, plants, animals and microorganisms (Khan et al., 2011). Some of the well-known proteolytic enzymes from plants are papain, bromelain, keratinases and ficin. Meanwhile, proteases from animal origin are recognized as trypsin, chymotrypsin, pepsin and rennin (Jisha et al., 2013).

Due to potential varied applications of proteolytic enzymes in industrial processes and medical therapeutics, microbial protease is much more preferable compared protease originating from plants and animals since they hold the characteristics that are desired in biotechnology applications. Microorganisms are excellent sources of protease, due to their rapid growth, broad biochemical diversity and their susceptibility to genetic manipulation for the generation of new recombinant enzymes with desired properties (Rao et al., 1998).

Among the microbial protease, interest have been placed in identifying potential microorganisms producing proteolytic enzyme isolated from traditional fermented food. The fermentation products are good sources for isolation of microorganisms producing useful industrial and food enzymes, e.g. protease and collagenase (Uchida et al., 2004). Fermented foods generally preserve pleasant flavour, aroma, texture, enhanced nutritive values and good keeping quality under ambient conditions (Law et al., 2011). In Southeast Asian countries, for examples Japan, Korea, China, Indonesia, Thailand and Malaysia are known to possess numerous types of traditional fermented foods from variety of sources. Natto, Douchi and Cheongkokjang are most commonly known soybean types traditional fermented food from Japan, China and Korea respectively (Sumi et al., 1987; Peng et al., 2003; Jeong et al., 2007). Meanwhile, one of the famously soybean fermented food in Malaysia and Indonesia is known as Tempeh (Kim et al., 2006).
Besides soybean sources, traditional fermented food make from the fish sauce is also known for their protease activity. In Thailand the fermented fish sauce called Pla-\textit{ra}, is known for having potential microorganisms that can produce the protease (Chamroensaksri 	extit{et al.}, 2008). Budu is a famous fermented fish sauce among the state of east-cost Peninsular Malaysia (Ahmad Sanusi and Jamaluddin, 2012). Other than that, traditional fermented food based of shrimp sauce and paste such as Ka-\textit{pi} (Thailand) and Terasi (Indonesia) are also shown to govern potential microorganism producing proteolytic enzyme (Tanasupawat 	extit{et al.}, 2011; Prihanto 	extit{et al.}, 2013).

1.2 Problem Statement

Numerous types of microorganisms have been isolated from diverse range of traditional fermented foods especially in Southeast Asia region shows potential proteolytic activity. Despite having an essential need to further understand the enzyme in terms of function and structures, a comprehensive understanding of protease will facilitate classification of the enzyme based on the properties they possess for their application especially in industrial processes and medical therapeutics.

1.3 Objectives

The primary aim of this experimental study is to characterize wild type proteolytic enzyme from three types of bacteria which are, \textit{Bacillus} sp., \textit{Enterococcus gallinarum} and \textit{Bacillus thuringiensis} that have been isolated previously from Malaysian traditional fermented food. Therefore the main objectives are:
1) To determine optimum temperature and temperature stability of proteolytic enzyme.
2) To determine optimum pH and pH stability of proteolytic enzyme.
3) To identify substrate specificity
4) To determine the effect of metal ions on proteolytic activity.

1.4 Scope of Study

In this research study, the wild type bacteria that have been isolated from Malaysian traditional fermented food by Krishnan (2010) and Chang (2011) known as Bacillus sp., Enterococcus gallinarum, and Bacillus thuringiensis were used for the production of proteolytic enzyme. The crude proteolytic enzyme produced then was assayed for its proteolytic activity and characterized according to the optimum temperature, temperature stability, optimum pH, pH stability, substrate specificity and effect of metal ions.

1.5 Significance of Study

All proteolytic enzymes have characteristics properties with regard to temperature, pH, ion requirement, specificity, activity and stability. Studies relating to such properties are imperative and these biochemical parameters will determine the potential application in their respective industries and medical therapeutics fields (Jisha et al., 2013).
REFERENCES

Chang, W. N. Screening, isolation and characterization of fibrinolytic enzyme producing bacteria from soybean fermented food. Degree dissertation. Universiti Teknologi Malaysia; 2011.

Fernandez-Diaz, M. D., Montero, P., and Gomez-Guillen, M. C. (2001). Gel properties of collagens from skins of cod (Gadus morhua) and hake (Merluccius merluccius) and their modification by the coenhancers magnesium sulphate, glycerol and transglutaminase. *Food Chemistry.* 74, 161-167.

Krishnan, R. *Screening, isolation, and characterization of fibrinolytic enzyme producing bacteria from belacan.* Degree dissertation. Universiti Teknologi Malaysia; 2010.

