ROBUST YAW STABILITY CONTROL OF HYBRID ELECTRIC VEHICLES

MUDHAFAR SALAH KAMIL

A project report submitted in partial fulfilment of the
requirements for the award of the degree of
Master of Engineering (Electrical-Mechatronics and Automatic Control)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2014
To my parents, my family, wife and children
ACKNOWLEDGEMENT

First and foremost, grateful thanks to Allah S.W.T, god and creator of this universe for guiding and helping me in the completion of this research project. I would like to take this precious opportunity to thank my supervisor Dr. Kumaresen A. Danapalasingam for being a very dedicated supervisor by relentlessly giving me all the guidance, support and encouragement needed throughout my study.

Besides, very special thanks go to my family; my mother, my wife, and my children. Thank you all for your continuous prayers, love, kindness, and encouragement. Finally, I am very thankful to all my friends who help and give advices to me during all stages of my study. I would like to share my entire honor with all of you.
ABSTRACT

Yaw stability of an automotive vehicle in various maneuvers is critical to the overall safety of the vehicle. Robust yaw stability control for a Through-the-Road Hybrid Electric Vehicle (TtR-HEV) with two in-wheel–motors in rear wheels is proposed using a Model Predictive control (MPC) controller. The propose technique aimed to enhance the yaw stability of TtR-HEV, especially on slippery roads to prevent vehicle from spinning out and provide safety driving under wide range of driving. This technique based on developed mathematical models of vehicle and tires. A Model Predictive control (MPC) controller applied to make vehicle yaw rate to track its reference. The control performance of the proposed yaw stability control system verified through computer simulation using MATLAB/SIMULINK. The yaw stability enhanced against uncertainties model, disturbances, and parameter variations. In addition, better performance achieved by applying the robust control that is satisfied high effectiveness and robustness.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Types of Hybrid Electric Vehicle

1.1.1 The Series Hybrid Electric Vehicle

1.1.2 The Parallel Hybrid Electric Vehicle

1.1.2.1 Through-the-Road Hybrid Electric Vehicle

1.1.3 Series-Parallel or Power-Split Hybrid

1.2 Yaw Stability

1.3 Problem Statement

1.4 Objective of Study

1.5 Scope of the Project

2 LITERATURE REVIEW

9
2.1 Introduction 9
2.2 Types of Stability Control Systems 10

3 METHODOLOGY 14
3.1 Introduction 14
3.2 Research Methodology 15

4 SYSTEM MODEL 18
4.1 Introduction 18
4.2 Tire Dynamic 19
4.3 Vehicle Dynamics for Yaw Motion 20
4.4 Linearized Vehicle Model 25
4.5 Desired Vehicle Model 26
4.6 Model Predictive Control 27
4.7 MPC Strategy 27
4.8 Objective Function 28
4.9 MPC Controller Design 30

5 SIMULATION AND RESULTS 31
5.1 Introduction 31
5.2 Types of Performance Test 32
5.3 J-Turn simulation test 33
 5.3.1 Simulation test on wet road condition 33
 5.3.2 Simulation test on dry road condition 35
5.4 Single lane-change test 36
 5.4.1 Simulation Single lane-change test on wet road condition 37
 5.4.2 Simulation Single lane-change test on dry road condition 38
5.5 Disturbance Profiles 39
 5.5.1 Crosswind Disturbance 39
 5.5.2 Braking Torque Disturbance 40
 5.5.3 J-Turn simulation test with Crosswind 41
5.5.3.1 J-Turn simulation at velocity 100 km/h with Crosswind Disturbance

5.5.3.2 J-Turn simulation at velocity 120 km/h with Crosswind Disturbance

5.5.4 J-Turn simulation with Braking Torque Disturbance

5.5.4.1 J-Turn simulation at velocity 100 km/h with Braking Torque Disturbance

5.5.5 Single lane-change Simulation with Crosswind Disturbance test

5.5.5.1 Single lane-change simulation at velocity 100 km/h with Crosswind Disturbance

5.5.5.2 Single lane-change simulation at velocity 120 km/h with Crosswind Disturbance

5.5.6 Simulation Single lane-change with Braking Torque Disturbance test

5.5.6.1 Single lane-change simulation at velocity 100 km/h with Braking Torque Disturbance

5.5.6.2 Single lane-change simulation at velocity 120 km/h with Braking Torque Disturbance

6 CONCLUSION AND RECOMENDATION

6.1 Conclusion

6.2 Recommendation

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Adhesion coefficient on different road conditions</td>
<td>17</td>
</tr>
<tr>
<td>5.1</td>
<td>Parameters of the vehicle</td>
<td>51</td>
</tr>
<tr>
<td>5.2</td>
<td>Simulation test types</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Configuration of a series hybrid electric vehicle</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Configuration of a parallel hybrid electric vehicle</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Configuration of a powertrain for a TtR-HEV</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Configuration of a series-parallel hybrid or a power-split drivetrain</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>The functioning of a yaw stability control system</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic of a TtR-HEV</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Research methodology flow chart</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>One wheel vehicle model</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Illustration of moving vehicle, indicated by its body coordinate frame B in a global coordinate frame G</td>
<td>21</td>
</tr>
<tr>
<td>4.3</td>
<td>Top view to show the yaw angle and sideslip angle</td>
<td>21</td>
</tr>
<tr>
<td>4.4</td>
<td>Vehicle model for yaw dynamics</td>
<td>22</td>
</tr>
<tr>
<td>4.5</td>
<td>Single-track model for vehicle</td>
<td>24</td>
</tr>
<tr>
<td>4.6</td>
<td>Considered control structure</td>
<td>30</td>
</tr>
<tr>
<td>5.1</td>
<td>Simulink of yaw stability control</td>
<td>32</td>
</tr>
<tr>
<td>5.2</td>
<td>Steering angle for a J-turn</td>
<td>34</td>
</tr>
<tr>
<td>5.3</td>
<td>Yaw rate in J-Turn input steer ($\mu=0.4$)</td>
<td>34</td>
</tr>
<tr>
<td>5.4</td>
<td>Sideslip angle in J-Turn input steer ($\mu=0.4$)</td>
<td>35</td>
</tr>
<tr>
<td>5.5</td>
<td>Yaw rate in J-Turn input steer ($\mu=0.7$)</td>
<td>35</td>
</tr>
<tr>
<td>5.6</td>
<td>Sideslip angle in J-Turn input steer ($\mu=0.7$)</td>
<td>36</td>
</tr>
<tr>
<td>5.7</td>
<td>Steering angle for a single lane-change</td>
<td>36</td>
</tr>
<tr>
<td>5.8</td>
<td>Yaw rate in single lane change</td>
<td>37</td>
</tr>
</tbody>
</table>
5.9 Sideslip angle in single lane change
5.10 Yaw rate in single lane change (μ=0.7)
5.11 Sideslip angle in single lane change (μ=0.7)
5.12 Simulation block diagram with crosswind disturbance
5.13 Crosswind disturbance
5.14 Braking torque disturbance
5.15 Yaw rate in J-Turn test with crosswind disturbance at vehicle velocity 100 km/h
5.16 Sideslip angle in J-Turn test with crosswind disturbance at vehicle velocity 100 km/h
5.17 Yaw rate in J-Turn test with crosswind disturbance at vehicle velocity 120 km/h
5.18 Sideslip angle in J-Turn test with crosswind disturbance at vehicle velocity 120 km/h
5.19 Yaw rate in J-Turn test with braking torque disturbance at vehicle velocity 100 km/h
5.20 Sideslip angle in J-Turn test with braking torque disturbance at vehicle velocity 100 km/h
5.21 Yaw rate in J-Turn test with braking torque disturbance at vehicle velocity 120 km/h
5.22 Sideslip angle in J-Turn test with braking torque disturbance at vehicle velocity 120 km/h
5.23 Yaw rate in single lane change with crosswind disturbance at vehicle velocity 100 km/h
5.24 Sideslip angle in single lane change with crosswind disturbance at vehicle velocity 100 km/h
5.25 Yaw rate in single lane change with crosswind disturbance at vehicle velocity 120 km/h
5.26 Sideslip angle in single lane change with crosswind disturbance at vehicle velocity 120 km/h
5.27 Yaw rate in single lane change with braking torque disturbance at vehicle velocity 100 km/h
5.28 Sideslip angle in single lane change with braking torque disturbance at vehicle velocity 100 km/h
disturbance at vehicle velocity 100 km/h

5.29 Yaw rate in single lane change with braking torque disturbance at vehicle velocity 120 km/h 50

5.30 Sideslip angle in single lane change with braking torque disturbance at vehicle velocity 120 km/h 50
LIST OF SYMBOLS

\(\delta \) - Wheel steering angle (in degree)
\(T_{bi} \) - Braking torque at \(i^{th} \) wheel (in newton meters)
\(\nu \) - Vehicle velocity at centre of gravity (in kilometers per hour)
\(\beta \) - Vehicle side slip angle (in degree)
\(\beta_d \) - Desired vehicle side slip angle (in degree)
\(A_s \) - Steering stability factor
\(\psi \) (\(\gamma \)) - Vehicle yaw rate (in degree per second)
\(\psi_d \) (\(\gamma_d \)) - Desired vehicle yaw rate (in degree per second)
\(\alpha_i \) - Sideslip angle at \(i^{th} \) wheel (in degree)
\(\omega_i \) - Tyre rotational speed at \(i^{th} \) wheel (in revolutions per minute)
\(F_{xi} \) - Longitudinal tyre force at \(i^{th} \) wheel (in newtons)
\(F_{yi} \) - Lateral tyre force at \(i^{th} \) Wheel (in newtons)
\(M_z \) - Yaw moment (in newton meters)
\(C_f \) - Nominal tyre cornering stiffness at front wheel (in newtons per radian)
\(C_r \) - Nominal tyre cornering stiffness at front wheel (in newtons per radian)
\(l_f \) - Distance from the vehicle center of gravity to the front axle (in meters)
\(l_r \) - Distance from the vehicle center of gravity to the rear axle (in meters)
\(I_z \) - Moment of inertia of vehicle body (in kilogram square meters)
\(g \) - Gravitational acceleration = 9.81 (in meters per second squared)
\(M_{\alpha} \) - Yaw moment (in newton meters)
\(m \) - Total mass of the vehicle (in kilograms)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>Tire-road friction coefficient</td>
</tr>
<tr>
<td>P</td>
<td>Predication horizon (intervals)</td>
</tr>
<tr>
<td>M</td>
<td>Control horizon (intervals)</td>
</tr>
<tr>
<td>$u(k)$</td>
<td>Input vector</td>
</tr>
<tr>
<td>Δu</td>
<td>Predicted change in control value</td>
</tr>
<tr>
<td>$r(k)$</td>
<td>Setpoint</td>
</tr>
<tr>
<td>$y(k)$</td>
<td>Predicted output</td>
</tr>
<tr>
<td>$x(k)$</td>
<td>Vector of state variable</td>
</tr>
<tr>
<td>$Q(i)$</td>
<td>Output error weight matrix</td>
</tr>
<tr>
<td>$R(i)$</td>
<td>Control weight matrix</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ABS - Anti-Lock Braking System
ASC - Active Steering Control
CG - Center of Gravity
DOF - Degree of Freedom
DYC - Direct Yaw Moment Control
ESP - Electronic Stability Program
FWS - Front Wheels Steering
HEV - Hybrid Electric Vehicle
ICE - Internal Combustion Engine
ISM - Integral Sliding Mode
IWM - In-Wheel-Motor
LPV - Linear Parameter Varying
LQR - Linear Quadratic Regulator
MIMO - Multi Input Multi Output
MPC - Model Predictive Control
PID - Proportional Integration Derivative
SA-DOB - Steering angle-disturbance Observer
SISO - Single Input Single Output
SMC - Sliding Mode Control
TCS - Traction Control System
TtR - Through-the-Road
VSC - Vehicle Stability Control
VTD - Variable Torque Distribution
YMO - Yaw Moment Observer
CHAPTER 1

INTRODUCTION

1.1 Types of Hybrid Electric Vehicle

A hybrid electric vehicle is one that has two or main sources of propulsion power. They have both internal combustion engine and one or more electric motors and can be driven by either powertrain or together sources simultaneously.

Recently, hybrid electric vehicle (HEV) have been developed very rapidly as a solution of energy problems, as well as environmental global warming issues. Compared to an internal combustion engine vehicles, a hybrid electric vehicle (HEV) can help reduce polluting emissions and can also offer highly reduced fuel consumption [1]. Thus, it has become the most available in technology and a great concern of researchers in this field.

HEV have evident advantages over conventional internal combustion engine vehicles. Firstly, a quick, accurate and comprehensible torque response. Secondly, output torque can be easily measured from motor current. Thirdly electric motors which are fixed in each wheel can be independently controlled.
HEV can be classified according to hybrid architectures. The most common architectures are parallel, series, and combination parallel-series hybrid electric vehicles. The resulting configurations can be treated under the following general categories:

1.1.1 The Series Hybrid Electric Vehicle

In the series hybrid electric vehicle, where uses the electric motor to drive the vehicle and this provides all the propulsion power. The internal combustion engine (ICE) directly connected to an electric generator or alternator. The principal advantage of this configuration is that series hybrid vehicle typically used in heavy-duty vehicles such as trucks, buses and other urban vehicles involved in a lot of stop-and-go driving. The system also reduces the need for conventional transmissions and clutches. This architecture has high efficiency and has very low emissions. The inefficiency associated with series hybrid, it is much low efficiency during high speed driving, due to losses in converting the mechanical power from the ICE to electricity and in charging and discharging of the battery as well as it also requires a large and heavy battery pack, which lead to increases cost and reduces vehicle performance from the weight of the batteries. The series hybrid architecture is depicted in Figure 1.1.
1.1.2 The Parallel Hybrid Electric Vehicle

The parallel hybrid uses a motor or more and an engine to powered the wheels of the hybrid electric vehicle together. The engine and motors are both connected directly to the drive train (see Figure 1.2). The main advantages of parallel architecture over a series architecture are generator is not required as well as the traction motor is smaller and light battery. Thus, this can minimizes the additional cost of the motor and battery pack. But the control of the parallel hybrid drive train is more complicated than a series, due to the mechanical coupling between the engine and the driven wheels.

Parallel-hybrid vehicles can be further divided into two categories according to the location of the electric motors. First category, the engine-assist systems, secondly, known as a through-the-road hybrid. In this research will be design robust yaw stability control of through-the-road hybrid electric vehicle (TtR-HEV).
1.1.2.1 Through-the-Road Hybrid Electric Vehicle

In the Through-the-Road (TtR) configuration of parallel hybrid electric vehicle (HEV), electric motors are coupled on one axle and the internal combustion engine (ICE) is coupled on the other axle. Therefore, the power from the ICE to the electric motors can be transmitted via the road and wheels when the vehicle is moving. In other word, when both ICE and electric motors are operating together, a “TtR-HEV” mode is obtained. An example TtR-HEV architecture is depicted in Figure 1.3.
1.1.3 Series-Parallel or Power-Split Hybrid

The series-parallel hybrid included usefulness and the construction of the series and parallel drive trains. By consolidating the two configurations, the ICE can be used to propulsion specifically wheels (as in the parallel drive train) and likewise be enough discontinued from the wheels so that only the electric motor propels the wheels (as in the series drive train). As a result of this new design, the ICE works at near optimum efficiency frequently. This framework is more costly because of the more complex hardware. In any case, the series-parallel hybrid has the possibility to fulfill better than either of the series or parallel hybrid systems alone. The configuration of a series-parallel hybrid drivetrain is shown in Figure 1.4.

Figure 1.3 Configuration of a powertrain for a TtR-HEV.

Figure 1.4 Configuration of a series-parallel hybrid or a power-split drivetrain [2].
1.2 Yaw Stability

Stability control systems that prevent automotive vehicle from skidding and spinning out are often referred to as yaw stability control systems [2]. Yaw stability of hybrid electric vehicle in a cornering situation is critical to vehicle stability and handling performance. Yaw stability aims to improve safety by keeping the vehicle yaw rate following its target commanded by the driver and keeping the vehicle slip angle in a small range (see Figure 1.5). In other words, yaw stability ensures a vehicle does not spin uncontrollably during emergency maneuvers and in critical driving conditions.

Figure 1.5 The functioning of a yaw stability control system [2].
1.3 Problem Statement

A study done by Ackermann (1997) found that the yaw rate of the automotive vehicle is not only stirred by lateral acceleration in a way that the driver is used to, but also by disturbance torques resulting for example when a car encounters unexpected road conditions, such as a split-μ road, the tire slip angles. So, the vehicle slip angle may suddenly increase, which causes the vehicle to reach its physical limit of adhesion between the tires and the road. The driver has to compensate this disturbance torque by opposing at the steering wheel in order to provide disturbance reduction. This is the more hard task for the driver because the disturbance input comes as an abruptness to him; since most drivers have less experience operating a vehicle under this situation, they might at last lose control of the vehicle [30].

Accordingly vehicle yaw stability ensures a car does not spin uncontrollably during emergency maneuvers and in critical driving conditions. This capability is especially needed when a car makes a sharp or high speed turn along a slippery road. Useful articles, researches and studies have been written about robust yaw stability control of hybrid electric vehicles, but there is little research has been done of TtR-HEV. With the above problem statement established, it is obvious to state that it is highly significant to design a robust yaw stability control of Through-the-Road Hybrid Electric Vehicle (TtR-HEV).
1.4 **Objective of Study**

The objective of this research are as follows:

(a.) To develop a single-track TtR-HEV model
(b.) To design a controller that is satisfy the robust yaw stability of a TtR-HEV.
(c.) To simulate and evaluate the performance of the system with a proposed controller.

1.5 **Scope of the Project**

This study focuses on the system that is Through-the-Road Hybrid Electric Vehicle (TtR-HEV), which contains the internal combustion engine (ICE) mounted on the front axle and two in-wheel-motors for rear traction. The work undertaken in this project are limited to the following aspects:

(a.) Mathematical model of the TtR-HEV is developed of a single track car model.
(b.) A controller will be designed to maintain the yaw stability of TtR-HEV based on mathematical models of vehicle and tires using MPC control technique.
(c.) Perform a simulation works by using MATLAB/SIMULINK to observe effectiveness and robustness of the controller.
REFERENCES

