LATERITIC SOIL STABILIZATION BY USING ROADPACKER PLUS

GOH LI LIAN

A project report submitted in partial fulfilment of the requirements for the award of the degree of
Master of Engineering (Civil)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JANUARY 2014
To my beloved family
Firstly, I would like to express my sincere appreciation to my thesis supervisor, Dr Ahmad Safuan Bin A. Rashid for his guidance and support throughout my research in this project. His generousness guidance provides me valuable lessons and experiences throughout my academic years.

I would also like to express my appreciation to Prof. Madya. Ir. Dr. Ramli Nazir, Madam Fauziah Kassim and Mr. Muhammad Azril Bin Hezmi for their critical comments and suggestion for my thesis. I would also like to thank all the lecturers who have provided me with valuable inputs during this research and my academic years.

I wish to dedicate my greatest gratitude to members of family and my parents for their unswerving support and spiritual guidance given me.

Finally, special thanks to my beloved friends for their assistance and support in my research and studies. I would also like to thank everyone who has contributed to this project. This project would have been impossible without your guidance, advice and support.
ABSTRACT

In Malaysia, more than half the area in Peninsular Malaysia is covered with lateritic soil. Improvement method is needed to provide a strong subgrade construction during construction process. Currently, there are a lot of popular improvement methods and stabilization methods are used in the field. In study, 7% and 13% of RoadPacker Plus were used as a mean of stabilization treatment of soil while 0% act as control sample. Soil stabilization is the alteration of one or more soil properties, by mechanical or chemical means, to improve soil material possessing the desired engineering properties. The main purpose of soil stabilization is to increase soil strength, bearing capacity and resistance to deteriorative forces of nature and manmade environment. Laboratory tests were conducted to determine the engineering properties of soil sample such as classification, Standard Proctor Compaction Test, and Unconfined Compressive Test (UCT). For compaction test, 7% RoadPacker Plus content has the highest MDD value which is 1.54 with 25.47% of moisture content. As for the UCS testing, soil mixture with 7% RoadPacker Plus content have gain higher strength improvement as compare to 13% content. The results indicated that RoadPacker Plus is able to significantly improve the unconfined compression strength of Laterite soil. The soil strength increased with the duration of curing period. As a result, RoadPacker Plus is suitable to use for some practical project such as increasing road bearing capacity.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>vi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 2
1.3 Objective 3
1.4 Scope of Study 4

2 LITERATURE REVIEW

2.1 Laterite Soil 5
 2.1.1 Soil Properties of Laterite Soil 6
 2.1.1.1 Specific Gravity of Laterite Soil 7
2.1.1.2 Plasticity Characteristic of Laterite Soil 7
2.1.2 Compaction of Laterite Soil 8
2.2 Soil Stabilization 9
 2.2.1 Mechanical Stabilization 10
 2.2.2 Chemical Admixture Stabilization 10
2.3 Selection of Additives 11
2.4 Environment Condition 13
2.5 RoadPacker Plus Stabilization 14
2.6 Cement Stabilization 16
2.7 Relationship between Unconfined Compressive Strength and Liquidity Index 17
2.8 Subgrade in Road Design 18
2.9 Stabilization of Subgrade 19

3 METHODOLOGY
3.1 Introduction 22
3.2 Material 24
 3.2.1 Laterite Soil 25
 3.2.2 RoadPacker Plus 25
3.3 Laboratory Testing 25
3.4 Soil Classification 25
 3.4.1 Particle Size Distribution 25
 3.4.1.1 Dry Sieving 26
 3.4.2 Atterberg Limit 27
 3.4.2.1 Liquid Limit (Drop Cone Penetration) 29
 3.4.2.2 Plastic Limit 31
3.5 Standard Proctor Compaction Test 32
RESULT AND ANALYSIS

4.1 Introduction 40

4.2 Soil Classification 41

4.2.1 Particle Size Analysis 41

4.2.2 Atterberg Limit 42

4.2.2.1 Liquid Limit (LL) 42

4.2.2.2 Plastic Limit (PL) 43

4.2.2.3 Plasticity Index (PI) 43

4.3 Standard Proctor Compaction Test 44

4.4 Unconfined Compressive Test (UCT) 47

4.5 Comparison Result of RoadPacker Plus and Ordinary Portland Cement Stabilization of Soil 60

4.5.1 Compaction Test 60

4.5.2 Unconfined Compressive Test 61

4.6 Discussion 62

CONCLUSION AND RECOMMENDATION

5.1 Conclusion 68

5.2 Recommendation 69

REFERENCE 71

APPENDIX 74
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Range of size fraction for fine-grained laterite soil</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Guide for selection a stabilizing addictive (Gayer, 2011)</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Description for RoadPacker Plus</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Classes of subgrade strength based on CBR (ATJ 5/85- Amendment 2013)</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of soil classification</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Results of compaction test</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Results of UCS for 0% RoadPacker Plus content</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Result of UCS for 7% RoadPacker Plus content</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Result of UCS for 13% RoadPacker Plus content</td>
<td>57</td>
</tr>
<tr>
<td>4.6</td>
<td>Liquidity index and strength for 0%, 7% and 13% of RoadPacker Plus</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Liquidity index and strength for 0%, 7% and 13% of RoadPacker Plus</td>
<td>64</td>
</tr>
<tr>
<td>4.8</td>
<td>Liquidity index and strength for 0%, 7% and 13% of RoadPacker Plus</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Oven dried natural laterite soil</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Plasticity characteristic and limits of soil (Gidigasu, 1969)</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Gradiation triangle for aid in selecting a commercial stabilizing agent (Guyer, 2011)</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>RoadPacker Plus</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Cement</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Cross Section of pavement system</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of research activities</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Laterite soil</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Mechanical Shaker</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Consistency limit chart (Mandel, 1995)</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Plasticity chart system (BS 5930: 1981)</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Cone penetration</td>
<td>30</td>
</tr>
<tr>
<td>3.7</td>
<td>Plastic limit sample</td>
<td>32</td>
</tr>
<tr>
<td>3.8</td>
<td>A typical compaction curve obtained from Standard Proctor Compaction test</td>
<td>33</td>
</tr>
<tr>
<td>3.9</td>
<td>Standard Proctor Compaction test apparatus</td>
<td>33</td>
</tr>
<tr>
<td>3.10</td>
<td>Sample is extruded from the mould by extruder</td>
<td>37</td>
</tr>
<tr>
<td>3.11</td>
<td>Curing process in controlled room temperature</td>
<td>37</td>
</tr>
<tr>
<td>3.12</td>
<td>Compression machine</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Soil distribution of the laterite soil sample</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Graph of penetration of cone versus moisture content</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Plasticity chart system (BS 5930: 1981)</td>
<td>44</td>
</tr>
</tbody>
</table>
4.4 Dry density vs moisture content (0% RoadPacker Plus) 45
4.5 Dry density vs moisture content (7% RoadPacker Plus) 45
4.6 Dry density vs moisture content (13% RoadPacker Plus) 46
4.7 Maximum Dry Density vs percentage of RoadPacker Plus 46
4.8 Optimum Moisture Content vs. percentage of RoadPacker Plus 47
4.9 Categories of Unconfined Compressive test samples 48
4.10 Stress vs Strain (0% RoadPacker Plus) with 7 days curing period 49
4.11 Stress vs Strain (0% RoadPacker Plus) with 14 days curing period 50
4.12 Stress vs Strain (0% RoadPacker Plus) with 28 days curing period 50
4.13 Stress vs Strain (7% RoadPacker Plus) with 7 days curing period 53
4.14 Stress vs Strain (7% RoadPacker Plus) with 14 days curing period 53
4.15 Stress vs Strain (7% RoadPacker Plus) with 28 days curing period 54
4.16 Stress vs Strain (13% RoadPacker Plus) with 7 days curing period 55
4.17 Stress vs Strain (13% RoadPacker Plus) with 14 days curing period 56
4.18 Stress vs Strain (13% RoadPacker Plus) with 28 days curing period 56
4.19 Graph failure stress vs RoadPacker Plus content for 7 days curing period 57
4.20 Graph failure stress vs RoadPacker Plus content for 14 days curing period 58
4.21 Graph failure stress vs RoadPacker Plus content for 28 days curing period 58
4.22 Graph of Maximum Dry Density vs amount of RoadPacker Plus and Ordinary Portland Cement

4.23 Graph of Optimum Moisture Content vs amount of RoadPacker Plus and Ordinary Portland Cement

4.24 Graph of percentage of strength increment vs amount of RoadPacker Plus and Ordinary Portland Cement

4.25 Graph of undrained shear strength vs Liquidity Index for 7 days curing period

4.26 Graph of undrained shear strength vs Liquidity Index for 14 days curing period

4.27 Graph of undrained shear strength vs Liquidity Index for 28 days curing period

4.28 Graph undrained shear strength vs LI for RoadPacker Pus
LIST OF ABBREVIATIONS

BS - British Standard
CBR - California Bearing Ratio
JKR - Jabatan Kerja Raya
LI - Liquidity Index
LL - Liquid Limit
MDD - Maximum Dry Density
OMC - Optimum Moisture Content
OPC - Ordinary Portland Cement
PI - Plasticity Index
PL - Plastic Limit
PSD - Particle Size Distribution
PVC - Polyvinyl Chloride
UCS - Unconfined Compressive Strength
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>Ca⁺</td>
<td>Calcium Ion</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Sodium Ion</td>
</tr>
<tr>
<td>K⁺</td>
<td>Potassium Ion</td>
</tr>
<tr>
<td>Mg⁺</td>
<td>Magnesium Ion</td>
</tr>
<tr>
<td>H⁺</td>
<td>Hydrogen Ion</td>
</tr>
<tr>
<td>qu</td>
<td>Unconfined Compressive Strength</td>
</tr>
<tr>
<td>w</td>
<td>Moisture Content</td>
</tr>
<tr>
<td>σ</td>
<td>Shear Stress</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Particle Size Distribution Data Sheet</td>
<td>75</td>
</tr>
<tr>
<td>B</td>
<td>Atterberg Limit Test Data Sheet</td>
<td>77</td>
</tr>
<tr>
<td>C</td>
<td>Standard Proctor Compaction Test Data Sheet</td>
<td>79</td>
</tr>
<tr>
<td>D</td>
<td>Unconfined Compressive Strength Test Data Sheet</td>
<td>83</td>
</tr>
<tr>
<td>E</td>
<td>Comparison of Undrained Shear Strength and</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Liquidity Index for RoadPacker Plus and OPC</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Lateritic soils are generally found in tropical and sub-tropical countries. In Malaysia, more than half the area in Peninsular Malaysia is covered with residual sedimentary rock soil rich in iron and alumina content which give its lateritic nature (Aun. OT., 1982). Their geotechnical properties are influenced by the climate, parent rock and the degree of laterisation. During laterisation, iron oxide and aluminium oxide coat and bind the clay particles leading to change in the micro-structure of the soil. The mineralogy and micro-structure influence the geotechnical properties of lateritic soil (Mahalinga-Iyer and Williams, 1991).

Therefore, the characteristic of lateritic soil is hard to predict during construction. Lateritic soil are not conducive to road construction thus, if the techniques of road design and construction is not in accordance with the soil conditions, then failure will prevail before its design life. To ease the work of construction pavement, stabilization works have been introduced to improve characteristics of soil such as compressive strength, compressibility and permeability of the soil.

There are various method are adapted to improve the engineering characteristic of soil to ensure stability of soil. The problematic of soil either removed and replaced by good or better quality material or stabilized by using
physical or chemical stabilization. Chemical stabilization includes cement, lime, fly ash, bitumen and asphalt emulsion. These are the most common soil stabilization method used in the construction industry. However, in recent years, commercial sector has a variety of non-traditional soil stabilization such as enzymes, liquid polymers, resins, acids, silicates, and lignin derivatives which are considered not common (Marto et al., 2013).

In this study, a liquid chemical was used as soil stabilizer which is known as RoadPacker Plus. RoadPacker Plus is a corrosive liquid, N.O.S. (Phosphoric Acid, Sulphuric Acid) Class 8; UN 1760; PGII which acts as a highly effective soil stabilizer and has a branched molecular structure comprised of millions of molecules linked and cross linked together to create an unbreakable bonding adhesion matrix that increase the strength of the in-situ soil significantly.

1.2 Problem Statement

Malaysia is a rapidly developing country. As the result, there has been a considerable amount of development in all major cities. To cope with the developing and strong economic performance, there has been lots of urbanization project done by the government.

Problem laterites are laterite soils that have the reputation of being problematic in road and airfield pavement construction. Highway and airfield pavements that have this soil as bases and sub-bases are characterized by pavements swelling, depression, and lateral movement in the presence of water, even under moderate wheel loads. Problem laterites are generally identified as residually weathered soils formed in regions of recent volcanic activity and/ or continuous wet climate with an average rainfall generally above 1,500mm. They are characterized by high natural water contents and liquid limits, low natural densities, and are friable and/ or have a crumbly structure (Terzaghi 1958, Millard 1962).
Alternative ways to deal with lateritic soil included attempts to dry and compact the soil, adding geosynthetic material into the soil or adding chemical stabilizer such as lime, cement, polymer. Chemical stabilizer such as cement, lime, or bitumen treatment is effective in soil treatment, but this research focus on the efficiency and performance of RoadPacker Plus soil stabilizer to treat the lateritic soil by conducting laboratory tests.

1.3 Objectives

The objectives of the research as below:

1. To determine the engineering properties of laterite soil.

2. To determine the strength of the soil after stabilization by using RoadPacker Plus with different emulsion content and curing period.

3. To determine the optimum composition of RoadPacker Plus emulsion for soil stabilization.

4. To determine the relationship of soil strength and the Liquidity Index (LI) under varies percentage of RoadPacker Plus content and curing period.

5. To compare the soil strength, maximum dry density, optimum moisture content and the relationship of soil strength and liquidity index after stabilized using RoadPacker Plus and Ordinary Portland Cement (OPC) for 7 days curing period.
1.4 Scope of study

The main purpose of this research is to determine optimum chemical emulsion to be used in soil stabilization lateritic soil. The scope of this research includes:

1. The soil selected is laterite soil and the soil stabilizer is RoadPacker Plus.

2. The physical properties and classification tests of laterite soil according to BS 1377 part 2 to identify physical properties of soil such as Atterberg limits, particle size distribution of laterite soil and moisture content.

3. The Optimum Moisture Content (OPC) for the most efficient compaction that is at which the maximum dry density is achieved under that compaction effort, which is accordance to BS 1377: 1990: Part 4 (2.5 kg rammer method).

4. The Maximum Dry Density (MDD) and Optimum Moisture Content (OMC) of the RoadPacker Plus soil stabilizer is used in preparation on the remolded samples and the samples are cured for 1, 7, 14 and 28 days at room temperature.

5. 7% and 13% of Stabilizer are added in different sample in order to stabilize the laterite soil.

6. Obtaining the shear strength of the laterite soil which stabilized with 0%, 7% and 13% RoadPacker Plus soil stabilizer content by using unconfined compression test according to BS 1924.

7. The relationship between the soil strength and Liquidity Index (LI) is to shows the soil sensitivity according to the amount of soil stabilizer and curing period. The relationship will help in determine the optimum amount of RoadPacker Plus to be used during road construction.
REFERENCES

BS 1377 Part 2: 1990 Clause 5A, Methods of test for Soils for civil engineering purposes Part 5: Compressibility, permeability and durability tests

