OVERCURRENT RELAY SETTING BY USING ADAPTIVE TECHNIQUE

PARISA ESMAILI

A project report submitted in partial fulfilment of the requirements for the award from the degree of Master of Engineering (Electrical-Power)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2014
To my beloved family and specially my dears father, mother and sister
ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with lots from people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Prof. Ir. Dr. Abdullah Asuhaimi bin Mohd Zin, for encouragement, guidance, critics and friendship. Without his continued support and interest, this thesis would not be as written.

I also like to express my apperception Librarians at UTM also deserve special thanks for their assistance in supplying the relevant literatures.

My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are beneficial indeed. Unfortunately, it is not possible to list all from them in this limited space. I am grateful to all my family members.
ABSTRACT

As cost-effective protection relays, Overcurrent (OC) relays are used as the main protection equipment in distribution grids and backup protection for distance relays in transmission and sub-transmission lines. Basically, two parameters are considered as OC relays settings: pickup currents \(I_{\text{pick up}} \) and Time Setting Multiplier (TSM). Hence, the objective in the coordination problem of OC relays is to determine \(I_{\text{pick up}} \) and TSM of each relay. These methods can be classified into two different approaches: Off-line and On-line coordination approaches. By analyzing all faults, abnormal operating conditions, and system contingencies as well-known as Off-line coordination techniques, several methods have been developed to solve coordination problem of OC relays. However, the response of relays would not be satisfactory in a condition which has not been included the analysis earlier. Meaning that, required short circuit currents due to any fault that occurred in grid cannot be adjusted to the coordination problem of OC relays. Therefore, the risk of occurring mal-operation or miss-coordination becomes high. In order to achieve a robust protection scheme, the OC relays settings must be updated regarding to any change which results into new topology of the grid. In this thesis, a reliable protection scheme is achieved by implementing the proposed adaptive protection algorithm. For this purpose, the idea of employing the Thevenin equivalent circuit is utilized to check the power grid operation for any change continuously. By applying the proposed technique, the accurate settings of overcurrent relays in distribution network are determined. As a result, the proposed adaptive protection algorithm can avoid the unnecessary blackouts in distribution network and provide reliable and sensitive protection scheme.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIAT OF ABBREVIATION</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDIX</td>
<td>xvii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Overview</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Background</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 Objective of Study</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.4 Scope of Study</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.5 Research Significant</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.6 Thesis Outline</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2 Overcurrent Relays</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Types of Overcurrent Relays</td>
<td>7</td>
</tr>
</tbody>
</table>
RESULT AND DISCUSSION

4.1 Introduction

4.2 The Thevenin Equivalent Impedances under Normal Operating Condition
 4.2.1 Load Flow Analysis
 4.2.3 Sampling Procedure under Normal Operating Condition

4.3 The Thevenin Equivalent Impedances after loads Connection
 4.3.1 Sampling Procedure after Loads Connection

4.4 The Thevenin Equivalent Circuit after Compensators Connection

4.5 The Thevenin Equivalent Circuit under Unexpected Change
 4.5.1 Sampling Procedure when G8 is taken out of use

4.6 Overcurrent Relays setting in Radial Distribution System

4.7 Short Circuit Current Calculation under Normal Operating Condition
 4.7.1 Overcurrent Relay Setting under Normal Operating Condition

4.8 Short Circuit level and Overcurrent Relays Settings after Loads Connection
 4.8.1 Short Circuit level and Overcurrent Relays Settings after G8 Disconnection

4.9 Results Discussion
 4.9.1 Different Values of the Thevenin Equivalent Impedances
 4.9.2 Affected Short Circuit Currents
 4.9.3 Proposed Adaptive Overcurrent Relays Settings

4.10 Summary

CONCLUSION AND FUTURE WORK

5.1 Conclusion
5.2 Future Work: Protection Issues in Microgrids 73
5.2.1 Active Distribution Networks 74
5.2.2 Implementing of Adaptive Protection Approaches as a Solution in Microgrids Protection Issues 75

REFERENCES 76
Appendix A-B 81-98
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Values of α and K determine the degree of inverse in the IDM curves</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Initial values of voltage, impedance, line and load currents in pu</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Voltage on buses 2, 3, 4, 5, 7 and 9 during sampling under normal operating condition in pu</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Currents from buses 2, 3 and 5 into the bus 4 during sampling under normal operating condition in pu</td>
<td>46</td>
</tr>
<tr>
<td>4.4</td>
<td>Currents from bus 4 into the buses 7 and 9 during sampling under normal operating condition in pu</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>Load current, and load impedance during sampling under normal operating condition in pu</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>Voltage on Buses 2, 3, 4, 5, 7 and 9 during sampling after loads connection in pu</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>Currents from buses 2 and 5 into the bus 4 during sampling after loads connection in pu</td>
<td>50</td>
</tr>
<tr>
<td>4.8</td>
<td>Currents from bus 4 into the buses 3, 7 and 9 during sampling after loads connection in pu</td>
<td>51</td>
</tr>
<tr>
<td>4.9</td>
<td>Load and line currents during sampling after Loads connection in pu</td>
<td>51</td>
</tr>
<tr>
<td>4.10</td>
<td>Load impedance during sampling after loads connection in pu</td>
<td>52</td>
</tr>
<tr>
<td>4.11</td>
<td>Voltage on buses 2, 3, 4, 5, 7 and 9 during sampling after</td>
<td></td>
</tr>
</tbody>
</table>
G8 disconnection in pu 56

4.12 Currents from bus 2 and 5 into the bus 4 during sampling after G8 disconnection in pu 56

4.13 Currents from bus 4 into the bus 3, 7, and 9 during sampling after G8 disconnection in pu 57

4.14 Load and line currents during sampling after G8 disconnection in pu 57

4.15 Load impedance during sampling after G8 disconnection in pu 58

4.16 CT Ratio, nominal and short circuit currents for breakers under normal operating condition 61

4.17 Overcurrent relay setting data under normal operating condition 63
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Definite current relay operating characteristics</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Definite time relay operating characteristic</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Inverse time minimum time relay operating characteristic</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>IEC standard based characteristic curves</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Primary and backup protection zone of OC relays</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>Traditional and modern configuration of overcurrent relay:</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Modern power systems configuration</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Summaries of the proposed Off-line coordination techniques</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Research frame work</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>The single-line diagram of the IEEE-14 bus test system</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>The proposed adaptive algorithm to monitor the voltage on the bus 4</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Continuously changing operating condition of the grid</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Per-phase equivalent circuit of the power grid for a line led to a bus</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>Typical configuration of radial distribution systems</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>The 230/20 kV test radial distribution system configuration</td>
<td>37</td>
</tr>
<tr>
<td>3.8</td>
<td>Equivalent circuit of power system under fault occurred at LV side</td>
<td>37</td>
</tr>
</tbody>
</table>
4.1 simulated IEEE-14 bus test system in POWERWORLD simulator under normal operating condition

4.2 Power flow direction to/from Bus 4 under normal operating condition in POWERWORD simulator

4.3 Workspace of power flow analysis in POWERWORLD simulator

4.4 Simulated IEEE-14 bus test system in POWERWORLD simulator after loads connection

4.5 Power flow direction to/from the bus 4 after loads connection in POWERWORLD simulator

4.6 Simulated IEEE-14 bus test system in POWERWORLD simulator after compensation

4.7 Simulated IEEE-14 bus test system in POWERWORLD after G8 disconnection

4.8 Power flow direction to/from the bus 4 after G8 disconnection in POWERWORLD simulator

4.9 Connection of 230/20 kV-distribution system to the IEEE-14 bus power grid

4.10 Simulated 14-bus test system and its connected radial distribution network after load connection

4.11 CT Ratio, nominal and short circuit currents for breakers after loads connection

4.12 Overcurrent relay setting data after loads connection

4.13 Simulated 14-bus test system and its connected radial distribution network after G8 disconnection

4.14 CT Ratio, nominal and short circuit currents for breakers when G8 disconnected

4.15 Overcurrent relay setting data when G8 disconnected

4.16 Different values of the Thevenin impedance under continuously changing operating condition of the grid

4.17 Different short circuit levels under different operating conditions
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Active distribution networks configuration</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>Simulated 230/20 active distribution network in POWERWORLD simulator</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IEEE-14 Bus Test System Data</td>
<td>81</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB Codes</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF ABREVIATIONS

OC - Overcurrent
TSM - Time Setting Multiplier
PS - Plug Setting
LP - Linear Programming
MINLP - Mixed Integer Non-Linear Programming
SCADA - Supervisory Control and Data Acquisition
HV - High Voltage
IDMT - Inverse Define Minimum Time
DT - Define Time
NLP - Non-Linear Programming
IBFS - Initial Basic Feasible Solution
GA - Genetic Algorithm
POS - Particle Swarm Optimization
CGA - Continuous Genetic Algorithm
OF - Objective Function
NM - Nelder-Mean
DUT - Dominant Utilization Topology
ILP - Interval Linear Programming
DG - Distributed Generation
LV - Low Voltage
CIT - Coordination Time Interval
CHAPTER 1

INTRODUCTION

1.1 Overview

In the presence of increasing industrial developments and consequently growing energy consumption, importance of accessing to reliable electricity widely has been attention [1]. In addition to reliability, it is compulsory to generate sufficient amount of electric power to transmit on a continuous basis where systems efficiency depends on continuous electricity accessing [2]. To achieve this, protection system associated with the power system must be able to identify and compensate any effects or fails in the system which leads to long term blackouts [3]. Otherwise, more delays required to restore the system to its normal operating in case of blackout or damage to equipments which is costly. Furthermore, utilization of the suitable protective equipment is fundamentally important in terms of safety and minimizing damages on the electrical devices. To achieve this, protective relays such as overcurrent relays must promptly clear any fault with disconnecting as few components as possible.

As cost-effective protective relays, overcurrent relays (OC) have been employed in distribution system. Usually, these relays are the main protection
devices in distribution grids and backups for distance relays in transmission and sub-transmission lines [4]. Basically, two parameters are considered as OC relays settings: pickup currents \(I_{\text{pick-up}} \) and Time Setting Multiplier (TSM). Hence, the objective in the coordination problem of OC relays is to determine \(I_{\text{pick-up}} \) and TSM of each relay [5]. In order to prevent any mal-operation or miss-coordination, overcurrent relays must adjust with accurate values of pick up current and time dial setting.

1.2 Problem Background

Several methods that have been developed to solve coordination problem of OC relays can be classified into two different approaches: Off-line and On-line coordination approaches. Traditionally, conventional approaches have been applied to solve coordination problem of OC relays [10-16]. Since these approaches encountered with problems for complex and interconnected networks, optimization techniques introduced to overcome the mentioned problems [17-18]. These optimization techniques can be divided into linear and non-linear techniques. In linear techniques, pickup currents assumed to be known. Thus, the Linear Programming (LP) is employed only to minimize operating time [19-22]. Since, overcurrent relays coordination problem is a Mixed Integer Non-Linear Programming (MINLP), LP techniques have limitations in term of low number of restrictions. This leads to introduce non-linear technique or intelligence based optimization methods. Considering the nonlinearity effects and integer variables in problem formulation are the major benefits of the intelligent based optimization methods [23-24]. Genetic algorithm (GA) and Particle Swarm Optimization (PSO) have been presented as two powerful tools in order to solve this complex optimization problem [25-34].
However the optimization techniques presented reliable performance in order to solve coordination problem, these protection techniques are in relation to the concept of pre-determinism which involves analysis of all faults, abnormal operating conditions, and system contingencies. In protection scheme based on pre-determinism concept, the response of relays would not be satisfactory in a condition which has not been included the analysis earlier [4-9]. Meaning that, required short circuit currents due to any fault that occurred in grid cannot be adjusted to the coordination problem of OC relays. Therefore, the risk of occurring mal-operation or miss-coordination becomes high.

In order to achieve a robust protection scheme, overcurrent relays must be adjusted by new settings. For this purpose, microprocessor based relays have been employed in order to introduce adaptive protection scheme [35-37]. In this manner, a Supervisory Control and Data Acquisition (SCADA) system checked the system for any alterations continuously. As mentioned above, in protection scheme based on pre-determinism concept, the response of relays would not be satisfactory due to uncertainties. Although, the proposed centralized adaptive protection approaches have been provided good solution for this problem, the coordination process depends on the monitoring performance of SCADA system.

In this thesis, a reliable protection scheme is achieved by implementing the proposed adaptive protection algorithm. According to the proposed algorithm, new setting for the overcurrent relays can be obtained regarding to any change in topology of the grid. The method is an On-line technique and based on the Thevenin equivalent circuit of the grid that seen from each bus. This provides a monitoring capability which removes any dependency on SCADA system performance. In this thesis, proper settings of overcurrent relays that adjusted in a High Voltage (HV) substation are determined by employing proposed adaptive protection algorithm.
1.3 Objective of Study

The objectives of this study are as follow.

1. To obtain the Thevenin equivalent circuit parameters for the test system
2. To determine the required short circuit currents for accurate setting of overcurrent relays in HV substation by applying obtained Thevenin equivalent circuit parameters.
3. To propose new accurate setting of overcurrent relays in HV substation due to any changes in grid topology (add/remove equipment).

1.4 Scope of Study

To achieve the research objectives, the following scopes will be covered:

1. Thevenin equivalent circuit is derived only for one bus.
2. IEEE 14-bus system is considered as case study.
3. MATLAB and POWERWORLD software are employed in this study.
4. Only HV substation relays are considered for finding accurate setting.
5. Changes in grid topology such as add new equipments or take out of use of equipments are considered
1.5 Research Significant

The main significant in this work is to propose accurate settings for OC relays in order to solve coordination problem regarding to any change in grid topology.

1.6 Thesis Outline

This thesis is prepared in five chapters as follow.

Chapter 1: Describe on the problem background and statement, objectives, scopes and significances of the study.

Chapter 2: Reviews some related works done by previous investigators on conventional and optimization methods to solve the coordination problem of OC relays.

Chapter 3: Specifies the research process employed in this thesis.

Chapter 4: First, the Thevenin equivalent circuit impedances are obtained for test system under different operating conditions. Then, required short circuit current levels are calculated by applying different values of the Thevenin impedances regarding to each operating condition. Finally, the accurate settings of each OC relays in test radial distribution network are determined according to the different values of short circuit current levels.

Chapter 5: Presents conclusion and future work.
REFERENCES

